Cellular and Molecular Life Sciences

, Volume 72, Issue 23, pp 4523–4544 | Cite as

Mechanism, factors, and physiological role of nonsense-mediated mRNA decay

  • Tobias Fatscher
  • Volker Boehm
  • Niels H. Gehring


Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.


NMD Quality control UPF1 Exon junction complex Genetic disease 



This research was funded by grants from the Fritz Thyssen Stiftung and the Deutsche Forschungsgemeinschaft (SFB635, project B06) to N.H.G.


  1. 1.
    Brogna S, Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16:107–113. doi: 10.1038/nsmb.1550 PubMedCrossRefGoogle Scholar
  2. 2.
    Fatscher T, Boehm V, Weiche B, Gehring NH (2014) The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA 20:1579–1592. doi: 10.1261/rna.044933.114 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE (2008) Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J 27:736–747. doi: 10.1038/emboj.2008.17 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Joncourt R, Eberle AB, Rufener SC, Muhlemann O (2014) Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms. PLoS One 9:e104391. doi: 10.1371/journal.pone.0104391 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111. doi: 10.1371/journal.pbio.0060111 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Janzen DM, Geballe AP (2004) The effect of eukaryotic release factor depletion on translation termination in human cell lines. Nucleic Acids Res 32:4491–4502. doi: 10.1093/nar/gkh791 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chauvin C, Salhi S, Le Goff C, Viranaicken W, Diop D, Jean-Jean O (2005) Involvement of human release factors eRF3a and eRF3b in translation termination and regulation of the termination complex formation. Mol Cell Biol 25:5801–5811. doi: 10.1128/MCB.25.14.5801-5811.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hoshino S, Imai M, Mizutani M, Kikuchi Y, Hanaoka F, Ui M, Katada T (1998) Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF) - Its identification as eRF3 interacting with eRF1. J Biol Chem 273:22254–22259. doi: 10.1074/jbc.273.35.22254 PubMedCrossRefGoogle Scholar
  9. 9.
    Hoshino S, Miyazawa H, Enomoto T, Hanaoka F, Kikuchi Y, Kikuchi A, Ui M (1989) A human homolog of the yeast Gst1-gene codes for a Gtp-binding protein and is expressed in a proliferation-dependent manner in mammalian-cells. EMBO J 8:3807–3814PubMedCentralPubMedGoogle Scholar
  10. 10.
    Chavatte L, Frolova L, Kisselev L, Favre A (2001) The polypeptide chain release factor eRF1 specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur J Biochem 268:2896–2904PubMedCrossRefGoogle Scholar
  11. 11.
    Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M et al (1994) A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372:701–703. doi: 10.1038/372701a0 PubMedCrossRefGoogle Scholar
  12. 12.
    Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM, Tatkov SI, Kisselev LL (1999) Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5:1014–1020. doi: 10.1017/s135583829999043x PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, Hemmings BA, Barford D (2000) The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100:311–321PubMedCrossRefGoogle Scholar
  14. 14.
    Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072PubMedCentralPubMedGoogle Scholar
  15. 15.
    Salas-Marco J, Bedwell DM (2004) GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 24:7769–7778. doi: 10.1128/MCB.24.17.7769-7778.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Frolova L, LeGoff X, Zhouravleva G, Davydova E, Philippe M, Kisselev L (1996) Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2:334–341PubMedCentralPubMedGoogle Scholar
  17. 17.
    Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125:1125–1136. doi: 10.1016/j.cell.2006.04.035 PubMedCrossRefGoogle Scholar
  18. 18.
    Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37:196–210. doi: 10.1016/j.molcel.2009.12.034 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, Tampe R (2011) Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci USA 108:3228–3233. doi: 10.1073/pnas.1015953108 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, Ungewickell C, Berninghausen O, Daberkow I, Karcher A, Thomm M, Hopfner KP, Green R, Beckmann R (2012) Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482:501–506. doi: 10.1038/nature10829 PubMedCrossRefGoogle Scholar
  21. 21.
    Adam SA, Nakagawa T, Swanson MS, Woodruff TK, Dreyfuss G (1986) mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 6:2932–2943PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sachs AB, Bond MW, Kornberg RD (1986) A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins—domain-structure and expression. Cell 45:827–835. doi: 10.1016/0092-8674(86)90557-X PubMedCrossRefGoogle Scholar
  23. 23.
    Deo RC, Bonanno JB, Sonenberg N, Burley SK (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98:835–845PubMedCrossRefGoogle Scholar
  24. 24.
    Cosson B, Berkova N, Couturier A, Chabelskaya S, Philippe M, Zhouravleva G (2002) Poly(A)-binding protein and eRF3 are associated in vivo in human and Xenopus cells. Biol Cell 94:205–216. doi: 10.1016/S0248-4900(02)01194-2 PubMedCrossRefGoogle Scholar
  25. 25.
    Kozlov G, Trempe JF, Khaleghpour K, Kahvejian A, Ekiel I, Gehring K (2001) Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci USA 98:4409–4413. doi: 10.1073/pnas.071024998 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Si Hoshino, Imai M, Kobayashi T, Uchida N, Katada T (1999) The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-Poly(A) tail of mRNA. Direct association of eRF3/GSPT with polyadenylate-binding protein. J Biol Chem 274:16677–16680. doi: 10.1074/jbc.274.24.16677 CrossRefGoogle Scholar
  27. 27.
    Uchida N, Hoshino S, Imataka H, Sonenberg N, Katada T (2002) A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J Biol Chem 277:50286–50292. doi: 10.1074/jbc.M203029200 PubMedCrossRefGoogle Scholar
  28. 28.
