Advertisement

Cellular and Molecular Life Sciences

, Volume 73, Issue 6, pp 1145–1157 | Cite as

The myofibroblast, a key cell in normal and pathological tissue repair

  • Ian A. DarbyEmail author
  • Noraina Zakuan
  • Fabrice Billet
  • Alexis DesmoulièreEmail author
Review

Abstract

Myofibroblasts are characterized by their expression of α-smooth muscle actin, their enhanced contractility when compared to normal fibroblasts and their increased synthetic activity of extracellular matrix proteins. Myofibroblasts play an important role in normal tissue repair processes, particularly in the skin where they were first described. During normal tissue repair, they appear transiently and are then lost via apoptosis. However, the chronic presence and continued activity of myofibroblasts characterize many fibrotic pathologies, in the skin and internal organs including the liver, kidney and lung. More recently, it has become clear that myofibroblasts also play a role in many types of cancer as stromal or cancer-associated myofibroblast. The fact that myofibroblasts are now known to be key players in many pathologies makes understanding their functions, origin and the regulation of their differentiation important to enable them to be regulated in normal physiology and targeted in fibrosis, scarring and cancer.

Keywords

α-Smooth muscle actin Contractility Extracellular matrix Excessive scarring Fibrosis Cancer stroma Innervation 

Abbreviations

ECM

Extracellular matrix

SM

Smooth muscle

EMT

Epithelial mesenchymal transition

HSC

Hepatic stellate cell

TGF

Transforming growth factor

CTGF/CCN2

Connective tissue growth factor

PDGF

Platelet-derived growth factor

ROS

Reactive oxygen species

NOX

NADPH oxidase

MMP

Matrix metalloproteinase

LAP

Latency-associated peptide

CGRP

Calcitonin gene-related peptide

References

  1. 1.
    Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179. doi: 10.1016/S0074-7696(07)57004-X PubMedCrossRefGoogle Scholar
  2. 2.
    Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17(1–2):113–125. doi: 10.2119/molmed.2009.00153 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Iredale J (2008) Defining therapeutic targets for liver fibrosis: exploiting the biology of inflammation and repair. Pharmacol Res 58(2):129–136. doi: 10.1016/j.phrs.2008.06.011 PubMedCrossRefGoogle Scholar
  4. 4.
    Hardie WD, Glasser SW, Hagood JS (2009) Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol 175(1):3–16. doi: 10.2353/ajpath.2009.081170 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Qi W, Chen X, Holian J, Mreich E, Twigg S, Gilbert RE, Pollock CA (2006) Transforming growth factor-beta1 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. Am J Physiol Renal Physiol 291(5):F1070–F1077. doi: 10.1152/ajprenal.00013.2006 PubMedCrossRefGoogle Scholar
  6. 6.
    Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26. doi: 10.1038/nrcardio.2012.158 PubMedCrossRefGoogle Scholar
  7. 7.
    Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18(8):1262–1270. doi: 10.1038/nm.2848 PubMedCrossRefGoogle Scholar
  8. 8.
    Castelino FV, Varga J (2014) Emerging cellular and molecular targets in fibrosis: implications for scleroderma pathogenesis and targeted therapy. Curr Opin Rheumatol 26(6):607–614. doi: 10.1097/BOR.0000000000000110 PubMedCrossRefGoogle Scholar
  9. 9.
    Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178. doi: 10.1242/dmm.004077 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253. doi: 10.15252/embr.201439246 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007) Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 13(7):2082–2090. doi: 10.1158/1078-0432.CCR-06-2191 PubMedCrossRefGoogle Scholar
  12. 12.
    Carrel A, Hartmann A (1916) Cicatrization of wounds: I. The relation between the size of a wound and the rate of its cicatrization. J Exp Med 24(5):429–450PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Abercrombie M, Flint M, James D (1954) Collagen formation and wound contraction during repair of small excised wounds in the skin of rats. J Embryol Exp Morphol 2:264–274Google Scholar
