Cellular and Molecular Life Sciences

, Volume 72, Issue 23, pp 4445–4460 | Cite as

Pharmacologic overview of Withania somnifera, the Indian Ginseng

Review

Abstract

Withania somnifera, also called ‘Indian ginseng’, is an important medicinal plant of the Indian subcontinent. It is widely used, singly or in combination, with other herbs against many ailments in Indian Systems of Medicine since time immemorial. Withania somnifera contains a spectrum of diverse phytochemicals enabling it to have a broad range of biological implications. In preclinical studies, it has shown anti-microbial, anti-inflammatory, anti-tumor, anti-stress, neuroprotective, cardioprotective, and anti-diabetic properties. Additionally, it has demonstrated the ability to reduce reactive oxygen species, modulate mitochondrial function, regulate apoptosis, and reduce inflammation and enhance endothelial function. In view of these pharmacologic properties, W. somnifera is a potential drug candidate to treat various clinical conditions, particularly related to the nervous system. In this review, we summarize the pharmacologic characteristics and discuss the mechanisms of action and potential therapeutic applications of the plant and its active constituents.

Keywords

Withania somnifera Anti-bacterial Anti-inflammatory Anti-arthritic Anti-cancer Cardio-protective Anti-diabetic Anti-stress Parkinson’s disease Alzheimer’s disease Stroke hypoxia 

Abbreviations

TNF-α

Tumor necrosis factor-α

IL-1β

Interleukin-1β

NFκ-β

Nuclear factor kappa-β

NO

Nitric oxide

ROS

Reactive oxygen species

PARP-1

Poly(ADP-ribose) polymerase-1

pMCAO

Permanent middle cerebral artery occlusion

GFAP

Glial fibrillary acidic protein

6OHDA

6-hydroxydopamine

Notes

Acknowledgments

Dr. Ahmad’s work was partly supported by Ramalingaswamy Fellowship of Department of Biotechnology and financial assistance (MLP6009) as well as logistic support from Council for Scientific and Industrial Research.   Mr. Dar is thankful to University Grants Commission, India for Ph.D. research fellowship. The contents do not represent any governmental views of India. (Institutional publication number of this article is IIIM/1823/2015).

Compliance with ethical standards

Conflict of interest

Authors do not have any conflict of interest.

