Cellular and Molecular Life Sciences

, Volume 73, Issue 3, pp 475–496 | Cite as

Autophagy in stem and progenitor cells

  • Carlo Rodolfo
  • Sabrina Di Bartolomeo
  • Francesco CecconiEmail author


Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism’s life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.


Autophagy Stem cells Progenitor cells 


ATG genes

Autophagy-related genes


ATF-like transcription factor


Bone marrow-derived mesenchymal stem cells


Caveolin 1


Chorionic plate-derived mesenchymal stem cells


Cancer stem cells


Comedo-ductal carcinoma in situ


Embryoid bodies


Epithelial-to-mesenchymal transition


Embryonic stem cells


FGF receptors substrate 2 a






Histone deacetylases


hESCs constitutively expressing GFP-LC3


Human ESC


Hypoxia inducible factor 1 a


Haematopoietic progenitors


Haematopoietic stem cells


Haematopoietic stem and progenitor cell


Induced pluripotent stem cells


Mitochondrial anion carrier protein


Mandible-derived BMSCs




Methyl pyruvate


Mesenchymal stem cells


Neuronal stem cells


Nucleosome remodelling deacetylase




Oxidative phosphorylation


Pluripotency associated proteins


Programmed cell death


Red blood cells


Reactive oxygen species


Special AT-rich binding protein 2


Stem cell factor


Serum deprived mesenchymal stem cells


Sub ventricular zone


Mandible-derived BMSCs


Tricarboxylic acid cycle


Mitochondrial uncoupling protein 2


Ubiquitin–proteasome system


  1. 1.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi: 10.1146/annurev-genet-102808-114910 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830. doi: 10.1038/ncb0910-823 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466(7302):68–76. doi: 10.1038/nature09204 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. doi: 10.1016/j.cell.2011.10.026 CrossRefPubMedGoogle Scholar
  5. 5.
    Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695. doi: 10.1016/j.cell.2011.07.030 CrossRefPubMedGoogle Scholar
  6. 6.
    Ciechanover A (2006) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Hematol Am Soc Hematol Educ Program 1–12:505–506. doi: 10.1182/asheducation-2006.1.1 Google Scholar
  7. 7.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40. doi: 10.1146/annurev.nutr.27.061406.093749 CrossRefPubMedGoogle Scholar
  8. 8.
    Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786. doi: 10.1038/nature05291 CrossRefPubMedGoogle Scholar
  9. 9.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967. doi: 10.1038/nrc2254 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25(19):1999–2010. doi: 10.1101/gad.17558811 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Phadwal K, Watson AS, Simon AK (2013) Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci 70(1):89–103. doi: 10.1007/s00018-012-1032-3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21(4):513–520. doi: 10.1089/scd.2011.0526 CrossRefPubMedGoogle Scholar
  13. 13.
    Zeng M, Zhou JN (2008) Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal 20(4):659–665. doi: 10.1016/j.cellsig.2007.11.015 CrossRefPubMedGoogle Scholar
  14. 14.
    Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83. doi: 10.1371/journal.pbio.0040083 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH (2011) microRNA-101 is a potent inhibitor of autophagy. EMBO J 30(22):4628–4641. doi: 10.1038/emboj.2011.331 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kent G, Minick OT, Volini FI, Orfei E (1966) Autophagic vacuoles in human red cells. Am J Pathol 48(5):831–857PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112(4):1493–1502. doi: 10.1182/blood-2008-02-137398 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. doi: 10.1172/JCI20039 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, Matsumoto T, Nakata K, Mogi M (2015) Interleukin-1beta-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells. PLoS One 10(4):e0124542. doi: 10.1371/journal.pone.0124542 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434. doi: 10.1083/jcb.200412022 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 106(49):20842–20846. doi: 10.1073/pnas.0911267106 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19(11):4762–4775. doi: 10.1091/mbc.E08-03-0309 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268. doi: 10.1038/nature07383 CrossRefPubMedGoogle Scholar
  25. 25.
    Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148):1121–1125. doi: 10.1038/nature05925 PubMedGoogle Scholar
  26. 26.
    Di Bartolomeo S, Nazio F, Cecconi F (2010) The role of autophagy during development in higher eukaryotes. Traffic 11(10):1280–1289. doi: 10.1111/j.1600-0854.2010.01103.x CrossRefPubMedGoogle Scholar
  27. 27.
    Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321(5885):117–120. doi: 10.1126/science.1154822 CrossRefPubMedGoogle Scholar
  28. 28.
    Wang S, Xia P, Ye B, Huang G, Liu J, Fan Z (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13(5):617–625. doi: 10.1016/j.stem.2013.10.005 CrossRefPubMedGoogle Scholar
  29. 29.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036. doi: 10.1038/nature03029 CrossRefPubMedGoogle Scholar
  30. 30.
    Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT, Gage FH, Dillin A (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489(7415):304–308. doi: 10.1038/nature11468 CrossRefPubMedGoogle Scholar
  31. 31.
    Hernebring M, Brolen G, Aguilaniu H, Semb H, Nystrom T (2006) Elimination of damaged proteins during differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103(20):7700–7705. doi: 10.1073/pnas.0510944103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082. doi: 10.1073/pnas.2436255100 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cianfanelli V, D’Orazio M, Cecconi F (2015) AMBRA1 and BECLIN 1 interplay in the crosstalk between autophagy and cell proliferation. Cell Cycle 14(7):959–963. doi: 10.1080/15384101.2015.1021526 CrossRefPubMedGoogle Scholar
  34. 34.
    Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, De Zio D, Nazio F, Antonioli M, D’Orazio M, Skobo T, Bordi M, Rohde M, Dalla Valle L, Helmer-Citterich M, Gretzmeier C, Dengjel J, Fimia GM, Piacentini M, Di Bartolomeo S, Velasco G, Cecconi F (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17(1):20–30. doi: 10.1038/ncb3072 CrossRefPubMedGoogle Scholar
  35. 35.
    Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191(1):155–168. doi: 10.1083/jcb.201002100 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128(5):931–946. doi: 10.1016/j.cell.2006.12.044 CrossRefPubMedGoogle Scholar
  37. 37.
    Cheong JH, Park ES, Liang J, Dennison JB, Tsavachidou D, Nguyen-Charles C, Wa Cheng K, Hall H, Zhang D, Lu Y, Ravoori M, Kundra V, Ajani J, Lee JS, Ki Hong W, Mills GB (2011) Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol Cancer Ther 10(12):2350–2362. doi: 10.1158/1535-7163.MCT-11-0497 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tra T, Gong L, Kao LP, Li XL, Grandela C, Devenish RJ, Wolvetang E, Prescott M (2011) Autophagy in human embryonic stem cells. PLoS One 6(11):e27485. doi: 10.1371/journal.pone.0027485 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, Afonja O, Horne MC, Tanaka T, Duan E, Fisher SJ, Liao J, Wang F (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci USA 106(19):7840–7845. doi: 10.1073/pnas.0901854106 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24(15):6710–6718. doi: 10.1128/MCB.24.15.6710-6718.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fathi A, Hatami M, Hajihosseini V, Fattahi F, Kiani S, Baharvand H, Salekdeh GH (2011) Comprehensive gene expression analysis of human embryonic stem cells during differentiation into neural cells. PLoS One 6(7):e22856. doi: 10.1371/journal.pone.0022856 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cho YH, Han KM, Kim D, Lee J, Lee SH, Choi KW, Kim J, Han YM (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 32(2):424–435. doi: 10.1002/stem.1589 CrossRefPubMedGoogle Scholar
  43. 43.
    Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, Prescott M, Simonsen A, Yamamoto A, Zhang H, Klionsky DJ, Devenish RJ (2012) Receptor protein complexes are in control of autophagy. Autophagy 8(11):1701–1705. doi: 10.4161/auto.21332 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U (2010) Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 21(7):1225–1236. doi: 10.1091/mbc.E09-11-0937 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Todd LR, Gomathinayagam R, Sankar U (2010) A novel Gfer-Drp1 link in preserving mitochondrial dynamics and function in pluripotent stem cells. Autophagy 6(6):821–822. doi: 10.1091/mbc.E09-11-0937 CrossRefPubMedGoogle Scholar
  46. 46.
    Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13(10):1214–1223. doi: 10.1038/ncb2332 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lonergan T, Bavister B, Brenner C (2007) Mitochondria in stem cells. Mitochondrion 7(5):289–296. doi: 10.1016/j.mito.2007.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J, Beach D (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9(3):293–299. doi: 10.1089/ars.2007.9.ft-14 CrossRefPubMedGoogle Scholar
  49. 49.
    Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C, Ruohola-Baker H (2012) HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31(9):2103–2116. doi: 10.1038/emboj.2012.71 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7(3):141–153. doi: 10.1089/clo.2005.7.141 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang L, Marsboom G, Glick D, Zhang Y, Toth PT, Jones N, Malik AB, Rehman J (2014) Bioenergetic shifts during transitions between stem cell states (2013 Grover Conference series). Pulm Circ 4(3):387–394. doi: 10.1086/677353 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2(2):85–93. doi: 10.1016/j.cmet.2005.06.002 CrossRefPubMedGoogle Scholar
  53. 53.
    Rupprecht A, Sittner D, Smorodchenko A, Hilse KE, Goyn J, Moldzio R, Seiler AE, Brauer AU, Pohl EE (2014) Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS One 9(2):e88474. doi: 10.1371/journal.pone.0088474 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199. doi: 10.1038/nature05972 CrossRefPubMedGoogle Scholar
  55. 55.
    Varum S, Momcilovic O, Castro C, Ben-Yehudah A, Ramalho-Santos J, Navara CS (2009) Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res 3(2–3):142–156. doi: 10.1016/j.scr.2009.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235. doi: 10.1038/nature07006 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park do J, Park KS, Lee HK (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348(4):1472–1478. doi: 10.1016/j.bbrc.2006.08.020 CrossRefPubMedGoogle Scholar
  58. 58.
    Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7(11–12):1423–1434. doi: 10.1089/ars.2005.7.1423 CrossRefPubMedGoogle Scholar
  59. 59.
    Eliasson P, Jonsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222(1):17–22. doi: 10.1002/jcp.21908 CrossRefPubMedGoogle Scholar
  60. 60.
    Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22(2):432–435. doi: 10.1038/cr.2011.200 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegue E (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494(7437):323–327. doi: 10.1038/nature11895 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45(6):917–927. pii: 0092-8674(86)90566-0Google Scholar
  63. 63.
    Valcourt JR, Lemons JM, Haley EM, Kojima M, Demuren OO, Coller HA (2012) Staying alive: metabolic adaptations to quiescence. Cell Cycle 11(9):1680–1696. doi: 10.4161/cc.19879 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482. doi: 10.1038/nature04703 CrossRefPubMedGoogle Scholar
  65. 65.
    Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L, Williams DA, Kwiatkowski DJ, DePinho RA (2008) mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 105(49):19384–19389. doi: 10.1073/pnas.0810584105 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Moran-Crusio K, Reavie LB, Aifantis I (2012) Regulation of hematopoietic stem cell fate by the ubiquitin proteasome system. Trends Immunol 33(7):357–363. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  67. 67.
    Joshi A, Kundu M (2013) Mitophagy in hematopoietic stem cells: the case for exploration. Autophagy 9(11):1737–1749. doi: 10.4161/auto.26681 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, Simon AK (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208(3):455–467. doi: 10.1084/jem.20101145 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Robinson LA, Fleming WH, Galbraith TA (1993) Intrapleural doxycycline control of malignant pleural effusions. Ann Thorac Surg 55(5):1115–1121 (discussion 1121–1112). pii: 0003-4975(93)90017-CGoogle Scholar
  70. 70.
    Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9(4):298–310. doi: 10.1016/j.stem.2011.09.010 CrossRefPubMedGoogle Scholar
  71. 71.
    Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390. doi: 10.1016/j.stem.2010.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336(6078):225–228. doi: 10.1126/science.1218395 CrossRefPubMedGoogle Scholar
  73. 73.
    Cao Y, Zhang A, Cai J, Yuan N, Lin W, Liu S, Xu F, Song L, Li X, Fang Y, Wang Z, Wang J, Zhang H, Zhao W, Hu S, Zhang S (2015) Autophagy regulates the cell cycle of murine HSPCs in a nutrient-dependent manner. Exp Hematol 43(3):229–242. doi: 10.1016/j.exphem.2014.11.002 CrossRefPubMedGoogle Scholar
