Cellular and Molecular Life Sciences

, Volume 72, Issue 19, pp 3637–3652 | Cite as

Airway hydration and COPD

Review

Abstract

Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (1) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (2) ciliary beating; and (3) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure.

Keywords

Airway surface liquid Cystic fibrosis CFTR ENaC Mucus Tobacco smoke 

Notes

Acknowledgments

We thank Ms. Temperance Rowell and Mr. Shawn Terrayah for critical reading of this manuscript, and our colleagues in the Marsico Lung Institute for their insight and useful discussion into CF/COPD over the years. This work was funded by NIH HL108927, HL1108723 and HL120100. Research reported in this publication was in part supported by NIH and the FDA Center for Tobacco Products (CTP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Food and Drug Administration.

Conflict of interest

A Ghosh has no conflict to declare, R. Tarran is a founder of Spyryx Biosciences and R.C. Boucher is a founder of Parion Sciences.

References

  1. 1.
    Mathers CD, Loncar D (2011) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11): e442. doi: 10.1371/journal.pmed.0030442 CrossRefGoogle Scholar
  2. 2.
    Global strategy for the diagnosis, management and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2014) The COPD guidelines per GOLD. Available from: www.goldcopd.org
  3. 3.
    Barnes PJ (2014) Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 35(1):71–86PubMedCrossRefGoogle Scholar
  4. 4.
    DeMeo DL, Silverman EK (2004) Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 59(3):259–264PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kim V, Criner GJ (2012) Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187(3):228–237PubMedCrossRefGoogle Scholar
  6. 6.
    Hogg JC et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350(26):2645–2653PubMedCrossRefGoogle Scholar
  7. 7.
    Tsui LC (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8(11):392–398PubMedCrossRefGoogle Scholar
  8. 8.
    Harris A, Argent BE (1993) The cystic fibrosis gene and its product CFTR. Semin Cell Biol 4(1):37–44PubMedCrossRefGoogle Scholar
  9. 9.
    Chmiel JF, Davis PB (2003) State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir Res 4:8PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Collawn JF, Matalon S (2014) CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol 307(12):L917–L923PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rab A et al (2013) Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 305(8):L530–L541PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chambers LA, Rollins BM, Tarran R (2007) Liquid movement across the surface epithelium of large airways. Respir Physiol Neurobiol 159(3):256–270PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ehre C, Ridley C, Thornton DJ (2014) Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol 52:136–145PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Boucher RC (2004) Relationship of airway epithelial ion transport to chronic bronchitis. Proc Am Thorac Soc 1(1):66–70PubMedCrossRefGoogle Scholar
  15. 15.
    Clunes LA et al (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 26(2):533–545PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lundback B et al (2003) Not 15 but 50% of smokers develop COPD?—report from the obstructive lung disease in Northern Sweden studies. Respir Med 97(2):115–122PubMedCrossRefGoogle Scholar
  17. 17.
    Mannino DM et al (2002) Chronic obstructive pulmonary disease surveillance—United States, 1971–2000. Respir Care 47(10):1184–1199PubMedGoogle Scholar
  18. 18.
    Peacock JL et al (2011) Outdoor air pollution and respiratory health in patients with COPD. Thorax 66(7):591–596PubMedCrossRefGoogle Scholar
  19. 19.
    Sunyer J (2001) Urban air pollution and chronic obstructive pulmonary disease: a review. Eur Respir J 17(5):1024–1033PubMedCrossRefGoogle Scholar
  20. 20.
    Kurmi OP et al (2010) COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 65(3):221–228PubMedCrossRefGoogle Scholar
  21. 21.
    Schikowski T et al (2013) Ambient air pollution: a cause of COPD? Eur Respir J 43(1):250–263PubMedCrossRefGoogle Scholar
  22. 22.
    Mannino DM, Buist AS (2007) Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589):765–773PubMedCrossRefGoogle Scholar
  23. 23.
