Cellular and Molecular Life Sciences

, Volume 73, Issue 4, pp 797–810 | Cite as

Hormonal control of cold stress responses in plants

  • Marina Eremina
  • Wilfried Rozhon
  • Brigitte Poppenberger


Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.


Abiotic stress Freezing tolerance Hormones Plant 



Abscisic acid


1-Aminocyclopropane-1-carboxylic acid


ACC oxidase


ACC synthase


Arabidopsis histidine kinase


Histidine phosphotransfer protein


l-α-Aminooxy-β-phenylpropionic acid


Arabidopsis response regulator


2-Aminoethoxyvinyl glycine


BRI1-EMS-suppressor 1


Brassinosteroid insensitive 1




Brassinazole-resistant 1


Calmodulin-binding transcription activator




C-repeat binding factor




Coronatine insensitive 1


Cold regulated


Constitutive photomorphogenesis and dwarfism


Calcium-dependent protein kinases


Constitutive expression of PR genes


C-repeat/dehydration-responsive element


Constitutive triple response 1


Drought-responsive element-binding protein


Dwarf 4


Enhanced disease susceptibility 5


EIN3-like 1


Ethylene-insensitive 2


Ethylene-insensitive 3


Enolase 2


Ethylene-responsive 1


Gibberellic acid insensitive




GA-insensitive dwarf 1


Gata, nitrate-inducible, carbon-metabolism involved




Heptahelical protein


Hypersensitive response


Indole acetic acid


Indole butyric acid


Inducer of cbf expression 1


Isochorismate synthase


Jasmonic acid


Jasmonate zim domain


Cold induced


Low expression of osmotically responsive genes 2/Arabidopsis thaliana c-MYC binding protein


Mitogen-activated protein kinases


Open stomata 1




Phytochrome-interacting factor




Repressor of gai




Salicylic acid



We apologise to all colleagues whose contributions could not be cited or discussed due to space limitations. This work was supported by funds from the Deutsche Forschungsgemeinschaft DFG (Projects PO1640/4-1 and SFB924 TP-A12 to B.P.) and a fellowship to M.E. (doctoral fellowship from TUM). M.E. was a member of the TUM Graduate School.