References

  1. 1.
    Dhuley JN (1998) Effect of ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 60:173–178PubMedCrossRefGoogle Scholar
  2. 2.
    Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50:69–76PubMedCrossRefGoogle Scholar
  3. 3.
    Hepper FN (1991) Old World Withania (Solanaceae): a taxonomic review and key to the species. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens Kew and Linnean Society of London, LondonGoogle Scholar
  4. 4.
    Purdie RW, Symon DE, Haegi L (1982) Solanaceae. Flora Aust 29:184Google Scholar
  5. 5.
    Van Wyk B-E, Wink M (2004) Medicinal plants of the world. Briza Publications, PretoriaGoogle Scholar
  6. 6.
    Uddin Q, Samiulla L, Singh V, Jamil S (2012) Phytochemical and pharmacological profile of Withania somnifera dunal: a review. J Appl Pharm Sci 02(01):170–175Google Scholar
  7. 7.
    Singh N, Bhalla M, de Jager P, Gilca M (2011) An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 8(S):208–213PubMedCentralPubMedGoogle Scholar
  8. 8.
    Changhadi GS (1938) Ashwagandharishta—Rastantra Sar Evam Sidhyaprayog Sangrah. Krishna-Gopal Ayurveda Bhawan (Dharmarth Trust), Nagpur, pp 743–774Google Scholar
  9. 9.
    Sharma PV (1999) Ashwagandha. Dravyaguna Vijana, Chaukhambha Viashwabharti Varanasi, pp 763–765Google Scholar
  10. 10.
    Bhandari CR (1970) Ashwagandha (Withania somnifera) Vanaushadhi Chandroday (An Encyclopedia of Indian Herbs), vol 1. CS Series, Varanasi Vidyavilas Press, Varanasi, India, pp 96–97Google Scholar
  11. 11.
    Basu KA (1935) Withania somnifera, Indian medicinal plants, 2nd edn. IIIrd Lalit Mohan Basu, Allahabad, pp 1774–1776Google Scholar
  12. 12.
    Mishra B (2004) Ashwagandha—Bhavprakash Nigantu (Indian Materia Medica). Varanasi, Chaukhambha Bharti Academy, pp 393–394Google Scholar
  13. 13.
    Sharma S, Dahanukar S, Karandikar S (1985) Effects of long-term administration of the roots of ashwagandha and shatavari in rats. Indian Drugs 22:133Google Scholar
  14. 14.
    Machiah DK, Girish K, Gowda TV (2006) A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 143:158–161PubMedCrossRefGoogle Scholar
  15. 15.
    Machiah DK, Gowda TV (2006) Purification of a post-synaptic neurotoxic phospholipase A 2 from Naja naja venom and its inhibition by a glycoprotein from Withania somnifera. Biochimie 88:701–710PubMedCrossRefGoogle Scholar
  16. 16.
    Agarwal R, Diwanay S, Patki P, Patwardhan B (1999) Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67:27–35PubMedCrossRefGoogle Scholar
  17. 17.
    Ali M, Shuaib M, Ansari SH (1997) Withanolides from the stem bark of Withania somnifera. Phytochemistry 44:1163–1168CrossRefGoogle Scholar
  18. 18.
    Ghani N (1920) Khazain-ul-Adviyah, vol I. Munshi Nawal Kishore, Lucknow, pp 230–231Google Scholar
  19. 19.
    Kabiruddin M (1955) Makhzan-ul-Mufradat. Nadeem University Printers, Lahore, pp 75–76Google Scholar
  20. 20.
    Nadkarni KM (1982) Indian Materia Medica, 3rd edn, vol I. Popular Prakashan Pvt Ltd, Bombay, pp 1292–1294Google Scholar
  21. 21.
    Tiwari R, Chakraborty S, Saminathan M, Dhama K, Singh SV (2014) Ashwagandha (Withania somnifera): role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: a review. J Biol Sci 14(2):77–94CrossRefGoogle Scholar
  22. 22.
    Ven Murthy M, Ranjekar PK, Ramassamy C, Deshpande M (2010) Scientific basis for the use of Indian Ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Cent Nerv Syst Agents Med Chem 10:238–246PubMedCrossRefGoogle Scholar
  23. 23.
    Seenivasagam R, Sathiyamoorthy S, Hemavathi K (2011) Therapeutic impacts of Indian and Korean ginseng on human beings—a review. Int J Immunol Stud 1:297–317CrossRefGoogle Scholar
  24. 24.
    Grandhi A, Mujumdar AM, Patwardhan B (1994) A comparative pharmacological investigation of Ashwagandha and Ginseng. J Ethnopharmacol 44:131–135PubMedCrossRefGoogle Scholar
  25. 25.
    Kaur K, Rani G, Widodo N, Nagpal A, Taira K et al (2004) Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food Chem Toxicol 42:2015–2020PubMedCrossRefGoogle Scholar
  26. 26.
    Chopra A, Lavin P, Patwardhan B, Chitre D (2004) A 32-week randomized, placebo-controlled clinical evaluation of RA-11, an Ayurvedic drug, on osteoarthritis of the knees. JCR J Clin Rheumatol 10:236–245PubMedCrossRefGoogle Scholar
  27. 27.
    Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393PubMedCrossRefGoogle Scholar
  28. 28.
    Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346PubMedGoogle Scholar
  29. 29.
    Matsuda H, Murakami T, Kishi A, Yoshikawa M (2001) Structures of withanolides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9:1499–1507PubMedCrossRefGoogle Scholar
  30. 30.
    Singh G, Sharma P, Dudhe R, Singh S (2010) Biological activities of Withania somnifera. Ann Biol Res 1:56–63Google Scholar