    Salvi SS, Barnes PJ (2009) Chronic obstructive pulmonary disease in non-smokers. Lancet 374(9691):733–743PubMedCrossRefGoogle Scholar
  24. 24.
    Laurell CB, Eriksson S (2013) The electrophoretic alpha1-globulin pattern of serum in alpha1-antitrypsin deficiency. 1963. COPD 10(Suppl 1):3–8PubMedCrossRefGoogle Scholar
  25. 25.
    Zorzetto M et al (2008) SERPINA1 gene variants in individuals from the general population with reduced alpha1-antitrypsin concentrations. Clin Chem 54(8):1331–1338PubMedCrossRefGoogle Scholar
  26. 26.
    Stoller JK, Aboussouan LS (2005) Alpha1-antitrypsin deficiency. Lancet 365(9478):2225–2236PubMedCrossRefGoogle Scholar
  27. 27.
    Cox DW, Levison H (1988) Emphysema of early onset associated with a complete deficiency of alpha-1-antitrypsin (null homozygotes). Am Rev Respir Dis 137(2):371–375PubMedCrossRefGoogle Scholar
  28. 28.
    Brantly ML et al (1988) Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis 138(2):327–336PubMedCrossRefGoogle Scholar
  29. 29.
    Dowson LJ, Guest PJ, Stockley RA (2001) Longitudinal changes in physiological, radiological, and health status measurements in alpha(1)-antitrypsin deficiency and factors associated with decline. Am J Respir Crit Care Med 164(10 Pt 1):1805–1809PubMedCrossRefGoogle Scholar
  30. 30.
    Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58:157–170PubMedCrossRefGoogle Scholar
  31. 31.
    Mall MA, Hartl D (2014) CFTR: cystic fibrosis and beyond. Eur Respir J 44(4):1042–1054PubMedCrossRefGoogle Scholar
  32. 32.
    Smith A (1997) Pathogenesis of bacterial bronchitis in cystic fibrosis. Pediatr Infect Dis J 16(1):91–95 (discussion 95–96, 123–126) PubMedCrossRefGoogle Scholar
  33. 33.
    Maestrelli P et al (2001) Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164(10):S76–S80PubMedCrossRefGoogle Scholar
  34. 34.
    Thompson AB et al (1989) Intraluminal airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis 140(6):1527–1537PubMedCrossRefGoogle Scholar
  35. 35.
    Worlitzsch D et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435):709–721PubMedCrossRefGoogle Scholar
  37. 37.
    Hogg JC, Macklem PT, Thurlbeck WM (1968) Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 278(25):1355–1360PubMedCrossRefGoogle Scholar
  38. 38.
    Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109(5):571–577PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Antunes MB, Cohen NA (2007) Mucociliary clearance—a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol 7(1):5–10PubMedCrossRefGoogle Scholar
  40. 40.
    Ali M et al (2011) Analysis of the proteome of human airway epithelial secretions. Proteome Sci 9:4PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Pennington JE (1984) Respiratory tract infections: intrinsic risk factors. Am J Med 76(5A):34–41PubMedCrossRefGoogle Scholar
  42. 42.
    Rogan MP et al (2006) Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir Res 7:29PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Puchelle E et al (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3(8):726–733PubMedCrossRefGoogle Scholar
  44. 44.
    Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 70:459–486PubMedCrossRefGoogle Scholar
  45. 45.
    Randell SH, Boucher RC (2006) Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 35(1):20–28PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363(23):2233–2247PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Nadel JA, Davis B, Phipps RJ (1979) Control of mucus secretion and ion transport in airways. Annu Rev Physiol 41:369–381PubMedCrossRefGoogle Scholar
  48. 48.
    Tarran R et al (2001) The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118(2):223–236PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Tarran R et al (2001) The CF salt controversy: in vivo observations and therapeutic approaches. Mol Cell 8(1):149–158PubMedCrossRefGoogle Scholar
  50. 50.