  1. 1.
    Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150CrossRefGoogle Scholar
  2. 2.
    Frederiks TM, Christopher JT, Sutherland MW, Borrell AK (2015) Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance. J Exp Bot 66:3487–3498PubMedCrossRefGoogle Scholar
  3. 3.
    Boyer JS (1982) Plant productivity and environment. Science 218:443–448PubMedCrossRefGoogle Scholar
  4. 4.
    Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    An D, Yang J, Zhang P (2012) Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics 13:64PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chaudhary S, Sharma PC (2015) DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.). PLoS One 10:e0121982PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chen J, Tian Q, Pang T, Jiang L, Wu R, Xia X, Yin W (2014) Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics 15:326PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM (2013) Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 14:722PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Jung HJ, Dong X, Park JI, Thamilarasan SK, Lee SS, Kim YK, Lim YP, Nou IS, Hur Y (2014) Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br 135K oligomeric chip. PLoS One 9:e106069PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Leyva-Pérez Mde L, Valverde-Corredor A, Valderrama R, Jiménez-Ruiz J, Muñoz-Merida A, Trelles O, Barroso JB, Mercado-Blanco J, Luque F (2015) Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Res 22:1–11PubMedCrossRefGoogle Scholar
  14. 14.
    Li B, Ning L, Zhang J, Bao M, Zhang W (2015) Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response. Front Plant Sci 6:118PubMedCentralPubMedGoogle Scholar
  15. 15.
    Moliterni VM, Paris R, Onofri C, Orrù L, Cattivelli L, Pacifico D, Avanzato C, Ferrarini A, Delledonne M, Mandolino G (2015) Early transcriptional changes in Beta vulgaris in response to low temperature. Planta 242:187–201PubMedCrossRefGoogle Scholar
  16. 16.
    Pang T, Ye CY, Xia X, Yin W (2013) De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics 14:488PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Park JW, Benatti TR, Marconi T, Yu Q, Solis-Gracia N, Mora V, da Silva JA (2015) Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible Saccharum homolog of NOD26-like intrinsic protein to salt and water stress. PLoS One 10:e0125810PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Qu Y, Zhou A, Zhang X, Tang H, Liang M, Han H, Zuo Y (2015) De novo transcriptome sequencing of low temperature-treated Phlox subulata and analysis of the genes involved in cold stress. Int J Mol Sci 16:9732–9748PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N, Fang W, Guan Z, Chen F, Jiang J (2014) A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics 15:844PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P (2014) Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Plant Mol Biol 85:317–331PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Song Y, Chen Q, Ci D, Zhang D (2013) Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii. Plant Cell Rep 32:1407–1425PubMedCrossRefGoogle Scholar
  22. 22.
    Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu XJ (2013) De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genomics 14:827PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wang H, Zou Z, Wang S, Gong M (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One 8:e82817PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li X, Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wang J, Yang Y, Liu X, Huang J, Wang Q, Gu J, Lu Y (2014) Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genomics 15:203PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Wu Y, Wei W, Pang X, Wang X, Zhang H, Dong B, Xing Y, Li X, Wang M (2014) Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genomics 15:671PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS One 8:e58740PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86:527–541PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B (2012) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One 7:e43274PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zhao Z, Tan L, Dang C, Zhang H, Wu Q, An L (2012) Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biol 12:222PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8:e80218PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207PubMedCrossRefGoogle Scholar
  35. 35.
    Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211PubMedCrossRefGoogle Scholar
  38. 38.
    Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103PubMedCrossRefGoogle Scholar
  41. 41.
    Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67:269–279PubMedCrossRefGoogle Scholar
  43. 43.
    Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289PubMedCrossRefGoogle Scholar
  44. 44.
    Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kang M, Abdelmageed H, Lee S, Reichert A, Mysore KS, Allen RD (2013) AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J 76:481–493PubMedCrossRefGoogle Scholar
  47. 47.
    Eremina M, Rozhon W, Yang S, Poppenberger B (2015) ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. Plant J 81:895–906PubMedCrossRefGoogle Scholar
  48. 48.
    Barrero-Gil J, Salinas J (2013) Post-translational regulation of cold acclimation response. Plant Sci 205–206:48–54PubMedCrossRefGoogle Scholar
  49. 49.
    Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751PubMedCrossRefGoogle Scholar
  50. 50.
    Santner A, Calderon-Villalobos LI, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307PubMedCrossRefGoogle Scholar
  51. 51.
    Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68PubMedCrossRefGoogle Scholar
  52. 52.
    Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628PubMedCrossRefGoogle Scholar
  53. 53.
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  54. 54.
    Schwechheimer C (2012) Gibberellin signaling in plants—the extended version. Front Plant Sci 2:107PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484PubMedCrossRefGoogle Scholar
  57. 57.
    Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5:ra72PubMedGoogle Scholar
  58. 58.
    Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J (2014) CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Mol Biol 85:259–275PubMedCrossRefGoogle Scholar
  62. 62.
    Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81PubMedCrossRefGoogle Scholar