  31. 31.
    Bhattacharya SK, Goel RK, Kaur R, Ghosal S (1987) Anti-stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phytother Res 1:32–37CrossRefGoogle Scholar
  32. 32.
    Ghosal S, Kaur R, Srivastava R (1988) Sito-indosides IX and X, two new glycowithanolides from Withania somnifera. Indian J Nat Prod 4:12–13Google Scholar
  33. 33.
    Majumdar D (1955) Withania somnifera Dunal, Part II. Alkaloidal constituents and their chemical characterization. Indian J Pharm 17:158–161Google Scholar
  34. 34.
    Praveen N, Murthy H (2010) Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol Plant 32:1017–1022CrossRefGoogle Scholar
  35. 35.
    Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS et al (2008) Withanolides from Withania somnifera roots. Phytochemistry 69:1000–1004PubMedCrossRefGoogle Scholar
  36. 36.
    Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P et al (2006) Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera⊥. J Nat Prod 69:1790–1792PubMedCrossRefGoogle Scholar
  37. 37.
    Anjaneyulu A, Rao D, Lequesne P (1998) Withanolides, biologically active natural steroidal lactones. Struct Chem Part F 20:135CrossRefGoogle Scholar
  38. 38.
    Kirson I, Glotter E, Abraham A, Lavie D (1970) Constituents of Withania somnifera dun—XI: the structure of three new withanolides. Tetrahedron 26:2209–2219CrossRefGoogle Scholar
  39. 39.
    Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun. III. The side chain of withaferin A*, 1. J Org Chem 30:1774–1778CrossRefGoogle Scholar
  40. 40.
    Lavie D, Kashman Y, Glotter E (1966) Constituents of Withania somnifera dun—V: studies on some model steroidal epoxides. Tetrahedron 22:1103–1111CrossRefGoogle Scholar
  41. 41.
    Glotter E, Abraham A, Günzberg G, Kirson I (1977) Naturally occurring steroidal lactones with a 17α-oriented side chain. Structure of withanolide E and related compounds. J Chem Soc Perkin 1:341–346CrossRefGoogle Scholar
  42. 42.
    Kirson I, Glotter E, Lavie D, Abraham A (1971) Constituents of Withania somnifera Dun: part XII. The withanolides of an Indian chemotype. J Chem Soc 2032–2044Google Scholar
  43. 43.
    Dhalla NS, Sastry MS, Malhotra CL (1961) Chemical studies of the leaves of Withania somnifera. J Pharm Sci 50:876–877PubMedCrossRefGoogle Scholar
  44. 44.
    Pramanick S, Roy A, Ghosh S, Majumder HK, Mukhopadhyay S (2008) Withanolide Z, a new chlorinated withanolide from Withania somnifera. Planta Med 74:1745–1748PubMedCrossRefGoogle Scholar
  45. 45.
    Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74:125–132PubMedCrossRefGoogle Scholar
  46. 46.
    Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59:841–849CrossRefGoogle Scholar
  47. 47.
    Menssen H, Stapel G (1973) Uber ein C28-Steroidlacton aus der Wurzel von Withania Somnifera. Plant MedGoogle Scholar
  48. 48.
    Abou-Douh AM (2002) New withanolides and other constituents from the fruit of Withania somnifera. Arch Pharm 335(6):267–276CrossRefGoogle Scholar
  49. 49.
    Kundu AB, Mukherjee A, Dey A (1976) New Withanolide from seeds of Withania-somnifera dunal. Indian J Chem 14:434–435Google Scholar
  50. 50.
    Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60:3109–3121CrossRefGoogle Scholar
  51. 51.
    Xu Y-M, Marron MT, Seddon E, McLaughlin SP, Ray DT et al (2009) 2, 3-Dihydrowithaferin A-3β-O-sulfate, a new potential prodrug of withaferin A from aeroponically grown Withania somnifera. Bioorg Med Chem 17:2210–2214PubMedCrossRefGoogle Scholar
  52. 52.
    Khan F, Saeed M, Alam M, Chaudhry A (1993) Biological studies of indigenous medicinal plants III. Phytochemical and antimicrobial studies on the non-alkaloidal constituents of some solanaceous fruits. Eczacilik Fakultesi Dergisi-Gazi Universitesi 10:105Google Scholar
  53. 53.
    Prabu PC, Panchapakesan S, Raj CD (2013) Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withania somnifera roots in Wistar rats. Phytother Res 27:1169–1178PubMedCrossRefGoogle Scholar
  54. 54.
    Prabu PC, Panchapakesan S (2015) Prenatal developmental toxicity evaluation of Withania somnifera root extract in Wistar rats. Drug Chem Toxicol 38:50–56PubMedCrossRefGoogle Scholar
  55. 55.
    Sharada A, Solomon FE, Devi PU (1993) Toxicity of Withania somnifera root extract in rats and mice. Pharm Biol 31:205–212CrossRefGoogle Scholar
  56. 56.
    Patil D, Gautam M, Mishra S, Karupothula S, Gairola S et al (2013) Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal 80:203–212PubMedCrossRefGoogle Scholar
  57. 57.
    Thaiparambil JT, Bender L, Ganesh T, Kline E, Patel P et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129:2744–2755PubMedCrossRefGoogle Scholar
  58. 58.
    Dahikar PR, Kumar N, Sahni Y (2012) Pharmacokinetics of Withania somnifera (ashwagandha) in healthy buffalo calves. Buffalo Bull 31:219Google Scholar