    Kilburn KH (1967) Cilia and mucus transport as determinants of the response of lung to air pollutants. Arch Environ Health 14(1):77–91PubMedCrossRefGoogle Scholar
  51. 51.
    Schlesinger RB (1990) The interaction of inhaled toxicants with respiratory tract clearance mechanisms. Crit Rev Toxicol 20(4):257–286PubMedCrossRefGoogle Scholar
  52. 52.
    Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85PubMedCrossRefGoogle Scholar
  53. 53.
    Grotberg JB (2001) Respiratory fluid mechanics and transport processes. Annu Rev Biomed Eng 3:421–457PubMedCrossRefGoogle Scholar
  54. 54.
    Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68:543–561PubMedCrossRefGoogle Scholar
  55. 55.
    Button B et al (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337(6097):937–941PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Cao R et al (2012) Mapping the protein domain structures of the respiratory mucins: a mucin proteome coverage study. J Proteome Res 11(8):4013–4023PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Kesimer M et al (2013) Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol 6(2):379–392PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Henderson AG et al (2014) Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 124(7):3047–3060PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Prescott E, Lange P, Vestbo J (1995) Chronic mucus hypersecretion in COPD and death from pulmonary infection. Eur Respir J 8(8):1333–1338PubMedCrossRefGoogle Scholar
  60. 60.
    Rogers DF (1994) Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J 7(9):1690–1706PubMedCrossRefGoogle Scholar
  61. 61.
    Cohn L (2006) Mucus in chronic airway diseases: sorting out the sticky details. J Clin Invest 116(2):306–308PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Tyner JW et al (2006) Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest 116(2):309–321PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Atherton H et al (2003) Preliminary pharmacological characterisation of an interleukin-13-enhanced calcium-activated chloride conductance in the human airway epithelium. Naunyn Schmiedebergs Arch Pharmacol 367(2):214–217PubMedCrossRefGoogle Scholar
  64. 64.
    Roy MG et al (2014) Muc5b is required for airway defence. Nature 505(7483):412–416PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60PubMedCrossRefGoogle Scholar
  66. 66.
    Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512PubMedCrossRefGoogle Scholar
  67. 67.
    Forstner G (1995) Signal transduction, packaging and secretion of mucins. Annu Rev Physiol 57:585–605PubMedCrossRefGoogle Scholar
  68. 68.
    Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457PubMedCrossRefGoogle Scholar
  69. 69.
    Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86(1):245–278PubMedCrossRefGoogle Scholar
  70. 70.
    Abdullah LH et al (1996) P2u purinoceptor regulation of mucin secretion in SPOC1 cells, a goblet cell line from the airways. Biochem J 316(Pt 3):943–951PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Abdullah LH et al (1997) Protein kinase C and Ca2+ activation of mucin secretion in airway goblet cells. Am J Physiol 273(1 Pt 1):L201–L210PubMedGoogle Scholar
  72. 72.
    Quinton PM (2010) Role of epithelial HCO3(−) transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 299(6):C1222–C1233PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Verdugo P (1990) Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157–176PubMedCrossRefGoogle Scholar
  74. 74.
    Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35(1):116–129PubMedCrossRefGoogle Scholar
  75. 75.
    Vladar EK, Antic D, Axelrod JD (2009) Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb Perspect Biol 1(3):a002964PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    You Y et al (2004) Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 286(4):L650–L657PubMedCrossRefGoogle Scholar
  77. 77.
    Gomperts BN, Gong-Cooper X, Hackett BP (2004) Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci 117(Pt 8):1329–1337PubMedCrossRefGoogle Scholar
  78. 78.
    Ostrowski LE et al (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1(6):451–465PubMedCrossRefGoogle Scholar
  79. 79.
    Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400PubMedCrossRefGoogle Scholar
  80. 80.
