Cellular and Molecular Life Sciences

, Volume 73, Issue 4, pp 811–827 | Cite as

microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases

  • Indranil Basak
  • Ketan S. Patil
  • Guido Alves
  • Jan Petter Larsen
  • Simon Geir Møller
Review

Abstract

The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.

Keywords

microRNA Neurodegenerative diseases Tissue-enriched Body fluid Biomarker Therapeutic agent microRNA technological advancements 

Notes

Acknowledgments

Research in our laboratory is funded by The Norwegian Research Council, The Western Norway Regional Health Authority, The Norwegian Centre for Movement Disorders, The Norwegian Parkinson’s Association, and St. John’s University. We thanks Katherine Moller for proofreading of the manuscript.

References

  1. 1.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  2. 2.
    Huttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297PubMedCrossRefGoogle Scholar
  3. 3.
    Kaikkonen MU, Lam MT, Glass CV (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2:161–179PubMedCentralPubMedGoogle Scholar
  5. 5.
    Li Y, Kowdley KV (2012) MicroRNAs in common human diseases. Genomics Proteomics Bioinform 10:246–253CrossRefGoogle Scholar
  6. 6.
    Etheridge A, Lee I, Hood L, Galas D, Wang K (2011) Extracellular microRNA: a new source of biomarker. Mutat Res 717:85–90PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jeffrey SS (2008) Cancer biomarker profiling with microRNAs. Nat Biotechnol 26:400–401PubMedCrossRefGoogle Scholar
  8. 8.
    Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ (2013) neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 7:178PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Cathew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655CrossRefGoogle Scholar
  10. 10.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  11. 11.
    Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332PubMedCrossRefGoogle Scholar
  12. 12.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  13. 13.
    Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates micorRNA processing. Nature 425:415–419PubMedCrossRefGoogle Scholar
  14. 14.
    Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gregory RI, Yan KP, Amuthan G et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240PubMedCrossRefGoogle Scholar
  16. 16.
    MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105:512–517PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ender C, Krek A, Friedlander MR et al (2008) A human snoRNA with microRNA-like functions. Mol Cell 32:519–528PubMedCrossRefGoogle Scholar
  20. 20.
    Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics 284:95–103PubMedCrossRefGoogle Scholar
  21. 21.
    Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 3:311–330PubMedCrossRefGoogle Scholar
  22. 22.
    Hashimoto Y, Akiyama Y, Yuasa Y (2013) Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One 8:e62589PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedGoogle Scholar
  24. 24.
    Han J, Pederson JS, Kwon SC et al (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136:75–84PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Triboulet R, Chang HM, LaPierre RJ, Gregory RI (2009) Post-transcriptional control of DGCR8 expression by the microprocessor. RNA 15:1005–1011PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Newman MA, Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes Dev 24:1086–1092PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute 2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150PubMedCrossRefGoogle Scholar
  28. 28.
    Heale BSE, Keegan LP, McGurk L et al (2009) Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 28:3145–3156PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Z, Qin YW, Brewer G, Jing Q (2012) MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip Rev RNA 3:593–600PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Sim SE, Bakes J, Kaang BK (2014) Neuronal activity-dependent regulation of microRNAs. Mol Cells 37:511–517PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lim LP, Lau NC, Garrett-Engele A, Grimson JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  32. 32.
    Esau C, Davis S, Murray SF, Yu XX, Pandey SK et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98PubMedCrossRefGoogle Scholar
  33. 33.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230PubMedCrossRefGoogle Scholar
  34. 34.
    Khalaj M, Tavakkoli M, Stranahan AW, Park CY (2014) Pathogenic microRNA’s in myeloid malignancies. Front Genet 5:361PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Simone NL, Soule BP, Ly D, Saleh AD et al (2009) Ionizing-induced oxidative stress alters miRNA expression. PLoS One 4:e6377PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kuss AW, Chen W (2008) MicroRNAs in brain function and disease. Curr Neurol Neurosci Rep 8:190–197PubMedCrossRefGoogle Scholar
  37. 37.
    Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Shi Y, Zhao X, Hsieh J, Wichterle H et al (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30:14931–14936PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Giraldez AJ, Cinalli RM, Glasner ME et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838PubMedCrossRefGoogle Scholar
  40. 40.
    Chen JA, Wichterle H (2012) Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Front Neurosci 6:69PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Yang D, Li T, Wang Y et al (2012) miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 125:1673–1682PubMedCrossRefGoogle Scholar
  42. 42.
    Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N et al (2010) miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci USA 107:13111–13116PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 23:857–864CrossRefGoogle Scholar
  46. 46.
    Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289PubMedCrossRefGoogle Scholar
  49. 49.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(Suppl):S2–S9PubMedCrossRefGoogle Scholar
  50. 50.
    Manakov SA, Grant SG, Enright AJ (2009) Reciprocal regulation of microRNAs and mRNA profiles in neuronal development and synapse formation. BMC Genom 10:419CrossRefGoogle Scholar
  51. 51.
    Bruno IG, Karam R, Huang L et al (2011) Identification of microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Zhou R, Yuan P, Wang Y et al (2009) Evidence of selective microRNAs and their effectors as common long-term targets for the action of mood stabilizers. Neuropsychopharmacology 34:1395–1405PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Gao J, Wang WY, Mao YW et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Olde Loohuis NF, Kos A, Martens GJ et al (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152:96–101PubMedCrossRefGoogle Scholar
  56. 56.
    Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235:491–496PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Vallelunga A, Ragusa M, DiMauro S et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and multiple system atrophy. Front Cell Neurosci 8:156PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Hébert SS, Horré K, Nicolaï L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci USA 105:6415–6420PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Lee ST, Chu K, Im WS (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179PubMedCrossRefGoogle Scholar
  60. 60.
    Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Moller SG (2014) Parkinson’s disease and age: the obvious but largely unexplored link. Exp Gerontol 68:33–38PubMedCrossRefGoogle Scholar
  63. 63.
    Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7:e40028PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32:e2317–e2327CrossRefGoogle Scholar
  65. 65.
    Elfenbein HA, Rosen RF, Stephens SL et al (2007) Cerebral β-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 22:155–167PubMedGoogle Scholar
  66. 66.
    Martinez I, Almstead LL, DiMaio D (2011) MicroRNAs and senescence. Aging 3:77–78PubMedCentralPubMedGoogle Scholar
  67. 67.
    Li X, Khanna A, Li N, Wang E (2011) Circulatory miR34a as an RNA based, noninvasive biomarker for brain aging. Aging 3:985–1002PubMedCentralPubMedGoogle Scholar
  68. 68.
    Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Smit-McBride Z, Forward KI, Nguyen AT (2014) Age-dependent increase in miR-34a expression in the posterior pole of the mouse eye. Mol Vis 20:1569–1578PubMedCentralPubMedGoogle Scholar
  70. 70.
    Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM (2013) Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis 4:e545PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Cardo LF, Coto E, Ribacoba R, Menéndez M, Moris G, Suárez E, Alvarez V (2014) MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 54:830–836PubMedCrossRefGoogle Scholar
  72. 72.
    Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41PubMedGoogle Scholar
  73. 73.
    Burgos K, Malenica I, Metpally R et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 9:e94839PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Lukiw WJ (2007) MiRNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300PubMedCrossRefGoogle Scholar
  75. 75.
    Saba R, Goodman CD, Huzarewich RLCH, Robertson C, Booth SA (2008) A miRNA signature of prion induced neurodegeneration. PLoS One 3:e3652PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Montag J, Hitt R, Opitz L (2009) Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 4:36PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unravelling trinucleotide repeat diseases. Hum Mol Genet 9:909–916PubMedCrossRefGoogle Scholar
  79. 79.
    Everett CM, Wood NW (2004) Trinucleotide repeats and neurodegenerative disease. Brain 127:2385–2405PubMedCrossRefGoogle Scholar
  80. 80.
    Pogue AI, Cui JG, Li YY, Chao Y, Culicchia F, Lukiw WJ (2010) MicroRNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 476:18–22PubMedCrossRefGoogle Scholar
  81. 81.
    Marti E, Pantano L, Banez-Coronel M et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Johnson R, Buckley NJ (2009) Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neuromol Med 11:183–199CrossRefGoogle Scholar