    Kozlov G, Gehring K (2010) Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein. PLoS One 5:e10169. doi: 10.1371/journal.pone.0010169 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Tarun SZ Jr, Sachs AB (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177PubMedCentralPubMedGoogle Scholar
  30. 30.
    Safaee N, Kozlov G, Noronha AM, Xie J, Wilds CJ, Gehring K (2012) Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol Cell 48:375–386. doi: 10.1016/j.molcel.2012.09.001 PubMedCrossRefGoogle Scholar
  31. 31.
    Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961PubMedCrossRefGoogle Scholar
  32. 32.
    Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280. doi: 10.1038/nature06974 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113. doi: 10.1101/gad.1262905 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140PubMedCrossRefGoogle Scholar
  35. 35.
    Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23:198–199. doi: 10.1016/S0968-0004(98)01208-0 PubMedCrossRefGoogle Scholar
  36. 36.
    Thermann R, Neu-Yilik G, Deters A, Frede U, Wehr K, Hagemeier C, Hentze MW, Kulozik AE (1998) Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 17:3484–3494. doi: 10.1093/emboj/17.12.3484 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zhang J, Sun X, Qian Y, LaDuca JP (1998) At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol Cell Biol 18:5272–5283PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zhang J, Sun XL, Qian YM, Maquat LE (1998) Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4:801–815. doi: 10.1017/S1355838298971849 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Wang J, Gudikote JP, Olivas OR, Wilkinson MF (2002) Boundary-independent polar nonsense-mediated decay. EMBO Rep 3:274–279. doi: 10.1093/embo-reports/kvf036 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Brocke KS, Neu-Yilik G, Gehring NH, Hentze MW, Kulozik AE (2002) The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum Mol Genet 11:331–335. doi: 10.1093/hmg/11.3.331 PubMedCrossRefGoogle Scholar
  41. 41.
    Maquat LE, Li XJ (2001) Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7:445–456. doi: 10.1017/S1355838201002229 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Neu-Yilik G, Gehring NH, Thermann R, Frede U, Hentze MW, Kulozik AE (2001) Splicing and 3′ end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs. EMBO J 20:532–540. doi: 10.1093/emboj/20.3.532 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Dostie J, Dreyfuss G (2002) Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr Biol 12:1060–1067PubMedCrossRefGoogle Scholar
  44. 44.
    Lejeune F, Ishigaki Y, Li X, Maquat LE (2002) The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J 21:3536–3545. doi: 10.1093/emboj/cdf345 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon–exon junctions. EMBO J 19:6860–6869. doi: 10.1093/emboj/19.24.6860 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Steckelberg A-LL, Boehm V, Gromadzka AM, Gehring NH (2012) CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep 2:454–461. doi: 10.1016/j.celrep.2012.08.017 PubMedCrossRefGoogle Scholar
  47. 47.
    Gehring NH, Lamprinaki S, Kulozik AE, Hentze MW (2009) Disassembly of exon junction complexes by PYM. Cell 137:536–548. doi: 10.1016/j.cell.2009.02.042 PubMedCrossRefGoogle Scholar
  48. 48.
    Ballut L, Marchadier B, Baguet A, Tomasetto C, Seraphin B, Le Hir H (2005) The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol 12:861–869. doi: 10.1038/nsmb990 PubMedCrossRefGoogle Scholar
  49. 49.
    Bono F, Ebert J, Lorentzen E, Conti E (2006) The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126:713–725. doi: 10.1016/j.cell.2006.08.006 PubMedCrossRefGoogle Scholar
  50. 50.
    Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Seraphin B, Le Hir H, Andersen GR (2006) Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972. doi: 10.1126/science.1131981 PubMedCrossRefGoogle Scholar
  51. 51.
    Kim VN, Kataoka N, Dreyfuss G (2001) Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon–exon junction complex. Science 293:1832–1836. doi: 10.1126/science.1062829 PubMedCrossRefGoogle Scholar
  52. 52.
    Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987–4997. doi: 10.1093/emboj/20.17.4987 PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE (2003) Y14 and hUpf3b form an NMD-activating complex. Mol Cell 11:939–949. doi: 10.1016/S1097-2765(03)00142-4 PubMedCrossRefGoogle Scholar
  54. 54.
    Buhler M, Steiner S, Mohn F, Paillusson A, Muhlemann O (2006) EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length. Nat Struct Mol Biol 13:462–464. doi: 10.1038/nsmb1081 PubMedCrossRefGoogle Scholar
  55. 55.
    Boehm V, Haberman N, Ottens F, Ule J, Gehring NH (2014) 3′ UTR length and messenger ribonucleoprotein composition determine endocleavage efficiencies at termination codons. Cell Rep 9:555–568. doi: 10.1016/j.celrep.2014.09.012 PubMedCrossRefGoogle Scholar
  56. 56.
    Toma KG, Rebbapragada I, Durand S, Lykke-Andersen J (2015) Identification of elements in human long 3′ UTRs that inhibit nonsense-mediated decay. RNA 21:887–897. doi: 10.1261/rna.048637.114 PubMedCrossRefGoogle Scholar
  57. 57.
    Hurt JA, Robertson AD, Burge CB (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 23:1636–1650. doi: 10.1101/gr.157354.113 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Kurosaki T, Maquat LE (2013) Rules that govern UPF1 binding to mRNA 3′ UTRs. Proc Natl Acad Sci USA 110:3357–3362. doi: 10.1073/pnas.1219908110 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Zund D, Gruber AR, Zavolan M, Muhlemann O (2013) Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nat Struct Mol Biol 20:936–943. doi: 10.1038/nsmb.2635 PubMedCrossRefGoogle Scholar
  60. 60.
    Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118. doi: 10.1038/nature03060 PubMedCrossRefGoogle Scholar
  61. 61.
    Muhlrad D, Parker R (1999) Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5:1299–1307PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Ishigaki Y, Li X, Serin G, Maquat LE (2001) Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106:607–617PubMedCrossRefGoogle Scholar
  63. 63.
    Durand S, Lykke-Andersen J (2013) Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells. Nat Struct Mol Biol 20:702–709. doi: 10.1038/nsmb.2575 PubMedCrossRefGoogle Scholar
  64. 64.
    Rufener SC, Muhlemann O (2013) eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 20:710–717. doi: 10.1038/nsmb.2576 PubMedCrossRefGoogle Scholar
  65. 65.
    Belgrader P, Cheng J, Maquat LE (1993) Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc Natl Acad Sci USA 90:482–486PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Carter MS, Doskow J, Morris P, Li SL, Nhim RP, Sandstedt S, Wilkinson MF (1995) A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in-vivo is reversed by protein-synthesis inhibitors in-vitro. J Biol Chem 270:28995–29003PubMedCrossRefGoogle Scholar
  67. 67.
    Gradi A, Svitkin YV, Imataka H, Sonenberg N (1998) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95:11089–11094PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Kuyumcu-Martinez NM, Joachims M, Lloyd RE (2002) Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J Virol 76:2062–2074PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Zhang J, Maquat LE (1997) Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J 16:826–833. doi: 10.1093/emboj/16.4.826 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Neu-Yilik G, Amthor B, Gehring NH, Bahri S, Paidassi H, Hentze MW, Kulozik AE (2011) Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA 17:843–854. doi: 10.1261/rna.2401811 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Baserga SJ, Benz EJ Jr (1988) Nonsense mutations in the human beta-globin gene affect mRNA metabolism. Proc Natl Acad Sci USA 85:2056–2060PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Pergolizzi R, Spritz RA, Spence S, Goossens M, Kan YW, Bank A (1981) Two cloned beta thalassemia genes are associated with amber mutations at codon 39. Nucleic Acids Res 9:7065–7072PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Peixeiro I, Inacio A, Barbosa C, Silva AL, Liebhaber SA, Romao L (2012) Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res 40:1160–1173. doi: 10.1093/nar/gkr820 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 20:355–367. doi: 10.1101/gad.1389006 PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Yepiskoposyan H, Aeschimann F, Nilsson D, Okoniewski M, Muhlemann O (2011) Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17:2108–2118. doi: 10.1261/rna.030247.111 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6:e92. doi: 10.1371/journal.pbio.0060092 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL (1989) Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem 264:9724–9727PubMedGoogle Scholar
  78. 78.
    Berry MJ, Banu L, Harney JW, Larsen PR (1993) Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12:3315–3322PubMedCentralPubMedGoogle Scholar
  79. 79.
    Bermano G, Nicol F, Dyer JA, Sunde RA, Beckett GJ, Arthur JR, Hesketh JE (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311(Pt 2):425–430PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Hadley KB, Sunde RA (2001) Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver. J Nutr Biochem 12:693–702PubMedCrossRefGoogle Scholar
  81. 81.
    Seyedali A, Berry MJ (2014) Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA 20:1248–1256. doi: 10.1261/rna.043463.113 PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078. doi: 10.1038/ng1429 PubMedCrossRefGoogle Scholar
  83. 83.
    Stockklausner C, Breit S, Neu-Yilik G, Echner N, Hentze MW, Kulozik AE, Gehring NH (2006) The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD). Nucleic Acids Res 34:2355–2363. doi: 10.1093/nar/gkl277 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Brett D, Hanke J, Lehmann G, Haase S, Delbruck S, Krueger S, Reich J, Bork P (2000) EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 474:83–86PubMedCrossRefGoogle Scholar
  85. 85.
    Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 100:189–192. doi: 10.1073/pnas.0136770100 PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J (2001) SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J 20:1785–1796. doi: 10.1093/emboj/20.7.1785 PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Tani H, Torimura M, Akimitsu N (2013) The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One 8:e55684. doi: 10.1371/journal.pone.0055684 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Chew GL, Pauli A, Rinn JL, Regev A, Schier AF, Valen E (2013) Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 140:2828–2834. doi: 10.1242/dev.098343 PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Culbertson MR, Underbrink KM, Fink GR (1980) Frameshift suppression Saccharomyces cerevisiae. II. Genetic properties of group II suppressors. Genetics 95:833–853PubMedCentralPubMedGoogle Scholar
  90. 90.
    Cui Y, Hagan KW, Zhang S, Peltz SW (1995) Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev 9:423–436PubMedCrossRefGoogle Scholar
  91. 91.
    Leeds P, Peltz SW, Jacobson A, Culbertson MR (1991) The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 5:2303–2314PubMedCrossRefGoogle Scholar
  92. 92.
    Leeds P, Wood JM, Lee BS, Culbertson MR (1992) Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 12:2165–2177PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E (2007) mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett 581:2845–2853. doi: 10.1016/j.febslet.2007.05.027 PubMedCrossRefGoogle Scholar
  94. 94.
    Culbertson MR, Leeds PF (2003) Looking at mRNA decay pathways through the window of molecular evolution. Curr Opin Genet Dev 13:207–214PubMedCrossRefGoogle Scholar
  95. 95.
    Chen YH, Su LH, Sun CH (2008) Incomplete nonsense-mediated mRNA decay in Giardia lamblia. Int J Parasitol 38:1305–1317. doi: 10.1016/j.ijpara.2008.02.006 PubMedCrossRefGoogle Scholar
  96. 96.