    Davis CW, Lazarowski E (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 163(1–3):208–213PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Hayashi T et al (2005) ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium. Exp Physiol 90(4):535–544PubMedCrossRefGoogle Scholar
  82. 82.
    Korngreen A, Priel Z (1996) Purinergic stimulation of rabbit ciliated airway epithelia: control by multiple calcium sources. J Physiol 497(Pt 1):53–66PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9(3):262–267PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Lieb T et al (2002) Prolonged increase in ciliary beat frequency after short-term purinergic stimulation in human airway epithelial cells. J Physiol 538(Pt 2):633–646PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Jain B et al (1993) Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem Biophys Res Commun 191(1):83–88PubMedCrossRefGoogle Scholar
  86. 86.
    Jiao J et al (2011) Regulation of ciliary beat frequency by the nitric oxide signaling pathway in mouse nasal and tracheal epithelial cells. Exp Cell Res 317(17):2548–2553PubMedCrossRefGoogle Scholar
  87. 87.
    Li D et al (2000) Regulation of ciliary beat frequency by the nitric oxide-cyclic guanosine monophosphate signaling pathway in rat airway epithelial cells. Am J Respir Cell Mol Biol 23(2):175–181PubMedCrossRefGoogle Scholar
  88. 88.
    Yang B, Schlosser RJ, McCaffrey TV (1996) Dual signal transduction mechanisms modulate ciliary beat frequency in upper airway epithelium. Am J Physiol 270(5 Pt 1):L745–L751PubMedGoogle Scholar
  89. 89.
    Schmid A et al (2011) Nucleotide-mediated airway clearance. Subcell Biochem 55:95–138PubMedCrossRefGoogle Scholar
  90. 90.
    Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422PubMedCrossRefGoogle Scholar
  91. 91.
    Wyatt TA et al (2010) Sequential activation of protein kinase C isoforms by organic dust is mediated by tumor necrosis factor. Am J Respir Cell Mol Biol 42(6):706–715PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Frizzell RA (1988) Role of absorptive and secretory processes in hydration of the airway surface. Am Rev Respir Dis 138(6 Pt 2):S3–S6PubMedCrossRefGoogle Scholar
  93. 93.
    Donaldson SH, Boucher RC (2007) Sodium channels and cystic fibrosis. Chest 132(5):1631–1636PubMedCrossRefGoogle Scholar
  94. 94.
    Thibodeau PH, Butterworth MB (2013) Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 351(2):309–323PubMedCrossRefGoogle Scholar
  95. 95.
    Com G, Clancy JP (2009) Adenosine receptors, cystic fibrosis, and airway hydration. Handb Exp Pharmacol 193:363–381PubMedCrossRefGoogle Scholar
  96. 96.
    Blouquit-Laye S, Chinet T (2007) Ion and liquid transport across the bronchiolar epithelium. Respir Physiol Neurobiol 159(3):278–282PubMedCrossRefGoogle Scholar
  97. 97.
    Ferrera L, Zegarra-Moran O, Galietta LJ (2011) Ca2+ -activated Cl channels. Compr Physiol 1(4):2155–2174PubMedGoogle Scholar
  98. 98.
    Riordan JR (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67:701–718PubMedCrossRefGoogle Scholar
  99. 99.
    Bear CE et al (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68(4):809–818PubMedCrossRefGoogle Scholar
  100. 100.
    Tabcharani JA et al (1991) Phosphorylation-regulated Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352(6336):628–631PubMedCrossRefGoogle Scholar
  101. 101.
    Gray MA, Greenwell JR, Argent BE (1988) Secretin-regulated chloride channel on the apical plasma membrane of pancreatic duct cells. J Membr Biol 105(2):131–142PubMedCrossRefGoogle Scholar
  102. 102.
    Cheng SH et al (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66(5):1027–1036PubMedCrossRefGoogle Scholar
  103. 103.
    Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17(4):412–418PubMedCrossRefGoogle Scholar
  104. 104.