  74. 74.
    Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193(2):257–266. doi: 10.1083/jcb.201010131 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102(2):517–520. doi: 10.1182/blood-2002-07-2334 CrossRefPubMedGoogle Scholar
  76. 76.
    Phadwal K, Alegre-Abarrategui J, Watson AS, Pike L, Anbalagan S, Hammond EM, Wade-Martins R, McMichael A, Klenerman P, Simon AK (2012) A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells. Autophagy 8(4):677–689. doi: 10.4161/auto.18935 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703. doi: 10.1084/jem.20111490 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Liu F, Guan JL (2011) FIP200, an essential component of mammalian autophagy is indispensible for fetal hematopoiesis. Autophagy 7(2):229–230. pii: 14125Google Scholar
  79. 79.
    Chen C, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75. doi: 10.1126/scisignal.2000559 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937):302–305. doi: 10.1038/nature01587 CrossRefPubMedGoogle Scholar
  81. 81.
    Yahata T, Takanashi T, Muguruma Y, Ibrahim AA, Matsuzawa H, Uno T, Sheng Y, Onizuka M, Ito M, Kato S, Ando K (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118(11):2941–2950. doi: 10.1182/blood-2011-01-330050 CrossRefPubMedGoogle Scholar
  82. 82.
    Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, Hildner K, Guachalla LM, Gompf A, Hartmann D, Schambach A, Wuestefeld T, Dauch D, Schrezenmeier H, Hofmann WK, Nakauchi H, Ju Z, Kestler HA, Zender L, Rudolph KL (2012) A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148(5):1001–1014. doi: 10.1016/j.cell.2012.01.040 CrossRefPubMedGoogle Scholar
  83. 83.
    Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128. doi: 10.1038/nrg2269 CrossRefPubMedGoogle Scholar
  84. 84.
    Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL (2010) FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116(23):4806–4814. doi: 10.1182/blood-2010-06-288589 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107(2):832–837. doi: 10.1073/pnas.0913170107 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhang J, Wu K, Xiao X, Liao J, Hu Q, Chen H, Liu J, An X (2015) Autophagy as a regulatory component of erythropoiesis. Int J Mol Sci 16(2):4083–4094. doi: 10.3390/ijms16024083 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kang YA, Sanalkumar R, O’Geen H, Linnemann AK, Chang CJ, Bouhassira EE, Farnham PJ, Keles S, Bresnick EH (2012) Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol 32(1):226–239. doi: 10.1128/MCB.06166-11 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063. doi: 10.1182/blood-2007-05-087759 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408. doi: 10.1084/jem.20081297 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461(7263):537–541. doi: 10.1038/nature08313 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001. pii: 10238Google Scholar
  92. 92.
    Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M, Gilliland DG, Gritsman K (2010) Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115(7):1406–1415. doi: 10.1182/blood-2009-06-229443 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, Wu H, Li L (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441(7092):518–522. doi: 10.1038/nature04747 CrossRefPubMedGoogle Scholar
  94. 94.
    Hoshii T, Tadokoro Y, Naka K, Ooshio T, Muraguchi T, Sugiyama N, Soga T, Araki K, Yamamura K, Hirao A (2012) mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J Clin Invest 122(6):2114–2129. doi: 10.1172/JCI62279 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chang KH, Sengupta A, Nayak RC, Duran A, Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto D, Aronow BJ, Starczynowski DT, Civitelli R, Diaz-Meco MT, Moscat J, Cancelas JA (2014) p62 is required for stem cell/progenitor retention through inhibition of IKK/NF-kappaB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche. Cell Rep 9(6):2084–2097. doi: 10.1016/j.celrep.2014.11.031 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Dixon JS (1967) “Phagocytic” lysosomes in chromatolytic neurones. Nature 215(5101):657–658CrossRefPubMedGoogle Scholar
  97. 97.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. doi: 10.1038/nature04724 CrossRefPubMedGoogle Scholar
