Cellular and Molecular Life Sciences

, Volume 73, Issue 7, pp 1479–1488 | Cite as

Efficient passage of human pluripotent stem cells on spider silk matrices under xeno-free conditions

  • Siqin Wu
  • Jan Johansson
  • Outi Hovatta
  • Anna Rising
Original Article


Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine and pharmaceutical development. Such applications require cell culture methods and reagents that are chemically defined, xeno-free, scalable, and low-cost. Herein, we describe non-mechanical passaging of hPSCs on spider silk films under chemically defined and xeno-free conditions. The cells were dissociated into single cells or small aggregates using Accutase or enzyme-free dissociation buffer and then passaged to spider silk films, where they expanded in monolayers until they covered the surface. Cells cultured over 10 passages on spider silk film remained karyotypically normal and pluripotent. In conclusion, a novel method for passaging dissociated hPSCs under conditions that are compatible with clinical applications is presented. The method is cost-efficient and may be useful for both research and clinical applications.


hESC iPSC Self-renewal Differentiation Enzymatic passaging Culture matrices 







Bacterial artificial chromosome


Bone morphogenetic protein 4


Cardiac troponin T


Basic fibroblast growth factor


Forkhead box A2


Human pluripotent stem cell


Human embryonic stem cell


Human induced pluripotent stem cell


NK2 homeobox 5


Octamer-binding transcription factor 4


Paired box 6


SRY (sex determining region Y) Box 17


Stage-specific embryonic antigen 1


Stage-specific embryonic antigen 4



The authors wish to acknowledge Spiber Technologies AB for providing matrices and for funding and Karolinska Institutets Research Funds for funding.

Compliance with ethical standards

Conflict of interest

This study was funded by Spiber Technologies AB.

Supplementary material

18_2015_2053_MOESM1_ESM.docx (7.9 mb)
Supplementary material 1 (DOCX 8114 kb)