    Canessa CM et al (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367(6462):463–467PubMedCrossRefGoogle Scholar
  105. 105.
    Jasti J et al (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449(7160):316–323PubMedCrossRefGoogle Scholar
  106. 106.
    Hughey RP et al (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem 278(39):37073–37082PubMedCrossRefGoogle Scholar
  107. 107.
    Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284(31):20447–20451PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Staub O et al (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. The EMBO Journal 16(21):6325–6336PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Kimura T et al (2011) Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis-like disease. Proc Natl Acad Sci USA 108(8):3216–3221PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Guggino WB (1999) Cystic fibrosis and the salt controversy. Cell 96(5):607–610PubMedCrossRefGoogle Scholar
  111. 111.
    Hobbs CA, Da Tan C, Tarran R (2013) Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol 591(Pt 18):4377–4387PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Horisberger JD (2003) ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model. Pflugers Arch 445(4):522–528PubMedCrossRefGoogle Scholar
  113. 113.
    Boucher RC (1994) Human airway ion transport. Part one. Am J Respir Crit Care Med 150(1):271–281PubMedCrossRefGoogle Scholar
  114. 114.
    Knowles MR et al (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100(10):2588–2595PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Coakley RD, Boucher RC (2001) Regulation and functional significance of airway surface liquid pH. Jop 2(4 Suppl):294–300PubMedGoogle Scholar
  116. 116.
    Garcia-Caballero A et al (2009) SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci USA 106(27):11412–11417PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Lazarowski ER et al (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279(35):36855–36864PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Button B et al (2013) Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signa 6(279):ra46Google Scholar
  119. 119.
    Button B, Boucher RC (2008) Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir Physiol Neurobiol 163(1–3):189–201PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Gaillard EA et al (2010) Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 460(1):1–17PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Matsui H et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95(7):1005–1015PubMedCrossRefGoogle Scholar
  122. 122.
    Kunzelmann K et al (2005) Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19(1):142–143PubMedGoogle Scholar
  123. 123.
    Pochynyuk O, Bugaj V, Stockand JD (2008) Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17(5):533–540PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Yue G, Malik B, Eaton DC (2002) Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J Biol Chem 277(14):11965–11969PubMedCrossRefGoogle Scholar
  125. 125.
    Hobbs CA et al (2013) Identification of SPLUNC1’s ENaC-Inhibitory Domain Yields Novel Strategies to Treat Sodium Hyperabsorption in Cystic Fibrosis Airway Cultures. Am J Physiol Lung Cell Mol PhysiolGoogle Scholar
  126. 126.
    Rollins BM et al (2010) SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels (Austin) 4(4):255–259CrossRefGoogle Scholar
  127. 127.
    Garland AL et al (2013) Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. Proc Natl Acad Sci USA 110(40):15973–15978PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Cho DY et al (2011) Acid and base secretion in freshly excised nasal tissue from cystic fibrosis patients with DeltaF508 mutation. Int Forum Allergy Rhinol 1(2):123–127PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Tarran R, Redinbo MR (2014) Mammalian short palate lung and nasal epithelial clone 1 (SPLUNC1) in pH-dependent airway hydration. Int J Biochem Cell Biol 52:130–135PubMedCrossRefGoogle Scholar
  130. 130.
    Di YP et al (2003) Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid-inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem 278(2):1165–1173PubMedCrossRefGoogle Scholar
  131. 131.
    Berdiev BK, Qadri YJ, Benos DJ (2009) Assessment of the CFTR and ENaC association. Mol BioSyst 5(2):123–127PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Kunzelmann K, Schreiber R (2012) Airway epithelial cells—hyperabsorption in CF? Int J Biochem Cell Biol 44(8):1232–1235PubMedCrossRefGoogle Scholar
  133. 133.
    Boucher RC et al (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78(5):1245–1252PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Kunzelmann K et al (1997) Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett 400(3):341–344PubMedCrossRefGoogle Scholar
  135. 135.