    Kadlec J, Guilligay D, Ravelli RB, Cusack S (2006) Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA 12:1817–1824. doi: 10.1261/rna.177606 PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Cali BM, Kuchma SL, Latham J, Anderson P (1999) smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 151:605–616PubMedCentralPubMedGoogle Scholar
  98. 98.
    Hodgkin J, Papp A, Pulak R, Ambros V, Anderson P (1989) A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123:301–313PubMedCentralPubMedGoogle Scholar
  99. 99.
    Pulak R, Anderson P (1993) mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev 7:1885–1897PubMedCrossRefGoogle Scholar
  100. 100.
    Applequist SE, Selg M, Raman C, Jack HM (1997) Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. Nucleic Acids Res 25:814–821PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Aronoff R, Baran R, Hodgkin J (2001) Molecular identification of smg-4, required for mRNA surveillance in C. elegans. Gene 268:153–164PubMedCrossRefGoogle Scholar
  102. 102.
    Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP (2001) Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 276:22709–22714. doi: 10.1074/jbc.C100144200 PubMedCrossRefGoogle Scholar
  103. 103.
    Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103:1121–1131PubMedCrossRefGoogle Scholar
  104. 104.
    Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S (2003) Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell 12:1187–1200PubMedCrossRefGoogle Scholar
  105. 105.
    Page MF, Carr B, Anders KR, Grimson A, Anderson P (1999) SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol Cell Biol 19:5943–5951PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S (2001) Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15:2215–2228. doi: 10.1101/gad.913001 PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Casadio A, Longman D, Hug N, Delavaine L, Vallejos Baier R, Alonso CR, Caceres JF (2015) Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals. EMBO Rep 16:71–78. doi: 10.15252/embr.201439183 PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Hug N, Caceres JF (2014) The RNA helicase DHX34 activates NMD by promoting a transition from the surveillance to the decay-inducing complex. Cell Rep 8:1845–1856. doi: 10.1016/j.celrep.2014.08.020 PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Izumi N, Yamashita A, Ohno S (2012) Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 3:29–43. doi: 10.4161/nucl.18926 PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Longman D, Hug N, Keith M, Anastasaki C, Patton EE, Grimes G, Caceres JF (2013) DHX34 and NBAS form part of an autoregulatory NMD circuit that regulates endogenous RNA targets in human cells, zebrafish and Caenorhabditis elegans. Nucleic Acids Res 41:8319–8331. doi: 10.1093/nar/gkt585 PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Longman D, Plasterk RH, Johnstone IL, Caceres JF (2007) Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev 21:1075–1085. doi: 10.1101/gad.417707 PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Gregersen LH, Schueler M, Munschauer M, Mastrobuoni G, Chen W, Kempa S, Dieterich C, Landthaler M (2014) MOV10 Is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol Cell 54:573–585. doi: 10.1016/j.molcel.2014.03.017 PubMedCrossRefGoogle Scholar
  113. 113.
    Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S (2009) SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev 23:1091–1105. doi: 10.1101/gad.1767209 PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K (2012) Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res 40:5615–5624. doi: 10.1093/nar/gks195 PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly AG, Lawler AM, Dietz HC (2001) Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10:99–105PubMedCrossRefGoogle Scholar
  116. 116.
    Wittkopp N, Huntzinger E, Weiler C, Sauliere J, Schmidt S, Sonawane M, Izaurralde E (2009) Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Mol Cell Biol 29:3517–3528. doi: 10.1128/MCB.00177-09 PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Avery P, Vicente-Crespo M, Francis D, Nashchekina O, Alonso CR, Palacios IM (2011) Drosophila Upf1 and Upf2 loss of function inhibits cell growth and causes animal death in a Upf3-independent manner. RNA 17:624–638. doi: 10.1261/rna.2404211 PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Bhattacharya A, Czaplinski K, Trifillis P, He F, Jacobson A, Peltz SW (2000) Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6:1226–1235PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Cheng Z, Muhlrad D, Lim MK, Parker R, Song H (2007) Structural and functional insights into the human Upf1 helicase core. EMBO J 26:253–264. doi: 10.1038/sj.emboj.7601464 PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324. doi: 10.1016/ PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50. doi: 10.1146/annurev.biochem.76.052305.115300 PubMedCrossRefGoogle Scholar
  122. 122.
    Chamieh H, Ballut L, Bonneau F, Le Hir H (2008) NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat Struct Mol Biol 15:85–93. doi: 10.1038/nsmb1330 PubMedCrossRefGoogle Scholar
  123. 123.
    Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E (2011) Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol Cell 41:693–703. doi: 10.1016/j.molcel.2011.02.010 PubMedCrossRefGoogle Scholar
  124. 124.
    Weng Y, Czaplinski K, Peltz SW (1996) Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol 16:5477–5490PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Mendell JT, ap Rhys CM, Dietz HC (2002) Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298:419–422. doi: 10.1126/science.1074428 PubMedCrossRefGoogle Scholar
  126. 126.
    Weng Y, Czaplinski K, Peltz SW (1996) Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol 16:5491–5506PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Franks TM, Singh G, Lykke-Andersen J (2010) Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay. Cell 143:938–950. doi: 10.1016/j.cell.2010.11.043 PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Shigeoka T, Kato S, Kawaichi M, Ishida Y (2012) Evidence that the Upf1-related molecular motor scans the 3′-UTR to ensure mRNA integrity. Nucleic Acids Res 40:6887–6897. doi: 10.1093/nar/gks344 PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Fiorini F, Boudvillain M, Le Hir H (2013) Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains. Nucleic Acids Res 41:2404–2415. doi: 10.1093/nar/gks1320 PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Ponting CP (2000) Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem Sci 25:423–426PubMedCrossRefGoogle Scholar
  131. 131.