  59. 59.
    Sumanth M, Nedunuri S (2014) Comparison of bioavailability and bioequivalence of herbal anxiolytic drugs with marketed drug alprazolam. World J Pharm Res 3:1358–1366Google Scholar
  60. 60.
    Bisht P, Rawat V (2014) Antibacterial activity of Withania somnifera against Gram-positive isolates from pus samples. Ayu 35:330PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Singh G, Kumar P (2011) Evaluation of antimicrobial efficacy of flavonoids of Withania somnifera L. Indian J Pharm Sci 73:473PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH et al (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 12:175PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Mwitari PG, Ayeka PA, Ondicho J, Matu EN, Bii CC (2013) Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus. PLoS One 8(6):e65619PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Owais M, Sharad K, Shehbaz A, Saleemuddin M (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12:229–235PubMedCrossRefGoogle Scholar
  65. 65.
    Arora S, Dhillon S, Rani G, Nagpal A (2004) The in vitro antibacterial/synergistic activities of Withania somnifera extracts. Fitoterapia 75:385–388PubMedCrossRefGoogle Scholar
  66. 66.
    Pandit S, Chang K-W, Jeon J-G (2013) Effects of Withania somnifera on the growth and virulence properties of Streptococcus mutans and Streptococcus sobrinus at sub-MIC levels. Anaerobe 19:1–8PubMedCrossRefGoogle Scholar
  67. 67.
    Chandrasekaran S, Dayakar A, Veronica J, Sundar S, Maurya R (2013) An in vitro study of apoptotic like death in Leishmania donovani promastigotes by withanolides. Parasitol Int 62:253–261PubMedCrossRefGoogle Scholar
  68. 68.
    Grover A, Katiyar SP, Jeyakanthan J, Dubey VK, Sundar D (2012) Blocking Protein kinase C signaling pathway: mechanistic insights into the anti-leishmanial activity of prospective herbal drugs from Withania somnifera. BMC Genom 13:S20CrossRefGoogle Scholar
  69. 69.
    El-On J, Ozer L, Gopas J, Sneir R, Enav H et al (2009) Antileishmanial activity in Israeli plants. Ann Trop Med Parasitol 103:297–306PubMedCrossRefGoogle Scholar
  70. 70.
    Sachdeva H, Sehgal R, Kaur S (2013) Studies on the protective and immunomodulatory efficacy of Withania somnifera along with cisplatin against experimental visceral leishmaniasis. Parasitol Res 112:2269–2280PubMedCrossRefGoogle Scholar
  71. 71.
    Dikasso D, Makonnen E, Debella A, Abebe D, Urga K et al (2006) Anti-malarial activity of Withania somnifera L. Dunal extracts in mice. Ethiop Med J 44:279–285PubMedGoogle Scholar
  72. 72.
    Muregi FW, Ishih A, Suzuki T, Kino H, Amano T et al (2007) In Vivo antimalarial activity of aqueous extracts from Kenyan medicinal plants and their Chloroquine (CQ) potentiation effects against a blood-induced CQ-resistant rodent parasite in mice. Phytother Res 21:337–343PubMedCrossRefGoogle Scholar
  73. 73.
    Girish K, Machiah K, Ushanandini S, Harish Kumar K, Nagaraju S et al (2006) Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J Basic Microbiol 46:365–374PubMedCrossRefGoogle Scholar
  74. 74.
    Pawar P, Gilda S, Sharma S, Jagtap S, Paradkar A et al (2011) Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced inflammatory bowel disease. BMC Complement Altern Med 11:34PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Minhas U, Minz R, Bhatnagar A (2011) Prophylactic effect of Withania somnifera on inflammation in a non-autoimmune prone murine model of lupus. Drug Discov Ther 5:195–201PubMedCrossRefGoogle Scholar
  76. 76.
    Minhas U, Minz R, Das P, Bhatnagar A (2012) Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology 20:195–205PubMedCrossRefGoogle Scholar
  77. 77.
    Ku SK, Han MS, Bae JS (2014) Withaferin A is an inhibitor of endothelial protein C receptor shedding in vitro and in vivo. Food Chem Toxicol 68:23–29PubMedCrossRefGoogle Scholar
  78. 78.
    Lee W, Kim TH, Ku SK, Min KJ, Lee HS et al (2012) Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicol Appl Pharmacol 262:91–98PubMedCrossRefGoogle Scholar
  79. 79.
    Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J et al (2007) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264PubMedCrossRefGoogle Scholar
  80. 80.
    Oh JH, Kwon TK (2009) Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells. Int Immunopharmacol 9:614–619PubMedCrossRefGoogle Scholar
  81. 81.
    Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W (2014) Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKbeta. Biochem Pharmacol 91:501–509PubMedCrossRefGoogle Scholar
  82. 82.
    Maitra R, Porter MA, Huang S, Gilmour BP (2009) Inhibition of NFkappaB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. J Inflamm (Lond) 6:15CrossRefGoogle Scholar
  83. 83.