    Stutts MJ et al (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269(5225):847–850PubMedCrossRefGoogle Scholar
  136. 136.
    Lazrak A et al (2011) Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung. Am J Physiol Lung Cell Mol Physiol 301(4):L557–L567PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Dransfield MT et al (2013) Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest 144(2):498–506PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Vallet V et al (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389(6651):607–610PubMedCrossRefGoogle Scholar
  139. 139.
    Caldwell RA, Boucher RC, Stutts MJ (2005) Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol 288(5):L813–L819PubMedCrossRefGoogle Scholar
  140. 140.
    Tan CD et al (2014) Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. J Physiol 592(Pt 23):5251–5268PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Alli AA et al (2012) Cathepsin B is secreted apically from Xenopus 2F3 cells and cleaves the epithelial sodium channel (ENaC) to increase its activity. J Biol Chem 287(36):30073–30083PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Butterworth MB et al (2012) Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem 287(39):32556–32565PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Hoenderdos K, Condliffe A (2013) The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 48(5):531–539PubMedCrossRefGoogle Scholar
  144. 144.
    Borgerding M, Klus H (2005) Analysis of complex mixtures–cigarette smoke. Exp Toxicol Pathol 57(Suppl 1):43–73PubMedCrossRefGoogle Scholar
  145. 145.
    Hoffmann D, Djordjevic MV, Hoffmann I (1997) The changing cigarette. Prev Med 26(4):427–434PubMedCrossRefGoogle Scholar
  146. 146.
    Talhout R et al (2011) Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8(2):613–628PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Scian MJ et al (2009) Chemical analysis of cigarette smoke particulate generated in the MSB-01 in vitro whole smoke exposure system. Inhal Toxicol 21(12):1040–1052PubMedCrossRefGoogle Scholar
  148. 148.
    Fowles J, Dybing E (2003) Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control 12(4):424–430PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Dye JA, Adler KB (1994) Effects of cigarette smoke on epithelial cells of the respiratory tract. Thorax 49(8):825–834PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Yaghi A et al (2012) Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir Med 106(8):1139–1147PubMedCrossRefGoogle Scholar
  151. 151.
    Agius AM, Smallman LA, Pahor AL (1998) Age, smoking and nasal ciliary beat frequency. Clin Otolaryngol Allied Sci 23(3):227–230PubMedCrossRefGoogle Scholar
  152. 152.
    Wyatt TA et al (2000) Acetaldehyde-stimulated PKC activity in airway epithelial cells treated with smoke extract from normal and smokeless cigarettes. Proc Soc Exp Biol Med 225(1):91–97PubMedCrossRefGoogle Scholar
  153. 153.
    Tamashiro E et al (2009) Cigarette smoke exposure impairs respiratory epithelial ciliogenesis. Am J Rhinol Allergy 23(2):117–122PubMedCrossRefGoogle Scholar
  154. 154.
    Lam HC et al (2013) Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest 123(12):5212–5230PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Verra F et al (1995) Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am J Respir Crit Care Med 151(3 Pt 1):630–634PubMedCrossRefGoogle Scholar
  156. 156.
    Auerbach O, Hammond EC, Garfinkel L (1979) Changes in bronchial epithelium in relation to cigarette smoking, 1955–1960 vs. 1970–1977. N Engl J Med 300(8):381–385PubMedCrossRefGoogle Scholar
  157. 157.
    Leopold PL et al (2009) Smoking is associated with shortened airway cilia. PLoS One 4(12):e8157PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Lungarella G, Fonzi L, Ermini G (1983) Abnormalities of bronchial cilia in patients with chronic bronchitis: an ultrastructural and quantitative analysis. Lung 161(3):147–156PubMedCrossRefGoogle Scholar
  159. 159.