    Clerici M, Deniaud A, Boehm V, Gehring NH, Schaffitzel C, Cusack S (2014) Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2. Nucleic Acids Res 42:2673–2686. doi: 10.1093/nar/gkt1197 PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Aravind L, Koonin EV (2000) Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. Genome Res 10:1172–1184PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Alexandrov A, Colognori D, Shu MD, Steitz JA (2012) Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc Natl Acad Sci USA 109:21313–21318. doi: 10.1073/pnas.1219725110 PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Barbosa I, Haque N, Fiorini F, Barrandon C, Tomasetto C, Blanchette M, Le Hir H (2012) Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat Struct Mol Biol 19:983–990. doi: 10.1038/nsmb.2380 PubMedCrossRefGoogle Scholar
  135. 135.
    Buchwald G, Schussler S, Basquin C, Le Hir H, Conti E (2013) Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain. Proc Natl Acad Sci USA 110:E4611–E4618. doi: 10.1073/pnas.1314684110 PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH (2012) CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep 2:454–461. doi: 10.1016/j.celrep.2012.08.017 PubMedCrossRefGoogle Scholar
  137. 137.
    Kadlec J, Izaurralde E, Cusack S (2004) The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat Struct Mol Biol 11:330–337. doi: 10.1038/nsmb741 PubMedCrossRefGoogle Scholar
  138. 138.
    Serin G, Gersappe A, Black JD, Aronoff R, Maquat LE (2001) Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol Cell Biol 21:209–223. doi: 10.1128/MCB.21.1.209-223.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Melero R, Buchwald G, Castano R, Raabe M, Gil D, Lazaro M, Urlaub H, Conti E, Llorca O (2012) The cryo-EM structure of the UPF-EJC complex shows UPF1 poised toward the RNA 3′ end. Nat Struct Mol Biol 19(498–505):S491–S492. doi: 10.1038/nsmb.2287 Google Scholar
  140. 140.
    Fourati Z, Roy B, Millan C, Coureux PD, Kervestin S, van Tilbeurgh H, He F, Uson I, Jacobson A, Graille M (2014) A highly conserved region essential for NMD in the Upf2 N-terminal domain. J Mol Biol 426:3689–3702. doi: 10.1016/j.jmb.2014.09.015 PubMedCrossRefGoogle Scholar
  141. 141.
    Chan WK, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gecz J, Wilkinson MF (2009) A UPF3-mediated regulatory switch that maintains RNA surveillance. Nat Struct Mol Biol 16:747–753. doi: 10.1038/nsmb.1612 PubMedCrossRefGoogle Scholar
  142. 142.
    Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH (2006) Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 12:1015–1022. doi: 10.1261/rna.12506 PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831. doi: 10.1242/dev.000018 PubMedCrossRefGoogle Scholar
  144. 144.
    Buchwald G, Ebert J, Basquin C, Sauliere J, Jayachandran U, Bono F, Le Hir H, Conti E (2010) Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex. Proc Natl Acad Sci USA 107:10050–10055. doi: 10.1073/pnas.1000993107 PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Kashima I, Jonas S, Jayachandran U, Buchwald G, Conti E, Lupas AN, Izaurralde E (2010) SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes Dev 24:2440–2450. doi: 10.1101/gad.604610 PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Metze S, Herzog VA, Ruepp MD, Muhlemann O (2013) Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA 19:1432–1448. doi: 10.1261/rna.038893.113 PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Gatfield D, Unterholzner L, Ciccarelli FD, Bork P, Izaurralde E (2003) Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J 22:3960–3970. doi: 10.1093/emboj/cdg371 PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Spingola M, Grate L, Haussler D, Ares M Jr (1999) Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 5:221–234PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Wen J, Brogna S (2010) Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe. EMBO J 29:1537–1551. doi: 10.1038/emboj.2010.48 PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Grimson A, O’Connor S, Newman CL, Anderson P (2004) SMG-1 is a phosphatidylinositol kinase-related protein kinase required for nonsense-mediated mRNA decay in Caenorhabditis elegans. Mol Cell Biol 24:7483–7490. doi: 10.1128/MCB.24.17.7483-7490.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Melero R, Uchiyama A, Castano R, Kataoka N, Kurosawa H, Ohno S, Yamashita A, Llorca O (2014) Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure 22:1105–1119. doi: 10.1016/j.str.2014.05.015 PubMedCrossRefGoogle Scholar
  152. 152.
    Arias-Palomo E, Yamashita A, Fernandez IS, Nunez-Ramirez R, Bamba Y, Izumi N, Ohno S, Llorca O (2011) The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev 25:153–164. doi: 10.1101/gad.606911 PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Fernandez IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolome RA, Canales MA, Teixido J, Ohno S, Llorca O (2011) Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex. Nucleic Acids Res 39:347–358. doi: 10.1093/nar/gkq749 PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Chakrabarti S, Bonneau F, Schussler S, Eppinger E, Conti E (2014) Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Res 42:9447–9460. doi: 10.1093/nar/gku578 PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Lasalde C, Rivera AV, Leon AJ, Gonzalez-Feliciano JA, Estrella LA, Rodriguez-Cruz EN, Correa ME, Cajigas IJ, Bracho DP, Vega IE, Wilkinson MF, Gonzalez CI (2014) Identification and functional analysis of novel phosphorylation sites in the RNA surveillance protein Upf1. Nucleic Acids Res 42:1916–1929. doi: 10.1093/nar/gkt1049 PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Wang W, Cajigas IJ, Peltz SW, Wilkinson MF, Gonzalez CI (2006) Role for Upf2p phosphorylation in Saccharomyces cerevisiae nonsense-mediated mRNA decay. Mol Cell Biol 26:3390–3400. doi: 10.1128/MCB.26.9.3390-3400.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E (2005) SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol Cell 17:537–547. doi: 10.1016/j.molcel.2005.01.010 PubMedCrossRefGoogle Scholar
  158. 158.