  14. 14.
    Billingham RE, Russell PS (1956) Studies on wound healing, with special reference to the phenomenon of contracture in experimental wounds in rabbits’ skin. Ann Surg 144(6):961–981PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Watts GT, Grillo HC, Gross J (1958) Studies in wound healing: II. The role of granulation tissue in contraction. Ann Surg 148(2):153–160PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5):549–550PubMedCrossRefGoogle Scholar
  17. 17.
    Eyden B (2008) The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med 12(1):22–37. doi: 10.1111/j.1582-4934.2007.00213.x PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63(1):21–29PubMedGoogle Scholar
  19. 19.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363. doi: 10.1038/nrm809 PubMedCrossRefGoogle Scholar
  20. 20.
    Hinz B (2015) Myofibroblasts. Exp Eye Res. doi: 10.1016/j.exer.2015.07.009 PubMedGoogle Scholar
  21. 21.
    Hinz B, Pittet P, Smith-Clerc J, Chaponnier C, Meister JJ (2004) Myofibroblast development is characterized by specific cell-cell adherens junctions. Mol Biol Cell 15(9):4310–4320. doi: 10.1091/mbc.E04-05-0386 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Benzonana G, Skalli O, Gabbiani G (1988) Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues. Cell Motil Cytoskelet 11(4):260–274. doi: 10.1002/cm.970110405 CrossRefGoogle Scholar
  23. 23.
    van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134(2):401–411PubMedCrossRefGoogle Scholar
  24. 24.
    Eyden B (2005) The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. J Submicrosc Cytol Pathol 37:109–204PubMedGoogle Scholar
  25. 25.
    Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103(6 Pt 2):2787–2796PubMedCrossRefGoogle Scholar
  26. 26.
    Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405PubMedCrossRefGoogle Scholar
  27. 27.
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350. doi: 10.1172/JCI15518 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zeisberg M, Kalluri R (2008) Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front Biosci 13:6991–6998PubMedCrossRefGoogle Scholar
  29. 29.
    Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162(5):1495–1502PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54(3):864–876. doi: 10.1046/j.1523-1755.1998.00076.x PubMedCrossRefGoogle Scholar
  31. 31.
    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823. doi: 10.1038/ncomms3823 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97. doi: 10.2353/ajpath.2010.090517 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111PubMedCrossRefGoogle Scholar
  34. 34.
    Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696–707PubMedGoogle Scholar
  35. 35.
    Shinde AV, Kelsh R, Peters JH, Sekiguchi K, Van De Water L, McKeown-Longo PJ (2015) The alpha4beta1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol 41:26–35. doi: 10.1016/j.matbio.2014.11.004 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Brigstock DR (2010) Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J Cell Commun Signal 4(1):1–4. doi: 10.1007/s12079-009-0071-5 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Desmouliere A, Rubbia-Brandt L, Grau G, Gabbiani G (1992) Heparin induces alpha-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts. Lab Invest 67(6):716–726PubMedGoogle Scholar
  38. 38.
    Rubbia-Brandt L, Sappino AP, Gabbiani G (1991) Locally applied GM-CSF induces the accumulation of alpha-smooth muscle actin containing myofibroblasts. Virchows Arch B Cell Pathol Incl Mol Pathol 60(2):73–82PubMedCrossRefGoogle Scholar
  39. 39.
    Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, Duffield JS, Lin SL (2011) Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80(11):1170–1181. doi: 10.1038/ki.2011.208 PubMedCrossRefGoogle Scholar
  40. 40.