    Sisson JH et al (1994) Smoke and viral infection cause cilia loss detectable by bronchoalveolar lavage cytology and dynein ELISA. Am J Respir Crit Care Med 149(1):205–213PubMedCrossRefGoogle Scholar
  160. 160.
    Kensler CJ, Battista SP (1963) Components of cigarette smoke with ciliary-depressant activity. Their selective removal by filters containing activated charcoal granules. N Engl J Med 269:1161–1166PubMedCrossRefGoogle Scholar
  161. 161.
    Cantin AM et al (2006) Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 173(10):1139–1144PubMedCrossRefGoogle Scholar
  162. 162.
    Xu X et al (2015) Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Biochim Biophys Acta 1850(6):1224–1232. doi: 10.1016/j.bbagen.2015.02.004 PubMedCrossRefGoogle Scholar
  163. 163.
    Rasmussen JE et al (2014) Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J Biol Chem 289(11):7671–7681PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Gelman MS, Kannegaard ES, Kopito RR (2002) A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. J Biol Chem 277(14):11709–11714PubMedCrossRefGoogle Scholar
  165. 165.
    Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Sharma M et al (2004) Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164(6):923–933PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Okiyoneda T et al (2010) Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329(5993):805–810PubMedCrossRefGoogle Scholar
  168. 168.
    Younger JM et al (2006) Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126(3):571–582PubMedCrossRefGoogle Scholar
  169. 169.
    Stevens JF, Maier CS (2008) Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 52(1):7–25PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Wang HT et al (2009) Mutagenicity and sequence specificity of acrolein-DNA adducts. Chem Res Toxicol 22(3):511–517PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Phillips DH (2002) Smoking-related DNA and protein adducts in human tissues. Carcinogenesis 23(12):1979–2004PubMedCrossRefGoogle Scholar
  172. 172.
    Raju SV et al (2013) Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am J Respir Crit Care Med 188(11):1321–1330PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Moran AR et al (2014) Aqueous cigarette smoke extract induces a voltage-dependent inhibition of CFTR expressed in Xenopus oocytes. Am J Physiol Lung Cell Mol Physiol 306(3):L284–L291PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Ballard ST et al (1999) CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am J Physiol 277(4 Pt 1):L694–L699PubMedGoogle Scholar
  175. 175.
    Hug MJ, Tamada T, Bridges RJ (2003) CFTR and bicarbonate secretion by [correction of to] epithelial cells. News Physiol Sci 18:38–42PubMedGoogle Scholar
  176. 176.
    Pryor WA, Prier DG, Church DF (1983) Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect 47:345–355PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Cantin AM et al (2006) Oxidant stress suppresses CFTR expression. Am J Physiol Cell Physiol 290(1):C262–C270PubMedCrossRefGoogle Scholar
  178. 178.
    Hassan F et al (2012) MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One 7(11):e50837PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Hassan F et al (2014) Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir Res 15:69PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Sloane PA et al (2012) A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One 7(6):e39809PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Astrand AB et al (2015) Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol 308(1):L22–L32PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Tyrrell J et al (2015) Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 308:L10068–L11077CrossRefGoogle Scholar
  183. 183.
    Andersen I et al (1974) Nasal clearance in monozygotic twins. Am Rev Respir Dis 110(3):301–305PubMedCrossRefGoogle Scholar
  184. 184.
    Stanley PJ et al (1986) Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax 41(7):519–523PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Rubin BK et al (1992) Respiratory mucus from asymptomatic smokers is better hydrated and more easily cleared by mucociliary action. Am Rev Respir Dis 145(3):545–547PubMedCrossRefGoogle Scholar
  186. 186.
    Hill DB et al (2014) A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLoS One 9(2):e87681PubMedCentralPubMedCrossRefGoogle Scholar
  187. 187.
    Baltimore RS, Christie CD, Smith GJ (1989) Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140(6):1650–1661PubMedCrossRefGoogle Scholar
  188. 188.