  83. 83.
    Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28:14341–14346PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Basu U, Guan LL, Moore SS (2012) Functional genomics approach or identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 13:369–378PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis 2011:159160PubMedCentralPubMedGoogle Scholar
  88. 88.
    Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O (2012) Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14:1314–1321PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444PubMedCrossRefGoogle Scholar
  90. 90.
    Yang J, Chen D, He Y et al (2013) MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age 35:11–22PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Zhu H, Wu H, Liu X et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5:816–823PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Williams AH, Valdez G, Moresi V et al (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326:1549–1554PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Roccaro AM, Sacco A, Jia X et al (2010) microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116:1506–1514PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3:e3148PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006PubMedCrossRefGoogle Scholar
  96. 96.
    Lang AE, Lozano AM (1998) Parkinson’s disease—first of two parts. N Engl J Med 339:1044–1053PubMedCrossRefGoogle Scholar
  97. 97.
    Martins M, Rosa A, Guedes LC et al (2011) Convergence of miRNA expression profiling, α-synuclein interaction and GWAS in Parkinson’s disease. PLoS One 6:e25443PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Khoo SK, Petillo D, Kang UJ et al (2012) Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2:321–331PubMedGoogle Scholar
  99. 99.
    Schipper HM, Maes OC, Chertkow HM, Wang E (2007) microRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Biol 1:263–274Google Scholar
  100. 100.
    Leidinger P, Backes C, Deutscher S et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Kumar P, Dezso Z, MacKenzie C et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 8:e69807PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    De Felice B, Guida M, Guida M, Coppola C, de Mieri G, Cotrufo RA (2012) miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508:35–40PubMedCrossRefGoogle Scholar
  103. 103.
    Butovsky O, Siddiqui S, Gabriely G et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Investig 122:3063–3087PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106:13052–13057PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726–12734PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466:637–641PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Cho HJ, Liu G, Jin SM et al (2014) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22:608–620CrossRefGoogle Scholar
  108. 108.
    Miñones-Moyano E, Porta S, Escaramís G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078PubMedCrossRefGoogle Scholar
  109. 109.
    Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127:739–749PubMedCrossRefGoogle Scholar
  110. 110.
    Long JM, Lahiri DK (2011) MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 404:889–895PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Liu W, Liu C, Zhu J et al (2012) MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging 33:522–534PubMedCrossRefGoogle Scholar
  112. 112.
    Patel N, Hoang D, Miller N et al (2008) MicroRNAs can regulate human APP levels. Mol Neurodegener 3:10PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Delay C, Calon F, Mathews P, Hébert SS (2011) Alzheimer-specific variants in the 3′UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener 6:70PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Li YY, Cui JG, Hill JM, Bhattacharjee S, Zhao Y et al (2011) Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neurosci Lett 487:94–98PubMedCrossRefGoogle Scholar
  115. 115.
    Hu YK, Wang X, Li L, Du YH, Ye HT, Li CY (2013) MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull 29:745–775PubMedCrossRefGoogle Scholar
  116. 116.
    Wang WX, Wilfred BR, Madathil SK (2010) miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol 177:334–345PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Fang M, Wang J, Zhang X et al (2012) The miR-124 regulates the expression of BACE1/p-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209:94–105PubMedCrossRefGoogle Scholar
  118. 118.
    Cheng PH, Li CL, Chang YF et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am Hum Genet 93:306–312CrossRefGoogle Scholar
  119. 119.
    Rademakers R, Eriksen JL, Baker M et al (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet 17:3631–3642PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cells. Nucleic Acids Res 33:5394–5403PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Lu DP, Read RL, Humphreys DT, Battah FM, Martin DI, Rasko JE (2005) PCR-based expression analysis and identification of microRNAs. J RNAi Gene Silencing 1:44–49PubMedCentralPubMedGoogle Scholar