    LeBleu VS, Kalluri R (2011) Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis. Kidney Int 80(11):1119–1121. doi: 10.1038/ki.2011.300 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B (2014) Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 349(2):209–220. doi: 10.1124/jpet.113.208223 PubMedCrossRefGoogle Scholar
  42. 42.
    Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, Pekna M, Hellstrom M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Tornell J, Heath JK, Betsholtz C (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85(6):863–873PubMedCrossRefGoogle Scholar
  43. 43.
    Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245PubMedCrossRefGoogle Scholar
  44. 44.
    Sun G, Stacey MA, Bellini A, Marini M, Mattoli S (1997) Endothelin-1 induces bronchial myofibroblast differentiation. Peptides 18(9):1449–1451PubMedCrossRefGoogle Scholar
  45. 45.
    Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29(7):1947–1958. doi: 10.1006/jmcc.1997.0435 PubMedCrossRefGoogle Scholar
  46. 46.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9):900–907. doi: 10.1161/01.RES.0000187457.24338.3D PubMedCrossRefGoogle Scholar
  47. 47.
    Djamali A, Vidyasagar A, Adulla M, Hullett D, Reese S (2009) Nox-2 is a modulator of fibrogenesis in kidney allografts. Am J Transplant 9(1):74–82. doi: 10.1111/j.1600-6143.2008.02463.x PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081. doi: 10.1038/nm.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Matsuzaki S, Hiratsuka T, Taniguchi M, Shingaki K, Kubo T, Kiya K, Fujiwara T, Kanazawa S, Kanematsu R, Maeda T, Takamura H, Yamada K, Miyoshi K, Hosokawa K, Tohyama M, Katayama T (2015) Physiological ER stress mediates the differentiation of fibroblasts. PLoS One 10(4):e0123578. doi: 10.1371/journal.pone.0123578 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597. doi: 10.1084/jem.20100035 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, Zeng Y, Su F, Song E, Liu Q (2014) miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res 74(16):4341–4352. doi: 10.1158/0008-5472.CAN-14-0125 PubMedCrossRefGoogle Scholar
  52. 52.
    McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, Gregorevic P, Kantharidis P, Cooper ME (2015) miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci Lond. doi: 10.1042/CS20150427 PubMedGoogle Scholar
  53. 53.
    Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1):209–218. doi: 10.1002/hep.23922 PubMedCrossRefGoogle Scholar
  54. 54.
    Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43(1):146–155. doi: 10.1016/j.jbiomech.2009.09.020 PubMedCrossRefGoogle Scholar
  55. 55.
    Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1009–1020. doi: 10.1016/S0002-9440(10)61776-2 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144(5):666–672. doi: 10.1001/archderm.144.5.666 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Vedrenne N, Coulomb B, Danigo A, Bonte F, Desmouliere A (2012) The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. Pathol Biol (Paris) 60(1):20–27. doi: 10.1016/j.patbio.2011.10.002 CrossRefGoogle Scholar
  58. 58.
    Achterberg VF, Buscemi L, Diekmann H, Smith-Clerc J, Schwengler H, Meister JJ, Wenck H, Gallinat S, Hinz B (2014) The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol 134(7):1862–1872. doi: 10.1038/jid.2014.90 PubMedCrossRefGoogle Scholar
  59. 59.
    Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi: 10.1002/cm.20041 CrossRefGoogle Scholar
  60. 60.
    Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(Pt 20):4731–4739. doi: 10.1242/jcs.02605 PubMedCrossRefGoogle Scholar
  61. 61.
    Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM, Costell M, Alman BA, Genot E, Hinz B (2014) Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol 207(2):283–297. doi: 10.1083/jcb.201402006 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268. doi: 10.1083/jcb.200506179 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21(12):3250–3261. doi: 10.1096/fj.07-8218com PubMedCrossRefGoogle Scholar
  64. 64.
    Grinnell F, Ho CH, Lin YC, Skuta G (1999) Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 274(2):918–923PubMedCrossRefGoogle Scholar