  63. 63.
    Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631PubMedCrossRefGoogle Scholar
  64. 64.
    Richter R, Behringer C, Müller IK, Schwechheimer C (2010) The GATAtype transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROMEINTERACTING FACTORS. Genes Dev 24:2093–2104PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:15054–15059PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413PubMedCrossRefGoogle Scholar
  67. 67.
    Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Bernardo-García S, de Lucas M, Martínez C, Espinosa-Ruiz A, Davière JM, Prat S (2014) BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–1694PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272PubMedCrossRefGoogle Scholar
  71. 71.
    Stewart Lilley JL, Gan Y, Graham IA, Nemhauser JL (2013) The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. Plant J 76:165–173PubMedGoogle Scholar
  72. 72.
    Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D, Blázquez MA (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 109:13446–134451PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Singh I, Kumar U, Singh SK, Gupta C, Singh M, Kushwaha SR (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18:229–236PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145PubMedCrossRefGoogle Scholar
  77. 77.
    Divi UK, Krishna P (2010) Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul 29:385–393CrossRefGoogle Scholar
  78. 78.
    Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364PubMedCrossRefGoogle Scholar
  79. 79.
    Qu T, Liu R, Wang W, An L, Chen T, Liu G, Zhao Z (2011) Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63:111–117PubMedCrossRefGoogle Scholar
  80. 80.
    Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191–204PubMedCrossRefGoogle Scholar
  81. 81.
    Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162PubMedCrossRefGoogle Scholar
  83. 83.
    Gavelienė V, Novickienė L, Pakalniškytė L (2013) Effect of auxin physiological analogues on rapeseed (Brassica napus) cold hardening, seed yield and quality. J Plant Res 126:283–292PubMedCrossRefGoogle Scholar
  84. 84.
    Kosová K, Prášil IT, Vítámvás P, Dobrev P, Motyka V, Floková K, Novák O, Turečková V, Rolčik J, Pešek B, Trávničková A, Gaudinová A, Galiba G, Janda T, Vlasáková E, Prášilová P, Vanková R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576PubMedCrossRefGoogle Scholar
  85. 85.
    Majláth I, Szalai G, Soós V, Sebestyén E, Balázs E, Vanková R, Dobrev PI, Tari I, Tandori J, Janda T (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314PubMedCrossRefGoogle Scholar
  86. 86.
    Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K, Yamaguchi-Shinozaki K (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016PubMedCrossRefGoogle Scholar
  89. 89.
    Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Wyatt SE, Rashotte AM, Shipp MJ, Robertson D, Muday GK (2002) Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli. Plant Physiol 130:1426–1435PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  93. 93.
    Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Veselova SV, Farhutdinov RG, Veselov SY, Kudoyarova GR, Veselov DS, Hartung W (2005) The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). J Plant Physiol 162:21–26PubMedCrossRefGoogle Scholar
  96. 96.
    Jeon J, Kim J (2013) Arabidopsis response Regulator1 and Arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59PubMedCrossRefGoogle Scholar
  100. 100.
    Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefGoogle Scholar
  101. 101.
    Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82:962–977PubMedCrossRefGoogle Scholar
  102. 102.
    Chen CC, Liang CS, Kao AL, Yang CC (2010) HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61:3305–3320PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Ciardi JA, Deikman J, Orzolek MD (1997) Increased ethylene synthesis enhances chilling tolerance in tomato. Physiol Plant 101:333–340CrossRefGoogle Scholar
  106. 106.
    Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Guye MG, Vigh L, Wilson LM (1987) Chilling-induced ethylene production in relation to chill-sensitivity in Phaseolus spp. J Exp Bot 38:680–690CrossRefGoogle Scholar
  108. 108.
    Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J 12:601–612PubMedCrossRefGoogle Scholar
  109. 109.
    Catalá R, López-Cobollo R, Mar Castellano M, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Zhao M, Liu W, Xia X, Wang T, Zhang WH (2014) Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Physiol Plant 152:115–129PubMedCrossRefGoogle Scholar
  111. 111.
    Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560PubMedCrossRefGoogle Scholar
  112. 112.
    Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241–249PubMedCrossRefGoogle Scholar
  115. 115.
    Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10:9PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338PubMedCrossRefGoogle Scholar
  117. 117.
    Xia JC, Zhao H, Liu WZ, Li LG, He YK (2009) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211–221CrossRefGoogle Scholar
  118. 118.
    Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317PubMedCrossRefGoogle Scholar
  119. 119.
    Dong CJ, Li L, Shang QM, Liu XY, Zhang ZG (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687–700PubMedCrossRefGoogle Scholar
  120. 120.
    Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376PubMedCrossRefGoogle Scholar
  121. 121.
    Huang X, Li J, Bao F, Zhang X, Yang S (2010) A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol 154(2):796–809PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S (2010) A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63(2):283–296PubMedCrossRefGoogle Scholar
  123. 123.
    Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167:555–560PubMedCrossRefGoogle Scholar
  124. 124.
    Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA 109:E1192–E1200PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014) Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166:190–201PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Marina Eremina
    • 1
  • Wilfried Rozhon
    • 1
  • Brigitte Poppenberger
    • 1
  1. 1.Biotechnology of Horticultural Crops, TUM School of Life Sciences WeihenstephanTechnische Universität MünchenFreisingGermany

Personalised recommendations