    Gardino AK, Smerdon SJ, Yaffe MB (2006) Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol 16:173–182. doi: 10.1016/j.semcancer.2006.03.007 PubMedCrossRefGoogle Scholar
  159. 159.
    Jonas S, Weichenrieder O, Izaurralde E (2013) An unusual arrangement of two 14-3-3-like domains in the SMG5-SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay. Genes Dev 27:211–225. doi: 10.1101/gad.206672.112 PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Obsil T, Obsilova V (2011) Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol 22:663–672. doi: 10.1016/j.semcdb.2011.09.001 PubMedCrossRefGoogle Scholar
  161. 161.
    Okada-Katsuhata Y, Yamashita A, Kutsuzawa K, Izumi N, Hirahara F, Ohno S (2012) N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res 40:1251–1266. doi: 10.1093/nar/gkr791 PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Unterholzner L, Izaurralde E (2004) SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell 16:587–596. doi: 10.1016/j.molcel.2004.10.013 PubMedCrossRefGoogle Scholar
  163. 163.
    Loh B, Jonas S, Izaurralde E (2013) The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev 27:2125–2138. doi: 10.1101/gad.226951.113 PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    He F, Jacobson A (1995) Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev 9:437–454PubMedCrossRefGoogle Scholar
  165. 165.
    Lykke-Andersen J (2002) Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22:8114–8121PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    He F, Jacobson A (2001) Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol Cell Biol 21:1515–1530. doi: 10.1128/MCB.21.5.1515-1530.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Lejeune F, Li X, Maquat LE (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 12:675–687PubMedCrossRefGoogle Scholar
  168. 168.
    Cho H, Kim KM, Kim YK (2009) Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol Cell 33:75–86. doi: 10.1016/j.molcel.2008.11.022 PubMedCrossRefGoogle Scholar
  169. 169.
    Lai T, Cho H, Liu Z, Bowler MW, Piao S, Parker R, Kim YK, Song H (2012) Structural basis of the PNRC2-mediated link between mrna surveillance and decapping. Structure 20:2025–2037. doi: 10.1016/j.str.2012.09.009 PubMedCrossRefGoogle Scholar
  170. 170.
    Cho H, Han S, Choe J, Park SG, Choi SS, Kim YK (2013) SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay. Nucleic Acids Res 41:1319–1328. doi: 10.1093/nar/gks1222 PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Anders KR, Grimson A, Anderson P (2003) SMG-5, required for C.elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J 22:641–650. doi: 10.1093/emboj/cdg056 PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Clissold PM, Ponting CP (2000) PIN domains in nonsense-mediated mRNA decay and RNAi. Curr Biol 10:R888–R890PubMedCrossRefGoogle Scholar
  173. 173.
    Schoenberg DR (2011) Mechanisms of endonuclease-mediated mRNA decay. Wiley Interdiscip Rev RNA 2:582–600. doi: 10.1002/wrna.78 PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Glavan F, Behm-Ansmant I, Izaurralde E, Conti E (2006) Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J 25:5117–5125. doi: 10.1038/sj.emboj.7601377 PubMedCentralPubMedCrossRefGoogle Scholar
  175. 175.
    Chiu SY, Serin G, Ohara O, Maquat LE (2003) Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9:77–87PubMedCentralPubMedCrossRefGoogle Scholar
  176. 176.
    Gatfield D, Izaurralde E (2004) Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429:575–578. doi: 10.1038/nature02559 PubMedCrossRefGoogle Scholar
  177. 177.
    Huntzinger E, Kashima I, Fauser M, Sauliere J, Izaurralde E (2008) SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14:2609–2617. doi: 10.1261/rna.1386208 PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH (2009) SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 16:49–55. doi: 10.1038/nsmb.1530 PubMedCrossRefGoogle Scholar
  179. 179.
    Nicholson P, Josi C, Kurosawa H, Yamashita A, Muhlemann O (2014) A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nucleic Acids Res 42:9217–9235. doi: 10.1093/nar/gku645 PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Kurosaki T, Li W, Hoque M, Popp MW, Ermolenko DN, Tian B, Maquat LE (2014) A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev 28:1900–1916. doi: 10.1101/gad.245506.114 PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Lykke-Andersen S, Chen Y, Ardal BR, Lilje B, Waage J, Sandelin A, Jensen TH (2014) Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev 28:2498–2517. doi: 10.1101/gad.246538.114 PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PJ (2014) Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res. doi: 10.1093/nar/gku1258 Google Scholar
  183. 183.
    Hwang J, Maquat LE (2011) Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr Opin Genet Dev 21:422–430. doi: 10.1016/j.gde.2011.03.008 PubMedCentralPubMedCrossRefGoogle Scholar
  184. 184.
    Weischenfeldt J, Damgaard I, Bryder D, Theilgaard-Monch K, Thoren LA, Nielsen FC, Jacobsen SE, Nerlov C, Porse BT (2008) NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 22:1381–1396. doi: 10.1101/gad.468808 PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    McIlwain DR, Pan Q, Reilly PT, Elia AJ, McCracken S, Wakeham AC, Itie-Youten A, Blencowe BJ, Mak TW (2010) Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci USA 107:12186–12191. doi: 10.1073/pnas.1007336107 PubMedCentralPubMedCrossRefGoogle Scholar
  186. 186.