  65. 65.
    Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323. doi: 10.1083/jcb.200704042 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol Camb. doi: 10.1039/c5ib00040h PubMedCentralPubMedGoogle Scholar
  67. 67.
    Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 244(2):143–163. doi: 10.1016/j.canlet.2006.02.017 PubMedCrossRefGoogle Scholar
  68. 68.
    Oskarsson T, Massague J (2012) Extracellular matrix players in metastatic niches. EMBO J 31(2):254–256. doi: 10.1038/emboj.2011.469 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Darby IA, Vuillier-Devillers K, Pinault E, Sarrazy V, Lepreux S, Balabaud C, Bioulac-Sage P, Desmouliere A (2010) Proteomic analysis of differentially expressed proteins in peripheral cholangiocarcinoma. Cancer Microenviron 4(1):73–91. doi: 10.1007/s12307-010-0047-2 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89. doi: 10.1038/nature10694 CrossRefGoogle Scholar
  71. 71.
    Wang J, Chen H, Seth A, McCulloch CA (2003) Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 285(5):H1871–H1881. doi: 10.1152/ajpheart.00387.2003 PubMedCrossRefGoogle Scholar
  72. 72.
    Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827. doi: 10.1096/fj.03-1273rev PubMedCrossRefGoogle Scholar
  73. 73.
    Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165(5):723–734. doi: 10.1083/jcb.200312172 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister JJ, Hinz B (2011) The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol 21(24):2046–2054. doi: 10.1016/j.cub.2011.11.037 PubMedCrossRefGoogle Scholar
  75. 75.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176PubMedCentralPubMedGoogle Scholar
  76. 76.
    Schultz-Cherry S, Murphy-Ullrich JE (1993) Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol 122(4):923–932PubMedCrossRefGoogle Scholar
  77. 77.
    Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87(8–9):601–615. doi: 10.1016/j.ejcb.2008.01.012 PubMedCrossRefGoogle Scholar
  78. 78.
    Ibrahim MM, Chen L, Bond JE, Medina MA, Ren L, Kokosis G, Selim AM, Levinson H (2015) Myofibroblasts contribute to but are not necessary for wound contraction. Lab Invest. doi: 10.1038/labinvest.2015.116 PubMedGoogle Scholar
  79. 79.
    Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86(4):1309–1379. doi: 10.1152/physrev.00026.2005 PubMedCrossRefGoogle Scholar
  80. 80.
    McGlone F, Reilly D (2010) The cutaneous sensory system. Neurosci Biobehav Rev 34(2):148–159. doi: 10.1016/j.neubiorev.2009.08.004 PubMedCrossRefGoogle Scholar
  81. 81.
    Palazzo E, Marconi A, Truzzi F, Dallaglio K, Petrachi T, Humbert P, Schnebert S, Perrier E, Dumas M, Pincelli C (2012) Role of neurotrophins on dermal fibroblast survival and differentiation. J Cell Physiol 227(3):1017–1025. doi: 10.1002/jcp.22811 PubMedCrossRefGoogle Scholar
  82. 82.
    Botchkarev VA, Yaar M, Peters EM, Raychaudhuri SP, Botchkareva NV, Marconi A, Raychaudhuri SK, Paus R, Pincelli C (2006) Neurotrophins in skin biology and pathology. J Invest Dermatol 126(8):1719–1727. doi: 10.1038/sj.jid.5700270 PubMedCrossRefGoogle Scholar
  83. 83.
    Cheret J, Lebonvallet N, Buhe V, Carre JL, Misery L, Le Gall-Ianotto C (2014) Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci 74(3):193–203. doi: 10.1016/j.jdermsci.2014.02.001 PubMedCrossRefGoogle Scholar
  84. 84.
    Ellis A, Bennett DL (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111(1):26–37. doi: 10.1093/bja/aet128 PubMedCrossRefGoogle Scholar
  85. 85.
    Kant V, Gopal A, Kumar D, Bag S, Kurade NP, Kumar A, Tandan SK, Kumar D (2013) Topically applied substance P enhanced healing of open excision wound in rats. Eur J Pharmacol 715(1–3):345–353. doi: 10.1016/j.ejphar.2013.04.042 PubMedCrossRefGoogle Scholar
  86. 86.
    Khalil Z, Helme R (1996) Sensory peptides as neuromodulators of wound healing in aged rats. J Gerontol A Biol Sci Med Sci 51(5):B354–B361PubMedCrossRefGoogle Scholar
  87. 87.