  98. 98.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi: 10.1038/nature04723 CrossRefPubMedGoogle Scholar
  99. 99.
    Liang CC, Wang C, Peng X, Gan B, Guan JL (2010) Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem 285(5):3499–3509. doi: 10.1074/jbc.M109.072389 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716. pii: S0092-8674(00)80783-7Google Scholar
  101. 101.
    Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8(6):389–404. doi: 10.1006/mcne.1996.0595 CrossRefPubMedGoogle Scholar
  102. 102.
    Chuikov S, Levi BP, Smith ML, Morrison SJ (2010) Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 12(10):999–1006. doi: 10.1038/ncb2101 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. doi: 10.1016/j.cmet.2006.02.002 CrossRefPubMedGoogle Scholar
  104. 104.
    Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903. doi: 10.1074/jbc.M800102200 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12(7):665–675. doi: 10.1038/ncb2069 CrossRefPubMedGoogle Scholar
  106. 106.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. doi: 10.1016/j.cmet.2007.11.001 CrossRefPubMedGoogle Scholar
  107. 107.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. doi: 10.1016/j.cmet.2007.11.004 CrossRefPubMedGoogle Scholar
  108. 108.
    Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539. doi: 10.1016/j.stem.2009.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Paik JH, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun WS, Chae SS, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong WH, Chin L, Ligon KL, DePinho RA (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5(5):540–553. doi: 10.1016/j.stem.2009.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8(1):59–71. doi: 10.1016/j.stem.2010.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8(2):187–199. doi: 10.4161/auto.8.2.18535 CrossRefPubMedGoogle Scholar
  112. 112.
    Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis 5:e1403. doi: 10.1038/cddis.2014.358 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Chin TY, Kao CH, Wang HY, Huang WP, Ma KH, Chueh SH (2010) Inhibition of the mammalian target of rapamycin promotes cyclic AMP-induced differentiation of NG108-15 cells. Autophagy 6(8):1139–1156. pii: 13564Google Scholar
  114. 114.
    Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16(5):532–542. doi: 10.1038/nn.3365 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zhang J, Liu J, Huang Y, Chang JY, Liu L, McKeehan WL, Martin JF, Wang F (2012) FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 110(4):e29–39. doi: 10.1161/CIRCRESAHA.111.255950 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A, Caron L, Wu X, Clarke J, Taketo MM, Laugwitz KL, Moon RT, Gruber P, Evans SM, Ding S, Chien KR (2007) The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1(2):165–179. doi: 10.1016/j.stem.2007.05.018 CrossRefPubMedGoogle Scholar
  117. 117.
    Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11(8):951–957. doi: 10.1038/ncb1906 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336(6080):477–481. doi: 10.1126/science.1217032 CrossRefPubMedGoogle Scholar
  119. 119.
    Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS (2006) HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 119(Pt 20):4305–4314. doi: 10.1242/jcs.03185 CrossRefPubMedGoogle Scholar
  120. 120.
    Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115(7):1724–1733. doi: 10.1172/JCI23418 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12(2):126–131. doi: 10.1038/nrm3049 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 7(3):560–568. doi: 10.1007/s12015-011-9229-7 CrossRefPubMedGoogle Scholar
  123. 123.
    Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716. doi: 10.1016/j.stem.2012.05.015 CrossRefPubMedGoogle Scholar
  124. 124.
    Oliver L, Hue E, Priault M, Vallette FM (2012) Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev 21(15):2779–2788. doi: 10.1089/scd.2012.0124 CrossRefPubMedGoogle Scholar
  125. 125.
    Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, Goldstein SA, Krebsbach PH, Guan JL (2013) Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 28(11):2414–2430. doi: 10.1002/jbmr.1971 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21(8):1321–1332. doi: 10.1089/scd.2011.0684 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, Rowan BG, Kelekar A, Krause DS, Pochampally RR (2011) Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis 32(7):964–972. doi: 10.1093/carcin/bgr029 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Lee Y, Jung J, Cho KJ, Lee SK, Park JW, Oh IH, Kim GJ (2013) Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem 114(1):79–88. doi: 10.1002/jcb.24303 CrossRefPubMedGoogle Scholar