    Sumantran VN, Kulkarni A, Boddul S, Chinchwade T, Koppikar SJ et al (2007) Chondroprotective potential of root extracts of Withania somnifera in osteoarthritis. J Biosci 32:299–307PubMedCrossRefGoogle Scholar
  84. 84.
    Sumantran VN, Chandwaskar R, Joshi AK, Boddul S, Patwardhan B et al (2008) The relationship between chondroprotective and antiinflammatory effects of Withania somnifera root and glucosamine sulphate on human osteoarthritic cartilage in vitro. Phytother Res 22:1342–1348PubMedCrossRefGoogle Scholar
  85. 85.
    Singh D, Aggarwal A, Maurya R, Naik S (2007) Withania somnifera inhibits NF-kappaB and AP-1 transcription factors in human peripheral blood and synovial fluid mononuclear cells. Phytother Res 21:905–913PubMedCrossRefGoogle Scholar
  86. 86.
    Rasool M, Varalakshmi P (2007) Protective effect of Withania somnifera root powder in relation to lipid peroxidation, antioxidant status, glycoproteins and bone collagen on adjuvant-induced arthritis in rats. Fundam Clin Pharmacol 21:157–164PubMedCrossRefGoogle Scholar
  87. 87.
    Khan MA, Subramaneyaan M, Arora VK, Banerjee BD, Ahmed RS (2015) Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J Complement Integr Med 12:117–125PubMedCrossRefGoogle Scholar
  88. 88.
    Gupta A, Singh S (2014) Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharm Biol 52:308–320PubMedCrossRefGoogle Scholar
  89. 89.
    Dey D, Chaskar S, Athavale N, Chitre D (2014) Inhibition of LPS-induced TNF-alpha and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238. Phytother Res 28:1479–1485PubMedCrossRefGoogle Scholar
  90. 90.
    Ganesan K, Sehgal PK, Mandal AB, Sayeed S (2011) Protective effect of Withania somnifera and Cardiospermum halicacabum extracts against collagenolytic degradation of collagen. Appl Biochem Biotechnol 165:1075–1091PubMedCrossRefGoogle Scholar
  91. 91.
    Kim JH, Kim SJ (2014) Overexpression of microRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes. J Pharmacol Sci 125:83–90PubMedCrossRefGoogle Scholar
  92. 92.
    Yu SM, Kim SJ (2013) Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3 K/Akt, p38, and JNK pathways in rabbit articular chondrocytes. Exp Cell Res 319:2822–2834PubMedCrossRefGoogle Scholar
  93. 93.
    Yu SM, Kim SJ (2014) Withaferin A-caused production of intracellular reactive oxygen species modulates apoptosis via PI3K/Akt and JNKinase in rabbit articular chondrocytes. J Korean Med Sci 29:1042–1053PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Vaishnavi K, Saxena N, Shah N, Singh R, Manjunath K et al (2012) Differential activities of the two closely related withanolides, Withaferin A and Withanone: bioinformatics and experimental evidences. PLoS One 7:e44419PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Widodo N, Takagi Y, Shrestha BG, Ishii T, Kaul SC et al (2008) Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses. Cancer Lett 262:37–47PubMedCrossRefGoogle Scholar
  96. 96.
    Mayola E, Gallerne C, Esposti DD, Martel C, Pervaiz S et al (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16:1014–1027PubMedCrossRefGoogle Scholar
  97. 97.
    Malik F, Kumar A, Bhushan S, Khan S, Bhatia A et al (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12:2115–2133PubMedCrossRefGoogle Scholar
  98. 98.
    Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK (2011) Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol In Vitro 25:1803–1810PubMedCrossRefGoogle Scholar
  99. 99.
    Hahm ER, Lee J, Singh SV (2014) Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Mol Carcinog 53:907–916PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK (2011) Withaferin A enhances radiation-induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl-2 downregulation and Akt inhibition. Chem Biol Interact 190:9–15PubMedCrossRefGoogle Scholar
  101. 101.
    Choi MJ, Park EJ, Min KJ, Park JW, Kwon TK (2011) Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro 25:692–698PubMedCrossRefGoogle Scholar
  102. 102.
    Kim SH, Singh SV (2014) Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prev Res (Phila) 7:738–747CrossRefGoogle Scholar
  103. 103.
    Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA et al (2013) Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. J Natl Cancer Inst 105:1111–1122PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S et al (2011) Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 6:e23354PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Hahm ER, Singh SV (2013) Autophagy fails to alter withaferin A-mediated lethality in human breast cancer cells. Curr Cancer Drug Targets 13:640–650PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Lee J, Sehrawat A, Singh SV (2012) Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat 136:45–56PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Stan SD, Zeng Y, Singh SV (2008) Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer 60(Suppl 1):51–60PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Nagalingam A, Kuppusamy P, Singh SV, Sharma D, Saxena NK (2014) Mechanistic elucidation of the antitumor properties of withaferin a in breast cancer. Cancer Res 74:2617–2629PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Lee JH, Kim JE, Jang YJ, Lee CC, Lim TG et al (2015) Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K. Mol Carcinog. doi:10.1002/mc.22302 Google Scholar
