Skip to main content

Advertisement

Log in

Efficient passage of human pluripotent stem cells on spider silk matrices under xeno-free conditions

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine and pharmaceutical development. Such applications require cell culture methods and reagents that are chemically defined, xeno-free, scalable, and low-cost. Herein, we describe non-mechanical passaging of hPSCs on spider silk films under chemically defined and xeno-free conditions. The cells were dissociated into single cells or small aggregates using Accutase or enzyme-free dissociation buffer and then passaged to spider silk films, where they expanded in monolayers until they covered the surface. Cells cultured over 10 passages on spider silk film remained karyotypically normal and pluripotent. In conclusion, a novel method for passaging dissociated hPSCs under conditions that are compatible with clinical applications is presented. The method is cost-efficient and may be useful for both research and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

BAC:

Bacterial artificial chromosome

BMP4:

Bone morphogenetic protein 4

cTnT:

Cardiac troponin T

FGF2:

Basic fibroblast growth factor

FOXA2:

Forkhead box A2

hPSC:

Human pluripotent stem cell

hESC:

Human embryonic stem cell

hiPSC:

Human induced pluripotent stem cell

NKX2.5:

NK2 homeobox 5

OCT4:

Octamer-binding transcription factor 4

PAX6:

Paired box 6

SOX17:

SRY (sex determining region Y) Box 17

SSEA-1:

Stage-specific embryonic antigen 1

SSEA-4:

Stage-specific embryonic antigen 4

References

  1. Chen KG, Mallon BS, McKay RD, Robey PG (2014) Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14(1):13–26. doi:10.1016/j.stem.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, Domogatskaya A, Xiao Z, Damdimopoulou P, Sheikhi M, Inzunza J, Nilsson AS, Baker D, Kuiper R, Sun Y, Blennow E, Nordenskjold M, Grinnemo KH, Kere J, Betsholtz C, Hovatta O, Tryggvason K (2014) Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun 5:3195. doi:10.1038/ncomms4195

    Article  PubMed  Google Scholar 

  3. Rodin S, Antonsson L, Hovatta O, Tryggvason K (2014) Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc 9(10):2354–2368. doi:10.1038/nprot.2014.159

    Article  CAS  PubMed  Google Scholar 

  4. Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan AC (2014) A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 35(9):2816–2826. doi:10.1016/j.biomaterials.2013.12.050

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594. doi:10.1038/srep03594

  6. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. doi:10.1038/nmeth.1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu W, He Y, Xiong Y, Lu H, Chen H, Hou L, Qiu Z, Fang Y, Zhang S (2015) Derivation, expansion, and motor neuron differentiation of human-induced pluripotent stem cells with non-integrating episomal vectors and a defined xenogeneic-free culture system. Mol Neurobiol. doi:10.1007/s12035-014-9084-z

    PubMed Central  Google Scholar 

  8. Goh PA, Caxaria S, Casper C, Rosales C, Warner TT, Coffey PJ, Nathwani AC (2013) A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS One 8(11):e81622. doi:10.1371/journal.pone.0081622

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236. doi:10.1038/ncomms2231

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615. doi:10.1038/nbt.1620

    Article  CAS  PubMed  Google Scholar 

  11. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26(9):2257–2265. doi:10.1634/stemcells.2008-0291

    Article  CAS  PubMed  Google Scholar 

  12. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583. doi:10.1038/nbt.1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610. doi:10.1038/nbt.1629

    Article  CAS  PubMed  Google Scholar 

  14. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7(12):989–994. doi:10.1038/nmeth.1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu S, Johansson J, Damdimopoulou P, Shahsavani M, Falk A, Hovatta O, Rising A (2014) Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials 35(30):8496–8502. doi:10.1016/j.biomaterials.2014.06.039

    Article  CAS  PubMed  Google Scholar 

  16. Park HJ, Yang K, Kim MJ, Jang J, Lee M, Kim DW, Lee H, Cho SW (2015) Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials 50:127–139. doi:10.1016/j.biomaterials.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  17. Widhe M, Bysell H, Nystedt S, Schenning I, Malmsten M, Johansson J, Rising A, Hedhammar M (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31(36):9575–9585. doi:10.1016/j.biomaterials.2010.08.061

    Article  CAS  PubMed  Google Scholar 

  18. Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, Rozell B, Blennow E, Andang M, Ahrlund-Richter L (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18(7):1404–1409

    Article  PubMed  Google Scholar 

  19. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  20. Paxton CN, Brothman AR, Geiersbach KB (2013) Rapid aneusomy detection in products of conception using the KaryoLite BACs-on-Beads assay. Prenat Diagn 33(1):25–31. doi:10.1002/pd.4003

    Article  PubMed  Google Scholar 

  21. Grati FR, Gomes DM, Ganesamoorthy D, Marcato L, De Toffol S, Blondeel E, Malvestiti F, Loeuillet L, Ruggeri AM, Wainer R, Maggi F, Aboura A, Dupont C, Tabet AC, Guimiot F, Slater HR, Simoni G, Vialard F (2013) Application of a new molecular technique for the genetic evaluation of products of conception. Prenat Diagn 33(1):32–41. doi:10.1002/pd.4004

    Article  PubMed  Google Scholar 

  22. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. doi:10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. doi:10.1038/nbt1259

    Article  PubMed  Google Scholar 

  24. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. doi:10.1038/nbt1327

    Article  CAS  PubMed  Google Scholar 

  25. Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20(4):329–337. doi:10.1634/stemcells.20-4-329

    Article  CAS  PubMed  Google Scholar 

  26. Inzunza J, Gertow K, Stromberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O (2005) Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23(4):544–549. doi:10.1634/stemcells.2004-0201

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L (2013) Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res 11(3):1103–1116. doi:10.1016/j.scr.2013.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200(Pt 3):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187. doi:10.1038/nbt1177

    Article  CAS  PubMed  Google Scholar 

  31. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3(8):637–646. doi:10.1038/nmeth902

    Article  CAS  PubMed  Google Scholar 

  32. Jin S, Yao H, Weber JL, Melkoumian ZK, Ye K (2012) A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One 7(11):e50880. doi:10.1371/journal.pone.0050880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johansson J, Rising A (2014) Evaluation of functionalized spider silk matrices: choice of cell types and controls are important for detecting specific effects. Front Bioeng Biotechnol 2:50. doi:10.3389/fbioe.2014.00050

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2(4):1908–1922. doi:10.3390/Ma2041908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Spiber Technologies AB for providing matrices and for funding and Karolinska Institutets Research Funds for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rising.

Ethics declarations

Conflict of interest

This study was funded by Spiber Technologies AB.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Johansson, J., Hovatta, O. et al. Efficient passage of human pluripotent stem cells on spider silk matrices under xeno-free conditions. Cell. Mol. Life Sci. 73, 1479–1488 (2016). https://doi.org/10.1007/s00018-015-2053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2053-5

Keywords

Navigation