    Kant V, Kumar D, Kumar D, Prasad R, Gopal A, Pathak NN, Kumar P, Tandan SK (2015) Topical application of substance P promotes wound healing in streptozotocin-induced diabetic rats. Cytokine 73(1):144–155. doi: 10.1016/j.cyto.2014.12.015 PubMedCrossRefGoogle Scholar
  88. 88.
    Scott JR, Muangman P, Gibran NS (2007) Making sense of hypertrophic scar: a role for nerves. Wound Repair Regen 15(Suppl 1):S27–S31. doi: 10.1111/j.1524-475X.2007.00222.x PubMedCrossRefGoogle Scholar
  89. 89.
    Akaishi S, Ogawa R, Hyakusoku H (2008) Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses 71(1):32–38. doi: 10.1016/j.mehy.2008.01.032 PubMedCrossRefGoogle Scholar
  90. 90.
    Liu M, Warn JD, Fan Q, Smith PG (1999) Relationships between nerves and myofibroblasts during cutaneous wound healing in the developing rat. Cell Tissue Res 297(3):423–433PubMedCrossRefGoogle Scholar
  91. 91.
    Fujiwara T, Kubo T, Kanazawa S, Shingaki K, Taniguchi M, Matsuzaki S, Gurtner GC, Tohyama M, Hosokawa K (2013) Direct contact of fibroblasts with neuronal processes promotes differentiation to myofibroblasts and induces contraction of collagen matrix in vitro. Wound Repair Regen 21(4):588–594. doi: 10.1111/wrr.12059 PubMedCrossRefGoogle Scholar
  92. 92.
    Souza BR, Cardoso JF, Amadeu TP, Desmouliere A, Costa AM (2005) Sympathetic denervation accelerates wound contraction but delays reepithelialization in rats. Wound Repair Regen 13(5):498–505. doi: 10.1111/j.1067-1927.2005.00070.x PubMedCrossRefGoogle Scholar
  93. 93.
    Souza BR, Santos JS, Costa AM (2006) Blockade of beta1- and beta2-adrenoceptors delays wound contraction and re-epithelialization in rats. Clin Exp Pharmacol Physiol 33(5–6):421–430. doi: 10.1111/j.1440-1681.2006.04383.x PubMedCrossRefGoogle Scholar
  94. 94.
    Dubuisson L, Desmouliere A, Decourt B, Evade L, Bedin C, Boussarie L, Barrier L, Vidaud M, Rosenbaum J (2002) Inhibition of rat liver fibrogenesis through noradrenergic antagonism. Hepatology 35(2):325–331. doi: 10.1053/jhep.2002.31166 PubMedCrossRefGoogle Scholar
  95. 95.
    Oben JA, Yang S, Lin H, Ono M, Diehl AM (2003) Acetylcholine promotes the proliferation and collagen gene expression of myofibroblastic hepatic stellate cells. Biochem Biophys Res Commun 300(1):172–177PubMedCrossRefGoogle Scholar
  96. 96.
    Lam HB, Yeh CH, Cheng KC, Hsu CT, Cheng JT (2008) Effect of cholinergic denervation on hepatic fibrosis induced by carbon tetrachloride in rats. Neurosci Lett 438(1):90–95. doi: 10.1016/j.neulet.2008.04.048 PubMedCrossRefGoogle Scholar
  97. 97.
    Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145(1):105–113PubMedCentralPubMedGoogle Scholar
  98. 98.
    Lee JY, Yang CC, Chao SC, Wong TW (2004) Histopathological differential diagnosis of keloid and hypertrophic scar. Am J Dermatopathol 26(5):379–384PubMedCrossRefGoogle Scholar
  99. 99.
    Lee SS, Yosipovitch G, Chan YH, Goh CL (2004) Pruritus, pain, and small nerve fiber function in keloids: a controlled study. J Am Acad Dermatol 51(6):1002–1006. doi: 10.1016/j.jaad.2004.07.054 PubMedCrossRefGoogle Scholar
  100. 100.
    Hochman B, Nahas FX, Sobral CS, Arias V, Locali RF, Juliano Y, Ferreira LM (2008) Nerve fibres: a possible role in keloid pathogenesis. Br J Dermatol 158(3):651–652. doi: 10.1111/j.1365-2133.2007.08401.x PubMedCrossRefGoogle Scholar
  101. 101.
    Hamed K, Giles N, Anderson J, Phillips JK, Dawson LF, Drummond P, Wallace H, Wood FM, Rea SM, Fear MW (2011) Changes in cutaneous innervation in patients with chronic pain after burns. Burns 37(4):631–637. doi: 10.1016/j.burns.2010.11.010 PubMedCrossRefGoogle Scholar
  102. 102.
    Crowe R, Parkhouse N, McGrouther D, Burnstock G (1994) Neuropeptide-containing nerves in painful hypertrophic human scar tissue. Br J Dermatol 130(4):444–452PubMedCrossRefGoogle Scholar
  103. 103.
    Hecker L, Jagirdar R, Jin T, Thannickal VJ (2011) Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 317(13):1914–1921. doi: 10.1016/j.yexcr.2011.03.016 PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K, Moore-Morris T, Scott B, Tsukamoto H, Evans SM, Dillmann W, Glass CK, Brenner DA (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 109(24):9448–9453. doi: 10.1073/pnas.1201840109 PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Talele NP, Fradette J, Davies JE, Kapus A, Hinz B (2015) Expression of alpha-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep 4(6):1016–1030. doi: 10.1016/j.stemcr.2015.05.004 CrossRefGoogle Scholar