    Thoren LA, Norgaard GA, Weischenfeldt J, Waage J, Jakobsen JS, Damgaard I, Bergstrom FC, Blom AM, Borup R, Bisgaard HC, Porse BT (2010) UPF2 is a critical regulator of liver development, function and regeneration. PLoS One 5:e11650. doi: 10.1371/journal.pone.0011650 PubMedCentralPubMedCrossRefGoogle Scholar
  187. 187.
    Li T, Shi Y, Wang P, Guachalla LM, Sun B, Joerss T, Chen YS, Groth M, Krueger A, Platzer M, Yang YG, Rudolph KL, Wang ZQ (2015) Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J. doi: 10.15252/embj.201489947 Google Scholar
  188. 188.
    Isken O, Maquat LE (2008) The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 9:699–712. doi: 10.1038/nrg2402 PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Muhlemann O (2010) Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 67:677–700. doi: 10.1007/s00018-009-0177-1 PubMedCrossRefGoogle Scholar
  190. 190.
    Tarpey PS, Raymond FL, Nguyen LS, Rodriguez J, Hackett A, Vandeleur L, Smith R, Shoubridge C, Edkins S, Stevens C, O’Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Hills K, Jones D, Mironenko T, Perry J, Varian J, West S, Widaa S, Teague J, Dicks E, Butler A, Menzies A, Richardson D, Jenkinson A, Shepherd R, Raine K, Moon J, Luo Y, Parnau J, Bhat SS, Gardner A, Corbett M, Brooks D, Thomas P, Parkinson-Lawrence E, Porteous ME, Warner JP, Sanderson T, Pearson P, Simensen RJ, Skinner C, Hoganson G, Superneau D, Wooster R, Bobrow M, Turner G, Stevenson RE, Schwartz CE, Futreal PA, Srivastava AK, Stratton MR, Gecz J (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39:1127–1133. doi: 10.1038/ng2100 PubMedCentralPubMedCrossRefGoogle Scholar
  191. 191.
    Laumonnier F, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, Briault S, Fryns JP, Hamel B, Chelly J, Ropers HH, Ronce N, Blesson S, Moraine C, Gecz J, Raynaud M (2010) Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 15:767–776. doi: 10.1038/mp.2009.14 PubMedCrossRefGoogle Scholar
  192. 192.
    Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay N, Miller R, Tossell J, Bakalar J, Inoff-Germain G, Gochman P, Long R, Rapoport JL, Rouleau GA (2011) A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol Psychiatry 16:238–239. doi: 10.1038/mp.2010.59 PubMedCentralPubMedCrossRefGoogle Scholar
  193. 193.
    Lynch SA, Nguyen LS, Ng LY, Waldron M, McDonald D, Gecz J (2012) Broadening the phenotype associated with mutations in UPF3B: two further cases with renal dysplasia and variable developmental delay. Eur J Med Genet 55:476–479. doi: 10.1016/j.ejmg.2012.03.010 PubMedCrossRefGoogle Scholar
  194. 194.
    Xu X, Zhang L, Tong P, Xun G, Su W, Xiong Z, Zhu T, Zheng Y, Luo S, Pan Y, Xia K, Hu Z (2013) Exome sequencing identifies UPF3B as the causative gene for a Chinese non-syndrome mental retardation pedigree. Clin Genet 83:560–564. doi: 10.1111/cge.12014 PubMedCrossRefGoogle Scholar
  195. 195.
    Nguyen LS, Jolly L, Shoubridge C, Chan WK, Huang L, Laumonnier F, Raynaud M, Hackett A, Field M, Rodriguez J, Srivastava AK, Lee Y, Long R, Addington AM, Rapoport JL, Suren S, Hahn CN, Gamble J, Wilkinson MF, Corbett MA, Gecz J (2012) Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol Psychiatry 17:1103–1115. doi: 10.1038/mp.2011.163 PubMedCentralPubMedCrossRefGoogle Scholar
  196. 196.
    Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA 2nd, Wilkinson MF (2007) An alternative branch of the nonsense-mediated decay pathway. EMBO J 26:1820–1830. doi: 10.1038/sj.emboj.7601628 PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Nguyen LS, Kim HG, Rosenfeld JA, Shen Y, Gusella JF, Lacassie Y, Layman LC, Shaffer LG, Gecz J (2013) Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 22:1816–1825. doi: 10.1093/hmg/ddt035 PubMedCrossRefGoogle Scholar
  198. 198.
    Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Consortium on the Genetics of S, Group PS, Nimgaonkar VL, Go RC, Savage RM, Swerdlow NR, Gur RE, Braff DL, King MC, McClellan JM (2013) Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154:518–529. doi: 10.1016/j.cell.2013.06.049 CrossRefGoogle Scholar
  199. 199.
    Liu C, Karam R, Zhou Y, Su F, Ji Y, Li G, Xu G, Lu L, Wang C, Song M, Zhu J, Wang Y, Zhao Y, Foo WC, Zuo M, Valasek MA, Javle M, Wilkinson MF, Lu Y (2014) The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 20:596–598. doi: 10.1038/nm.3548 PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA, Jolley JD, Cvejic A, Kostadima M, Bertone P, Breuning MH, Debili N, Deloukas P, Favier R, Fiedler J, Hobbs CM, Huang N, Hurles ME, Kiddle G, Krapels I, Nurden P, Ruivenkamp CA, Sambrook JG, Smith K, Stemple DL, Strauss G, Thys C, van Geet C, Newbury-Ecob R, Ouwehand WH, Ghevaert C (2012) Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 44(435–439):S431–S432. doi: 10.1038/ng.1083 Google Scholar
  201. 201.