  129. 129.
    Wu J, Niu J, Li X, Li Y, Wang X, Lin J, Zhang F (2014) Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2. Cell Physiol Biochem 33(5):1467–1474. doi: 10.1159/000358711 CrossRefPubMedGoogle Scholar
  130. 130.
    Song C, Tong F (2014) Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells. Cytotherapy. doi: 10.1016/j.jcyt.2014.04.006 Google Scholar
  131. 131.
    Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD (2013) Stromal cell-derived factor-1beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One 8(3):e58207. doi: 10.1371/journal.pone.0058207 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, Shi YF, Wu MC, Zhang L, Wei LX (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:e844. doi: 10.1038/cddis.2013.338 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Alessio N, Del Gaudio S, Capasso S, Di Bernardo G, Cappabianca S, Cipollaro M, Peluso G, Galderisi U (2015) Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget 6(10):8155–8166. pii: 2692Google Scholar
  134. 134.
    Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A (2014) Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther 5(6):140. doi: 10.1186/scrt530 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Zheng Y, Hu CJ, Zhuo RH, Lei YS, Han NN, He L (2014) Inhibition of autophagy alleviates the senescent state of rat mesenchymal stem cells during long-term culture. Mol Med Rep 10(6):3003–3008. doi: 10.3892/mmr.2014.2624 PubMedGoogle Scholar
  136. 136.
    Dong W, Zhang P, Fu Y, Ge J, Cheng J, Yuan H, Jiang H (2015) Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. J Cell Physiol 230(3):680–690. doi: 10.1002/jcp.24792 CrossRefPubMedGoogle Scholar
  137. 137.
    Baerga R, Zhang Y, Chen PH, Goldman S, Jin S (2009) Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5(8):1118–1130. pii: 9991Google Scholar
  138. 138.
    Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119(11):3329–3339. doi: 10.1172/JCI39228 PubMedPubMedCentralGoogle Scholar
  139. 139.
    Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106(47):19860–19865. doi: 10.1073/pnas.0906048106 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V (2007) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3(3):207–214. pii: 3708Google Scholar
  141. 141.
    Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62(3):791–801. doi: 10.1002/art.27305 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE (2011) Glucocorticoid dose determines osteocyte cell fate. FASEB J 25(10):3366–3376. doi: 10.1096/fj.11-182519 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319. doi: 10.1038/nm.2304 CrossRefPubMedGoogle Scholar
  144. 144.
    Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296. doi: 10.1016/j.ccr.2012.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA (2011) The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat 126(2):355–364. doi: 10.1007/s10549-010-0924-x CrossRefPubMedGoogle Scholar
  146. 146.
    Lin YH, Huang YC, Chen LH, Chu PM (2015) Autophagy in cancer stem/progenitor cells. Cancer Chemother Pharmacol 75(5):879–886. doi: 10.1007/s00280-014-2634-2 CrossRefPubMedGoogle Scholar
  147. 147.
    Lin Q, Yun Z (2010) Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 9(12):949–956. pii: 12347Google Scholar
  148. 148.
    Quail DF, Taylor MJ, Postovit LM (2012) Microenvironmental regulation of cancer stem cell phenotypes. Curr Stem Cell Res Ther 7(3):197–216. pii: CSCRT-EPUB-20120213-003Google Scholar
  149. 149.
    Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 109(8):2784–2789. doi: 10.1073/pnas.1018866109 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14(11):1379–1392. doi: 10.1093/neuonc/nos158 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472. doi: 10.1016/j.cell.2007.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5(4):e10240. doi: 10.1371/journal.pone.0010240 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Espina V, Liotta LA (2011) What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer 11(1):68–75. doi: 10.1038/nrc2950 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Gong C, Song E, Codogno P, Mehrpour M (2012) The roles of BECN1 and autophagy in cancer are context dependent. Autophagy 8(12):1853–1855. doi: 10.4161/auto.21996 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Maycotte P, Jones KL, Goodall ML, Thorburn J, Thorburn A (2015) Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol Cancer Res 13(4):651–658. doi: 10.1158/1541-7786.MCR-14-0487 CrossRefPubMedGoogle Scholar