  110. 110.
    Antony ML, Lee J, Hahm ER, Kim SH, Marcus AI et al (2014) Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of beta-tubulin. J Biol Chem 289:1852–1865PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Mathur R, Gupta SK, Singh N, Mathur S, Kochupillai V et al (2006) Evaluation of the effect of Withania somnifera root extracts on cell cycle and angiogenesis. J Ethnopharmacol 105:336–341PubMedCrossRefGoogle Scholar
  112. 112.
    Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122PubMedCrossRefGoogle Scholar
  113. 113.
    Yang H, Wang Y, Cheryan VT, Wu W, Cui CQ et al (2012) Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One 7:e41214PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Um HJ, Min KJ, Kim DE, Kwon TK (2012) Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun 427:24–29PubMedCrossRefGoogle Scholar
  115. 115.
    Das PK, Malhotra CL, Prasad K (1964) Cardiotonic activity of Ashwagandhine and Ashwagandhinine, two alkaloids from Withania ashwagandha, Kaul. Arch Int Pharmacodyn Ther 150:356–362PubMedGoogle Scholar
  116. 116.
    Ojha SK, Arya DS (2009) Withania somnifera Dunal (Ashwagandha): a promising remedy for cardiovascular diseases. World J Med Sci 4:156–158Google Scholar
  117. 117.
    Prince PSM, Suman S, Devika PT, Vaithianathan M (2008) Cardioprotective effect of ‘Marutham’a polyherbal formulation on isoproterenol induced myocardial infarction in Wistar rats. Fitoterapia 79:433–438PubMedCrossRefGoogle Scholar
  118. 118.
    Thirunavukkarasu M, Penumathsa S, Juhasz B, Zhan L, Bagchi M et al (2006) Enhanced cardiovascular function and energy level by a novel chromium (III)-supplement. BioFactors 27:53–67PubMedCrossRefGoogle Scholar
  119. 119.
    Mohan IK, Kumar KV, Naidu MU, Khan M, Sundaram C (2006) Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice. Phytomedicine 13:222–229PubMedCrossRefGoogle Scholar
  120. 120.
    Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM et al (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med 56:102–111PubMedCrossRefGoogle Scholar
  121. 121.
    Aphale AA, Chhibba AD, Kumbhakarna NR, Mateenuddin M, Dahat SH (1998) Subacute toxicity study of the combination of ginseng (Panax ginseng) and ashwagandha (Withania somnifera) in rats: a safety assessment. Indian J Physiol Pharmacol 42:299–302PubMedGoogle Scholar
  122. 122.
    Mohanty IR, Arya DS, Gupta SK (2008) Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin Nutr 27:635–642PubMedCrossRefGoogle Scholar
  123. 123.
    Gupta SK, Mohanty I, Talwar KK, Dinda A, Joshi S et al (2004) Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem 260:39–47PubMedCrossRefGoogle Scholar
  124. 124.
    Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S et al (2004) Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic Clin Pharmacol Toxicol 94:184–190PubMedCrossRefGoogle Scholar
  125. 125.
    Ashour OM, Abdel-Naim AB, Abdallah HM, Nagy AA, Mohamadin AM et al (2012) Evaluation of the potential cardioprotective activity of some Saudi plants against doxorubicin toxicity. Z Naturforsch C 67:297–307PubMedCrossRefGoogle Scholar
  126. 126.
    Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73PubMedCrossRefGoogle Scholar
  127. 127.
    Gauttam VK, Kalia AN (2013) Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. J Adv Pharm Technol Res 4:108–117PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Mutalik S, Chetana M, Sulochana B, Devi PU, Udupa N (2005) Effect of Dianex, a herbal formulation on experimentally induced diabetes mellitus. Phytother Res 19:409–415PubMedCrossRefGoogle Scholar
  129. 129.
    Bhattacharya SK, Satyan KS, Chakrabarti A (1997) Effect of Trasina, an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J Exp Biol 35:297–299PubMedGoogle Scholar
  130. 130.
    Andallu B, Radhika B (2000) Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol 38:607–609PubMedGoogle Scholar
  131. 131.
    Anwer T, Sharma M, Pillai KK, Iqbal M (2008) Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats. Basic Clin Pharmacol Toxicol 102:498–503PubMedCrossRefGoogle Scholar
  132. 132.
    Gorelick J, Rosenberg R, Smotrich A, Hanus L, Bernstein N (2015) Hypoglycemic activity of withanolides and elicitated Withania somnifera. PhytochemistryGoogle Scholar