    Greenhalgh KL, Howell RT, Bottani A, Ancliff PJ, Brunner HG, Verschuuren-Bemelmans CC, Vernon E, Brown KW, Newbury-Ecob RA (2002) Thrombocytopenia-absent radius syndrome: a clinical genetic study. J Med Genet 39:876–881PubMedCentralPubMedCrossRefGoogle Scholar
  202. 202.
    Richieri-Costa A, Pereira SC (1992) Short stature, Robin sequence, cleft mandible, pre/postaxial hand anomalies, and clubfoot: a new autosomal recessive syndrome. Am J Med Genet 42:681–687. doi: 10.1002/ajmg.1320420511 PubMedCrossRefGoogle Scholar
  203. 203.
    Favaro FP, Alvizi L, Zechi-Ceide RM, Bertola D, Felix TM, de Souza J, Raskin S, Twigg SR, Weiner AM, Armas P, Margarit E, Calcaterra NB, Andersen GR, McGowan SJ, Wilkie AO, Richieri-Costa A, de Almeida ML, Passos-Bueno MR (2014) A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects. Am J Hum Genet 94:120–128. doi: 10.1016/j.ajhg.2013.11.020 PubMedCentralPubMedCrossRefGoogle Scholar
  204. 204.
    Culbertson MR (1999) RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet 15:74–80PubMedCrossRefGoogle Scholar
  205. 205.
    Peltz SW, Morsy M, Welch EM, Jacobson A (2013) Ataluren as an agent for therapeutic nonsense suppression. Annu Rev Med 64:407–425. doi: 10.1146/annurev-med-120611-144851 PubMedCentralPubMedCrossRefGoogle Scholar
  206. 206.
    Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047. doi: 10.1002/humu.20763 PubMedCrossRefGoogle Scholar
  207. 207.
    Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE (2010) NMD: RNA biology meets human genetic medicine. Biochem J 430:365–377. doi: 10.1042/BJ20100699 PubMedCrossRefGoogle Scholar
  208. 208.
    Hall GW, Thein S (1994) Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: a mechanism for the phenotype of dominant beta-thalassemia. Blood 83:2031–2037PubMedGoogle Scholar
  209. 209.
    Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE (2004) Nonsense-mediated decay approaches the clinic. Nat Genet 36:801–808. doi: 10.1038/ng1403 PubMedCrossRefGoogle Scholar
  210. 210.
    Kerr TP, Sewry CA, Robb SA, Roberts RG (2001) Long mutant dystrophins and variable phenotypes: evasion of nonsense-mediated decay? Hum Genet 109:402–407. doi: 10.1007/s004390100598 PubMedCrossRefGoogle Scholar
  211. 211.
    Kerem E (2004) Pharmacologic therapy for stop mutations: how much CFTR activity is enough? Curr Opin Pulm Med 10:547–552PubMedCrossRefGoogle Scholar
  212. 212.
    Hermann T (2007) Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 64:1841–1852. doi: 10.1007/s00018-007-7034-x PubMedCrossRefGoogle Scholar
  213. 213.
    Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, Tousson A, Clancy JP, Sorscher EJ (1997) Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 3:1280–1284PubMedCrossRefGoogle Scholar
  214. 214.
    Kovesi TA, Swartz R, MacDonald N (1998) Transient renal failure due to simultaneous ibuprofen and aminoglycoside therapy in children with cystic fibrosis. N Engl J Med 338:65–66. doi: 10.1056/NEJM199801013380115 PubMedCrossRefGoogle Scholar
  215. 215.
    Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, Wilde RG, Karp G, Takasugi J, Chen G, Jones S, Ren H, Moon YC, Corson D, Turpoff AA, Campbell JA, Conn MM, Khan A, Almstead NG, Hedrick J, Mollin A, Risher N, Weetall M, Yeh S, Branstrom AA, Colacino JM, Babiak J, Ju WD, Hirawat S, Northcutt VJ, Miller LL, Spatrick P, He F, Kawana M, Feng H, Jacobson A, Peltz SW, Sweeney HL (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91. doi: 10.1038/nature05756 PubMedCrossRefGoogle Scholar
  216. 216.
    Auld DS, Thorne N, Maguire WF, Inglese J (2009) Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc Natl Acad Sci USA 106:3585–3590. doi: 10.1073/pnas.0813345106 PubMedCentralPubMedCrossRefGoogle Scholar
  217. 217.
    McElroy SP, Nomura T, Torrie LS, Warbrick E, Gartner U, Wood G, McLean WH (2013) A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. PLoS Biol 11:e1001593. doi: 10.1371/journal.pbio.1001593 PubMedCentralPubMedCrossRefGoogle Scholar
  218. 218.
    Chang JC, Kan YW (1979) Beta 0 thalassemia, a nonsense mutation in man. Proc Natl Acad Sci USA 76:2886–2889PubMedCentralPubMedCrossRefGoogle Scholar
  219. 219.
    Moriarty PM, Reddy CC, Maquat LE (1998) Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol Cell Biol 18:2932–2939PubMedCentralPubMedCrossRefGoogle Scholar
  220. 220.
    Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PJ (2015) Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res 43:309–323. doi: 10.1093/nar/gku1258 PubMedCentralPubMedCrossRefGoogle Scholar
  221. 221.
    Jones RB, Wang F, Luo Y, Yu C, Jin C, Suzuki T, Kan M, McKeehan WL (2001) The nonsense-mediated decay pathway and mutually exclusive expression of alternatively spliced FGFR2IIIb and -IIIc mRNAs. J Biol Chem 276:4158–4167. doi: 10.1074/jbc.M006151200 PubMedCrossRefGoogle Scholar
  222. 222.
    Sharma K, D’Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8:1583–1594. doi: 10.1016/j.celrep.2014.07.036 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institute for GeneticsUniversity of CologneCologneGermany

Personalised recommendations