  122. 122.
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Soreq L, Salomonis N, Bronstein M et al (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Wang Z (2009) miRNA mimic technology. miRNA interference technologies. Springer, Berlin Heidelberg, pp 93–100CrossRefGoogle Scholar
  125. 125.
    Boutla A, Delidakis C, Tabler M (2003) Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res 31:4973–4980PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Hutvagner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E9CrossRefGoogle Scholar
  127. 127.
    Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241PubMedCrossRefGoogle Scholar
  128. 128.
    Koval ED, Shaner C, Zhang P et al (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22:4127–4135PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726PubMedCrossRefGoogle Scholar
  130. 130.
    Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination of the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292PubMedCrossRefGoogle Scholar
  131. 131.
    Tan H, Poidevin M, Li H, Chen D, Jin P (2012) MicroRNA-277 modulates the neurodegeneration caused by Fragile X premutation rCGG repeats. PLoS Genet 8:e1002681PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Wang Z (2011) The principles of MiRNA-masking antisense oligonucleotide technology. Methods Mol Biol 676:43–49PubMedCrossRefGoogle Scholar
  133. 133.
    Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecular inhibitors of miR-21 function. Angew Chem Int Ed Engl 47:7482–7484PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Serafin A, Foco L, Zanigni S et al (2015) Overexpression of blood microRNAs 103a, 30b, and 29a in l-dopa-treated patients with PD. Neurology 84:645–653PubMedCrossRefGoogle Scholar
  135. 135.
    Garzon R, Marcucci G, Croce CM (2014) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789CrossRefGoogle Scholar
  136. 136.
    Miller TM, Pestronk A, David W et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomized, first-in-man study. Lancet Neurol 12:435–442PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Xu G, Fewell C, Taylor C et al (2010) Transcriptome and targetome analysis in MIR155 expressing cells using RNA-seq. RNA 16:1610–1622PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486PubMedCentralPubMedGoogle Scholar
  140. 140.
    Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Yang JH, Li JH, Jiang S, Zhou H, Qu LH (2013) ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and miRNA genes from ChIP-Seq data. Nucleic Acids Res 41:D177–D187PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Li C, Xiong Q, Zhang J, Ge F, Bi LJ (2012) Quantitative proteomic strategies for the identification of microRNA targets. Expert Rev Proteomics 9:549–559PubMedCrossRefGoogle Scholar
  143. 143.
    Kurata R, Yonezawa T, Nakajima H, Takada S, Asahara H (2012) LC-MS/MS-based shotgun proteomics identified the targets of arthritis related microRNA. Arthritis Res Ther 14:P36PubMedCentralCrossRefGoogle Scholar
  144. 144.
    Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menéndez M et al (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260:1420–1422PubMedCrossRefGoogle Scholar
  145. 145.
    Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3:365–373PubMedCentralPubMedGoogle Scholar
  146. 146.
    Shioya M, Obayashi S, Tabunoki H et al (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36:320–330PubMedCrossRefGoogle Scholar
  147. 147.
    Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Björkqvist M (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237PubMedCrossRefGoogle Scholar
  148. 148.
    Lee ST, Chu K, Jung KH et al (2014) Altered expression of miR-202 in cerebellum of multiple-system atrophy. Mol Neurobiol 51:180–186PubMedCrossRefGoogle Scholar
  149. 149.
    Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ (2013) Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 6:26PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E (2015) Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson’s disease. FEBS Lett 589:319–325PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Asikainen S, Rudgalvyte M, Heikkinen L et al (2010) Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci 41:210–218PubMedCrossRefGoogle Scholar
  153. 153.
    Delay C, Dorval V, Fok A et al (2014) MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms. Front Mol Neurosci 7:67PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT (2010) MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One 5:e15546PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Hebert SS et al (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Indranil Basak
    • 1
  • Ketan S. Patil
    • 1
  • Guido Alves
    • 2
  • Jan Petter Larsen
    • 2
  • Simon Geir Møller
    • 1
    • 2
  1. 1.Department of Biological SciencesSt. John’s UniversityNew YorkUSA
  2. 2.Norwegian Center for Movement DisordersStavanger University HospitalStavangerNorway

Personalised recommendations