  133. 133.
    Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Anbazhagan VR, Kim SC, Ganapathi A, Choi CW (2009) Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 10(5):2367–2382. doi:10.3390/ijms10052367 PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Udayakumar R, Kasthurirengan S, Vasudevan A, Mariashibu TS, Rayan JJ et al (2010) Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan-induced diabetic rats. Plant Foods Hum Nutr 65:91–98PubMedCrossRefGoogle Scholar
  135. 135.
    SoRelle JA, Itoh T, Peng H, Kanak MA, Sugimoto K et al (2013) Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation. Diabetologia 56:814–824PubMedCrossRefGoogle Scholar
  136. 136.
    Babu PV, Gokulakrishnan A, Dhandayuthabani R, Ameethkhan D, Kumar CV et al (2007) Protective effect of Withania somnifera (Solanaceae) on collagen glycation and cross-linking. Comp Biochem Physiol B Biochem Mol Biol 147:308–313PubMedCrossRefGoogle Scholar
  137. 137.
    Bhattacharya SK, Kumar A, Ghosal S (1995) Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 9:110–113CrossRefGoogle Scholar
  138. 138.
    Kaur P, Mathur S, Sharma M, Tiwari M, Srivastava KK et al (2001) A biologically active constituent of Withania somnifera (ashwagandha) with antistress activity. Indian J Clin Biochem 16:195–198PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Singh B, Saxena AK, Chandan BK, Gupta DK, Bhutani KK et al (2001) Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dun. Phytother Res 15:311–318PubMedCrossRefGoogle Scholar
  140. 140.
    Khan B, Ahmad SF, Bani S, Kaul A, Suri KA et al (2006) Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int Immunopharmacol 6:1394–1403PubMedCrossRefGoogle Scholar
  141. 141.
    Chandrasekhar K, Kapoor J, Anishetty S (2012) A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med 34:255–262PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Bhattacharya A, Muruganandam AV, Kumar V, Bhattacharya SK (2002) Effect of poly herbal formulation, EuMil, on neurochemical perturbations induced by chronic stress. Indian J Exp Biol 40:1161–1163PubMedGoogle Scholar
  143. 143.
    Muruganandam AV, Kumar V, Bhattacharya SK (2002) Effect of poly herbal formulation, EuMil, on chronic stress-induced homeostatic perturbations in rats. Indian J Exp Biol 40:1151–1160PubMedGoogle Scholar
  144. 144.
    Ramanathan M, Balaji B, Justin A (2011) Behavioural and neurochemical evaluation of Perment an herbal formulation in chronic unpredictable mild stress induced depressive model. Indian J Exp Biol 49:269–275PubMedGoogle Scholar
  145. 145.
    Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S (2000) Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 7:463–469PubMedCrossRefGoogle Scholar
  146. 146.
    Bhattacharya A, Ghosal S, Bhattacharya SK (2001) Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J Ethnopharmacol 74:1–6PubMedCrossRefGoogle Scholar
  147. 147.
    Durg S, Dhadde SB, Vandal R, Shivakumar BS, Charan CS (2015) Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: a systematic review and meta-analysis. J Pharm PharmacolGoogle Scholar
  148. 148.
    Wollen KA (2010) Alzheimer’s disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev 15(3):223–244PubMedGoogle Scholar
  149. 149.
    Singh RH, Narsimhamurthy K, Singh G (2008) Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology 9:369–374PubMedCrossRefGoogle Scholar
  150. 150.
    Kuboyama T, Tohda C, Komatsu K (2014) Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 37:892–897PubMedCrossRefGoogle Scholar
  151. 151.
    Konar A, Shah N, Singh R, Saxena N, Kaul SC et al (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6:e27265PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Kumar P, Singh R, Nazmi A, Lakhanpal D, Kataria H et al (2014) Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity. Biomed Res Int 2014:182029PubMedCentralPubMedGoogle Scholar
  153. 153.
    Bhattacharya SK, Satyan KS (1997) Experimental methods for evaluation of psychotropic agents in rodents: I-Anti-anxiety agents. Indian J Exp Biol 35:565–575PubMedGoogle Scholar
  154. 154.
    Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11:456–467PubMedCrossRefGoogle Scholar
  155. 155.
    Jain S, Shukla SD, Sharma K, Bhatnagar M (2001) Neuroprotective effects of Withania somnifera Dunn in hippocampal sub-regions of female albino rat. Phytother Res 15:544–548PubMedCrossRefGoogle Scholar
  156. 156.
    Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C et al (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo) 50:760–765CrossRefGoogle Scholar
  157. 157.
    Kuboyama T, Tohda C, Zhao J, Nakamura N, Hattori M et al (2002) Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. NeuroReport 13:1715–1720PubMedCrossRefGoogle Scholar