  106. 106.
    van der Slot AJ, Zuurmond AM, van den Bogaerdt AJ, Ulrich MM, Middelkoop E, Boers W, Karel Ronday H, DeGroot J, Huizinga TW, Bank RA (2004) Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol 23(4):251–257. doi: 10.1016/j.matbio.2004.06.001 PubMedCrossRefGoogle Scholar
  107. 107.
    Pittet B, Rubbia-Brandt L, Desmouliere A, Sappino AP, Roggero P, Guerret S, Grimaud JA, Lacher R, Montandon D, Gabbiani G (1994) Effect of gamma-interferon on the clinical and biologic evolution of hypertrophic scars and Dupuytren’s disease: an open pilot study. Plast Reconstr Surg 93(6):1224–1235PubMedCrossRefGoogle Scholar
  108. 108.
    Jiang D, Liang J, Campanella GS, Guo R, Yu S, Xie T, Liu N, Jung Y, Homer R, Meltzer EB, Li Y, Tager AM, Goetinck PF, Luster AD, Noble PW (2010) Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest 120(6):2049–2057. doi: 10.1172/JCI38644 PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Varga J, Pasche B (2009) Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5(4):200–206. doi: 10.1038/nrrheum.2009.26 PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Park SA, Kim MJ, Park SY, Kim JS, Lee SJ, Woo HA, Kim DK, Nam JS, Sheen YY (2015) EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-beta/Smad and ROS signaling. Cell Mol Life Sci 72(10):2023–2039. doi: 10.1007/s00018-014-1798-6 PubMedCrossRefGoogle Scholar
  111. 111.
    Shimizu T, Kuroda T, Hata S, Fukagawa M, Margolin SB, Kurokawa K (1998) Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int 54(1):99–109. doi: 10.1046/j.1523-1755.1998.00XXX.x PubMedCrossRefGoogle Scholar
  112. 112.
    Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C (2014) Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci 58:13–19. doi: 10.1016/j.ejps.2014.02.014 PubMedCrossRefGoogle Scholar
  113. 113.
    Liu S, Parapuram SK, Leask A (2013) Fibrosis caused by loss of PTEN expression in mouse fibroblasts is crucially dependent on CCN2. Arthr Rheum 65(11):2940–2944. doi: 10.1002/art.38121 CrossRefGoogle Scholar
  114. 114.
    Gong W, Yan M, Chen J, Chaugai S, Chen C, Wang D (2014) Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor beta-induced Smad signaling. Front Med 8(4):445–455. doi: 10.1007/s11684-014-0378-3 PubMedCrossRefGoogle Scholar
  115. 115.
    Gonzalez-Cadavid NF, Rajfer J (2010) Treatment of Peyronie’s disease with PDE5 inhibitors: an antifibrotic strategy. Nat Rev Urol 7(4):215–221. doi: 10.1038/nrurol.2010.24 PubMedCrossRefGoogle Scholar
  116. 116.
    Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D, Formigli L (2013) Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-beta/Smad3 signaling. PLoS One 8(5):e63896. doi: 10.1371/journal.pone.0063896 PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Huang X, Gai Y, Yang N, Lu B, Samuel CS, Thannickal VJ, Zhou Y (2011) Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am J Pathol 179(6):2751–2765. doi: 10.1016/j.ajpath.2011.08.018 PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO (2011) Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-beta. Am J Physiol Lung Cell Mol Physiol 301(5):L656–L666. doi: 10.1152/ajplung.00166.