  1. 1.
    Chen KG, Mallon BS, McKay RD, Robey PG (2014) Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14(1):13–26. doi: 10.1016/j.stem.2013.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, Domogatskaya A, Xiao Z, Damdimopoulou P, Sheikhi M, Inzunza J, Nilsson AS, Baker D, Kuiper R, Sun Y, Blennow E, Nordenskjold M, Grinnemo KH, Kere J, Betsholtz C, Hovatta O, Tryggvason K (2014) Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun 5:3195. doi: 10.1038/ncomms4195 CrossRefPubMedGoogle Scholar
  3. 3.
    Rodin S, Antonsson L, Hovatta O, Tryggvason K (2014) Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc 9(10):2354–2368. doi: 10.1038/nprot.2014.159 CrossRefPubMedGoogle Scholar
  4. 4.
    Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan AC (2014) A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 35(9):2816–2826. doi: 10.1016/j.biomaterials.2013.12.050 CrossRefPubMedGoogle Scholar
  5. 5.
    Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594. doi: 10.1038/srep03594
  6. 6.
    Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. doi: 10.1038/nmeth.1593 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hu W, He Y, Xiong Y, Lu H, Chen H, Hou L, Qiu Z, Fang Y, Zhang S (2015) Derivation, expansion, and motor neuron differentiation of human-induced pluripotent stem cells with non-integrating episomal vectors and a defined xenogeneic-free culture system. Mol Neurobiol. doi: 10.1007/s12035-014-9084-z PubMedCentralGoogle Scholar
  8. 8.
    Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, Coffey PJ, Nathwani AC (2013) A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8(11):e81622. doi: 10.1371/journal.pone.0081622 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236. doi: 10.1038/ncomms2231 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615. doi: 10.1038/nbt.1620 CrossRefPubMedGoogle Scholar
  11. 11.
    Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26(9):2257–2265. doi: 10.1634/stemcells.2008-0291 CrossRefPubMedGoogle Scholar
  12. 12.
    Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583. doi: 10.1038/nbt.1631 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610. doi: 10.1038/nbt.1629 CrossRefPubMedGoogle Scholar
  14. 14.
    Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7(12):989–994. doi: 10.1038/nmeth.1532 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu S, Johansson J, Damdimopoulou P, Shahsavani M, Falk A, Hovatta O, Rising A (2014) Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials 35(30):8496–8502. doi: 10.1016/j.biomaterials.2014.06.039 CrossRefPubMedGoogle Scholar
  16. 16.
    Park HJ, Yang K, Kim MJ, Jang J, Lee M, Kim DW, Lee H, Cho SW (2015) Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials 50:127–139. doi: 10.1016/j.biomaterials.2015.01.015 CrossRefPubMedGoogle Scholar
  17. 17.
    Widhe M, Bysell H, Nystedt S, Schenning I, Malmsten M, Johansson J, Rising A, Hedhammar M (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31(36):9575–9585. doi: 10.1016/j.biomaterials.2010.08.061 CrossRefPubMedGoogle Scholar
  18. 18.
    Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, Rozell B, Blennow E, Andang M, Ahrlund-Richter L (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18(7):1404–1409CrossRefPubMedGoogle Scholar
  19. 19.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefPubMedGoogle Scholar
  20. 20.
    Paxton CN, Brothman AR, Geiersbach KB (2013) Rapid aneusomy detection in products of conception using the KaryoLite BACs-on-Beads assay. Prenat Diagn 33(1):25–31. doi: 10.1002/pd.4003 CrossRefPubMedGoogle Scholar
  21. 21.
    Grati FR, Gomes DM, Ganesamoorthy D, Marcato L, De Toffol S, Blondeel E, Malvestiti F, Loeuillet L, Ruggeri AM, Wainer R, Maggi F, Aboura A, Dupont C, Tabet AC, Guimiot F, Slater HR, Simoni G, Vialard F (2013) Application of a new molecular technique for the genetic evaluation of products of conception. Prenat Diagn 33(1):32–41. doi: 10.1002/pd.4004 CrossRefPubMedGoogle Scholar
  22. 22.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. doi: 10.1038/nbt.1529 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. doi: 10.1038/nbt1259 CrossRefPubMedGoogle Scholar
  24. 24.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. doi: 10.1038/nbt1327 CrossRefPubMedGoogle Scholar
  25. 25.
    Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20(4):329–337. doi: 10.1634/stemcells.20-4-329 CrossRefPubMedGoogle Scholar
  26. 26.
    Inzunza J, Gertow K, Stromberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O (2005) Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23(4):544–549. doi: 10.1634/stemcells.2004-0201 CrossRefPubMedGoogle Scholar
  27. 27.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L (2013) Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res 11(3):1103–1116. doi: 10.1016/j.scr.2013.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200(Pt 3):249–258CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187. doi: 10.1038/nbt1177 CrossRefPubMedGoogle Scholar
  31. 31.
    Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3(8):637–646. doi: 10.1038/nmeth902 CrossRefPubMedGoogle Scholar
  32. 32.
    Jin S, Yao H, Weber JL, Melkoumian ZK, Ye K (2012) A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One 7(11):e50880. doi: 10.1371/journal.pone.0050880 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Johansson J, Rising A (2014) Evaluation of functionalized spider silk matrices: choice of cell types and controls are important for detecting specific effects. Front Bioeng Biotechnol 2:50. doi: 10.3389/fbioe.2014.00050 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2(4):1908–1922. doi: 10.3390/Ma2041908 CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Siqin Wu
    • 1
  • Jan Johansson
    • 1
    • 2
    • 3
  • Outi Hovatta
    • 4
  • Anna Rising
    • 1
    • 2
  1. 1.Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer ResearchKarolinska InstitutetStockholmSweden
  2. 2.Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Institute of Mathematics and Natural SciencesTallinn UniversityTallinnEstonia
  4. 4.Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and TechnologyKarolinska Institutet and Karolinska University HospitalStockholmSweden

Personalised recommendations