  158. 158.
    Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Abeta(25–35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426PubMedCrossRefGoogle Scholar
  159. 159.
    Kataria H, Wadhwa R, Kaul SC, Kaur G (2012) Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 7:e37080PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Parihar MS, Hemnani T (2003) Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci 28:121–128PubMedCrossRefGoogle Scholar
  161. 161.
    Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147PubMedCrossRefGoogle Scholar
  162. 162.
    Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M (2007) The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 12:473–481PubMedCrossRefGoogle Scholar
  163. 163.
    RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R et al (2009) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373PubMedCrossRefGoogle Scholar
  164. 164.
    Rajasankar S, Manivasagam T, Surendran S (2009) Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 454:11–15PubMedCrossRefGoogle Scholar
  165. 165.
    Manjunath MJ, Muralidhara (2015) Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. J Food Sci Technol 52:1971–1981PubMedCrossRefGoogle Scholar
  166. 166.
    Manjunath MJ, Muralidhara (2013) Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 13:43–56PubMedCrossRefGoogle Scholar
  167. 167.
    Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN et al (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39:2527–2536PubMedCrossRefGoogle Scholar
  168. 168.
    Prakash J, Yadav SK, Chouhan S, Singh SP (2013) Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem Res 38:972–980PubMedCrossRefGoogle Scholar
  169. 169.
    Pingali U, Pilli R, Fatima N (2014) Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharmacognosy Res 6:12–18PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 109:3510–3515PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Jayaprakasam B, Padmanabhan K, Nair MG (2010) Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res 24:859–863PubMedGoogle Scholar
  172. 172.
    Grover A, Shandilya A, Agrawal V, Bisaria VS, Sundar D (2012) Computational evidence to inhibition of human acetyl cholinesterase by withanolide a for Alzheimer treatment. J Biomol Struct Dyn 29:651–662PubMedCrossRefGoogle Scholar
  173. 173.
    Yadav CS, Kumar V, Suke SG, Ahmed RS, Mediratta PK et al (2010) Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera. Indian J Biochem Biophys 47:117–120PubMedGoogle Scholar
  174. 174.
    Ahmed ME, Javed H, Khan MM, Vaibhav K, Ahmad A et al (2013) Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 250:1067–1078PubMedCrossRefGoogle Scholar
  175. 175.
    Kurapati KR, Atluri VS, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8:e77624PubMedCentralPubMedCrossRefGoogle Scholar
  176. 176.
    Kurapati KR, Samikkannu T, Atluri VS, Kaftanovskaya E, Yndart A et al (2014) beta-Amyloid1-42, HIV-1Ba-L (clade B) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of ashwagandha (Withania somnifera) and its constituent Withanolide A. PLoS One 9:e112818PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Kumar S, Seal CJ, Howes MJ, Kite GC, Okello EJ (2010) In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and beta-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 24:1567–1574PubMedCrossRefGoogle Scholar
  178. 178.
    Chaudhary G, Sharma U, Jagannathan NR, Gupta YK (2003) Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol 30:399–404PubMedCrossRefGoogle Scholar
  179. 179.
    Raghavan A, Shah ZA (2014) Withania somnifera improves ischemic stroke outcomes by attenuating PARP1-AIF-mediated caspase-independent Apoptosis. Mol Neurobiol. doi:10.1007/s12035-014-8907-2 PubMedGoogle Scholar
  180. 180.
    Raghavan A, Shah ZA (2015) Withania somnifera: a pre-clinical study on neuroregenerative therapy for stroke. Neural Regen Res 10:183–185PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Baitharu I, Jain V, Deep SN, Hota KB, Hota SK et al (2013) Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol 145:431–441PubMedCrossRefGoogle Scholar
  182. 182.
    Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK et al (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9:e105311PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Nawab John Dar
    • 1
    • 2
    • 3
  • Abid Hamid
    • 2
    • 3
  • Muzamil Ahmad
    • 1
    • 3
  1. 1.Neuropharmacology LaboratoryIndian Institute of Integrative Medicine-CSIRSrinagarIndia
  2. 2.Cancer Pharmacology DivisionIndian Institute of Integrative Medicine-CSIRJammuIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)Indian Institute of Integrative Medicine-CSIRJammuIndia

Personalised recommendations