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Asano Y, Ihn H, Yamane K, Jinnin M, Tamaki K (2006) Increased expression of integrin alphavbeta5 induces the myofibroblastic differentiation of dermal fibroblasts. Am J Pathol 168(2):499–510PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Zhou Y, Hagood JS, Lu B, Merryman WD, Murphy-Ullrich JE (2010) Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J Biol Chem 285(29):22382–22393. doi: 10.1074/jbc.M110.126227 PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, Frank JA, Brumwell AN, Wheeler SE, Kreidberg JA, Chapman HA (2009) Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 119(1):213–224. doi: 10.1172/JCI36940 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D (2010) The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem 285(14):10434–10445. doi: 10.1074/jbc.M109.078766 PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH, Simon KJ, Hahm K, Allaire NE, Rinaldi NJ, Goyal J, Feghali-Bostwick CA, Matteson EL, O’Hara C, Lafyatis R, Davis GS, Huang X, Sheppard D, Violette SM (2008) Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 177(1):56–65. doi: 10.1164/rccm.200706-805OC PubMedCrossRefGoogle Scholar
  124. 124.
    Lagares D, Busnadiego O, Garcia-Fernandez RA, Kapoor M, Liu S, Carter DE, Abraham D, Shi-Wen X, Carreira P, Fontaine BA, Shea BS, Tager AM, Leask A, Lamas S, Rodriguez-Pascual F (2012) Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthr Rheum 64(5):1653–1664. doi: 10.1002/art.33482 CrossRefGoogle Scholar
  125. 125.
    Rangarajan S, Kurundkar A, Kurundkar D, Bernard K, Sanders YY, Ding Q, Antony VB, Zhang J, Zmijewski J, Thannickal VJ (2015) Novel mechanisms for the anti-fibrotic action of nintedanib. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2014-0445OC PubMedGoogle Scholar
  126. 126.
    Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66PubMedCentralPubMedGoogle Scholar
  127. 127.
    de Andrade JA, Thannickal VJ (2009) Innovative approaches to the therapy of fibrosis. Curr Opin Rheumatol 21(6):649–655. doi: 10.1097/BOR.0b013e328330da9b PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Zhang HY, Phan SH (1999) Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 21(6):658–665. doi: 10.1165/ajrcmb.21.6.3720 PubMedCrossRefGoogle Scholar
  129. 129.
    Chan MW, Chaudary F, Lee W, Copeland JW, McCulloch CA (2010) Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). J Biol Chem 285(12):9273–9281. doi: 10.1074/jbc.M109.075218 PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157(4):657–663. doi: 10.1083/jcb.200201049 PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Coulomb B, Friteau L, Baruch J, Guilbaud J, Chretien-Marquet B, Glicenstein J, Lebreton-Decoster C, Bell E, Dubertret L (1998) Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans. Plast Reconstr Surg 101(7):1891–1903PubMedCrossRefGoogle Scholar
  132. 132.
    Chaussain Miller C, Septier D, Bonnefoix M, Lecolle S, Lebreton-Decoster C, Coulomb B, Pellat B, Godeau G (2002) Human dermal and gingival fibroblasts in a three-dimensional culture: a comparative study on matrix remodeling. Clin Oral Investig 6(1):39–50PubMedGoogle Scholar
  133. 133.
    Modarressi A, Pietramaggiori G, Godbout C, Vigato E, Pittet B, Hinz B (2010) Hypoxia impairs skin myofibroblast differentiation and function. J Invest Dermatol 130(12):2818–2827. doi: 10.1038/jid.2010.224 PubMedCrossRefGoogle Scholar
  134. 134.
    Follonier L, Schaub S, Meister JJ, Hinz B (2008) Myofibroblast communication is controlled by intercellular mechanical coupling. J Cell Sci 121(Pt 20):3305–3316. doi: 10.1242/jcs.024521 PubMedCrossRefGoogle Scholar
  135. 135.
    Follonier Castella L, Gabbiani G, McCulloch CA, Hinz B (2010) Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 316(15):2390–2401. doi: 10.1016/j.yexcr.2010.04.033 PubMedCrossRefGoogle Scholar
  136. 136.
    Elkhattouti A, Hassan M, Gomez CR (2015) Stromal fibroblast in age-related cancer: role in tumorigenesis and potential as novel therapeutic target. Front Oncol 5:158. doi: 10.3389/fonc.2015.00158 PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Zhou L, Yang K, Andl T, Wickett RR, Zhang Y (2015) Perspective of targeting cancer-associated fibroblasts in melanoma. J Cancer 6(8):717–726. doi: 10.7150/jca.10865 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.School of Medical SciencesRMIT UniversityMelbourneAustralia
  2. 2.Department of Physiology, Faculty of PharmacyUniversity of LimogesLimoges CedexFrance
  3. 3.EA 6309 Myelin Maintenance and Peripheral NeuropathiesUniversity of LimogesLimogesFrance

Personalised recommendations