  156. 156.
    Bayley JP, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol 24(1):62–67. doi: 10.1097/CCO.0b013e32834deb9e CrossRefPubMedGoogle Scholar
  157. 157.
    Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Bagnes MF, Vaccaro MI (2014) Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed Res Int 2014:926729. doi: 10.1155/2014/926729 PubMedPubMedCentralGoogle Scholar
  158. 158.
    Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22(2):165–178. doi: 10.1091/mbc.E10-06-0500 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29(2):351–378. doi: 10.1007/s10555-010-9225-4 CrossRefPubMedGoogle Scholar
  160. 160.
    Pani G, Giannoni E, Galeotti T, Chiarugi P (2009) Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal 11(11):2791–2806. doi: 10.1089/ars.2009.2739 CrossRefPubMedGoogle Scholar
  161. 161.
    Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25(14):1510–1527. doi: 10.1101/gad.2051011 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330(6009):1344–1348. doi: 10.1126/science.1193497 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Ha J, Guan KL, Kim J (2015) AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med. doi: 10.1016/j.mam.2015.08.002 Google Scholar
  164. 164.
    Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carri MT, Cecconi F (2008) Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell 19(8):3576–3588. doi: 10.1091/mbc.E07-09-0858 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Jin S, White E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3(1):28–31. pii: 3269Google Scholar
  166. 166.
    Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68. doi: 10.1016/j.ccr.2007.12.003 CrossRefPubMedGoogle Scholar
  167. 167.
    Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21(11):1367–1381. doi: 10.1101/gad.1545107 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21(13):1621–1635. doi: 10.1101/gad.1565707 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Mahalingam D, Kong CM, Lai J, Tay LL, Yang H, Wang X (2012) Reversal of aberrant cancer methylome and transcriptome upon direct reprogramming of lung cancer cells. Sci Rep 2:592. doi: 10.1038/srep00592 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Ramos-Mejia V, Fraga MF, Menendez P (2012) iPSCs from cancer cells: challenges and opportunities. Trends Mol Med 18(5):245–247. doi: 10.1016/j.molmed.2012.04.001 CrossRefPubMedGoogle Scholar
  171. 171.
    Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32(18):2249–2260, 2260 e2241–2221. doi: 10.1038/onc.2012.237
  172. 172.
    Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729. doi: 10.1101/gad.2016111 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70(3):859–862. doi: 10.1158/0008-5472.CAN-09-3556 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Abollo-Jimenez F, Jimenez R, Cobaleda C (2010) Physiological cellular reprogramming and cancer. Semin Cancer Biol 20(2):98–106. doi: 10.1016/j.semcancer.2010.02.002 CrossRefPubMedGoogle Scholar
  175. 175.
    Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, Manzoli L, McCubrey JA, Cocco L (2011) Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem 18(18):2715–2726. pii: BSP/CMC/E-Pub/2011/182Google Scholar
  176. 176.
    Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Casey T, Tsirigos A, Migneco G, Witkiewicz A, Balliet R, Mercier I, Wang C, Flomenberg N, Howell A, Lin Z, Caro J, Pestell RG, Sotgia F, Lisanti MP (2010) The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: a simple solution to the autophagy paradox. Cell Cycle 9(21):4297–4306. pii: 13817Google Scholar
  177. 177.
    Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP (2010) The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9(17):3485–3505. doi: 10.4161/cc.9.17.12721 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, Pestell RG, Sotgia F, Lisanti MP (2011) Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 10(8):1271–1286. doi: 10.4161/cc.10.8.15330 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG, Goldberg AF, Pestell RG, Howell A, Sneddon S, Birbe R, Tsirigos A, Martinez-Outschoorn U, Sotgia F, Lisanti MP (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11(12):2285–2302. doi: 10.4161/cc.20718 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Castello-Cros R, Bonuccelli G, Molchansky A, Capozza F, Witkiewicz AK, Birbe RC, Howell A, Pestell RG, Whitaker-Menezes D, Sotgia F, Lisanti MP (2011) Matrix remodeling stimulates stromal autophagy, “fueling” cancer cell mitochondrial metabolism and metastasis. Cell Cycle 10(12):2021–2034. pii: 16002Google Scholar
  181. 181.
    Varriale P, Chryssos B (1991) Pulmonary artery sarcoma: another cause of sudden death. Clin Cardiol 14(2):160–164CrossRefPubMedGoogle Scholar
  182. 182.
    Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Vellon L, Menendez JA (2011) Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype. Cell Cycle 10(22):3871–3885. doi: 10.4161/cc.10.22.17976 CrossRefPubMedGoogle Scholar
  183. 183.
    Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888. doi: 10.1371/journal.pone.0002888 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM (2012) Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 11(10):2022–2029. doi: 10.4161/cc.20424 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Galavotti S, Bartesaghi S, Faccenda D, Shaked-Rabi M, Sanzone S, McEvoy A, Dinsdale D, Condorelli F, Brandner S, Campanella M, Grose R, Jones C, Salomoni P (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32(6):699–712. doi: 10.1038/onc.2012.111 CrossRefPubMedGoogle Scholar
  186. 186.
    Catalano M, D’Alessandro G, Lepore F, Corazzari M, Caldarola S, Valacca C, Faienza F, Esposito V, Limatola C, Cecconi F, Di Bartolomeo S (2015) Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol Oncol 9(8):1612–1625. doi: 10.1016/j.molonc.2015.04.016 CrossRefGoogle Scholar
  187. 187.
    Mancias JD, Kimmelman AC (2011) Targeting autophagy addiction in cancer. Oncotarget 2(12):1302–1306. pii: 384Google Scholar
  188. 188.
    Zhang L, Tong X, Li J, Huang Y, Hu X, Chen Y, Huang J, Wang J, Liu B (2015) Apoptotic and autophagic pathways with relevant small-molecule compounds, in cancer stem cells. Cell Prolif. doi: 10.1111/cpr.12191 Google Scholar
  189. 189.
    Amaravadi R (2009) Autophagy can contribute to cell death when combining targeted therapy. Cancer Biol Ther 8(21):130–133. pii: 10416Google Scholar
  190. 190.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125(3):717–722. doi: 10.1002/ijc.24402 CrossRefPubMedGoogle Scholar
  191. 191.
    McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP, Uehara T, Sepulveda AR, Davis LE, Winkler JD, Amaravadi RK (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 109(21):8253–8258. doi: 10.1073/pnas.1118193109 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Cojoc M, Mabert K, Muders MH, Dubrovska A (2015) A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol 31:16–27. doi: 10.1016/j.semcancer.2014.06.004 CrossRefPubMedGoogle Scholar
  193. 193.
    Kim C (2014) Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 49(1):7–14. doi: 10.5045/br.2014.49.1.7 CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  195. 195.
    Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10(5):908–911. doi: 10.1111/j.1474-9726.2011.00722.x CrossRefPubMedGoogle Scholar
  196. 196.
    He J, Kang L, Wu T, Zhang J, Wang H, Gao H, Zhang Y, Huang B, Liu W, Kou Z, Zhang H, Gao S (2012) An elaborate regulation of Mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells Dev 21(14):2630–2641. doi: 10.1089/scd.2012.0015 CrossRefPubMedGoogle Scholar
  197. 197.
    Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28(4):661–673. doi: 10.1002/stem.307 CrossRefPubMedGoogle Scholar
  198. 198.
    Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28(4):721–733. doi: 10.1002/stem.404 CrossRefPubMedGoogle Scholar
  199. 199.
    Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10(21):3658–3677. doi: 10.4161/cc.10.21.18128 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Carlo Rodolfo
    • 1
    • 2
  • Sabrina Di Bartolomeo
    • 1
    • 2
  • Francesco Cecconi
    • 1
    • 2
    • 3
    Email author
  1. 1.Dipartimento di BiologiaUniversità degli Studi di Roma Tor VergataRomeItaly
  2. 2.IRCCS Fondazione Santa LuciaRomeItaly
  3. 3.Unit of Cell Stress and SurvivalDanish Cancer Society Research CenterCopenhagenDenmark

Personalised recommendations