    Matsui H et al (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 103(48):18131–18136PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    Coles SJ, Levine LR, Reid L (1979) Hypersecretion of mucus glycoproteins in rat airways induced by tobacco smoke. Am J Pathol 94(3):459–472PubMedCentralPubMedGoogle Scholar
  190. 190.
    Lamb D, Reid L (1969) Goblet cell increase in rat bronchial epithelium after exposure to cigarette and cigar tobacco smoke. Br Med J 1(5635):33–35PubMedCentralPubMedCrossRefGoogle Scholar
  191. 191.
    Basbaum C et al (1999) Control of mucin transcription by diverse injury-induced signaling pathways. Am J Respir Crit Care Med 160(5 Pt 2):S44–S48PubMedCrossRefGoogle Scholar
  192. 192.
    Borchers MT, Carty MP, Leikauf GD (1999) Regulation of human airway mucins by acrolein and inflammatory mediators. Am J Physiol 276(4 Pt 1):L549–L555PubMedGoogle Scholar
  193. 193.
    Borchers MT, Wert SE, Leikauf GD (1998) Acrolein-induced MUC5ac expression in rat airways. Am J Physiol 274(4 Pt 1):L573–L581PubMedGoogle Scholar
  194. 194.
    Churg A, Cosio M, Wright JL (2008) Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol 294(4):L612–L631PubMedCrossRefGoogle Scholar
  195. 195.
    Hughes JR (2007) Effects of abstinence from tobacco: etiology, animal models, epidemiology, and significance: a subjective review. Nicotine Tob Res 9(3):329–339PubMedCrossRefGoogle Scholar
  196. 196.
    Johnson JD et al (1990) Effects of mainstream and environmental tobacco smoke on the immune system in animals and humans: a review. Crit Rev Toxicol 20(5):369–395PubMedCrossRefGoogle Scholar
  197. 197.
    Liu C, Russell RM, Wang XD (2003) Exposing ferrets to cigarette smoke and a pharmacological dose of beta-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes. J Nutr 133(1):173–179PubMedGoogle Scholar
  198. 198.
    Hautamaki RD et al (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277(5334):2002–2004PubMedCrossRefGoogle Scholar
  199. 199.
    Clarke LL et al (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(−/−) mice. Proc Natl Acad Sci USA 91(2):479–483PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    Snouwaert JN et al (1992) An animal model for cystic fibrosis made by gene targeting. Science 257(5073):1083–1088PubMedCrossRefGoogle Scholar
  201. 201.
    Majima Y et al (1983) Mucociliary clearance in chronic sinusitis: related human nasal clearance and in vitro bullfrog palate clearance. Biorheology 20(2):251–262PubMedGoogle Scholar
  202. 202.
    Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21(1):13–24PubMedCrossRefGoogle Scholar
  203. 203.
    Mall M et al (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10(5):487–493PubMedCrossRefGoogle Scholar
  204. 204.
    Donaldson SH et al (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354(3):241–250PubMedCrossRefGoogle Scholar
  205. 205.
    Elkins MR et al (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354(3):229–240PubMedCrossRefGoogle Scholar
  206. 206.
    Taube C et al (2001) Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164(10 Pt 1):1810–1815PubMedCrossRefGoogle Scholar
  207. 207.
    Angle N et al (1998) Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock 9(3):164–170PubMedCrossRefGoogle Scholar
  208. 208.
    Lansdell KA et al (1998) Regulation of murine cystic fibrosis transmembrane conductance regulator Cl− channels expressed in Chinese hamster ovary cells. J Physiol 512(Pt 3):751–764PubMedCentralPubMedCrossRefGoogle Scholar
  209. 209.
    Gray MA et al (1990) Anion selectivity and block of the small-conductance chloride channel on pancreatic duct cells. Am J Physiol 259(5 Pt 1):C752–C761PubMedGoogle Scholar
  210. 210.
    Illek B et al (1999) Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 277(4 Pt 1):C833–C839PubMedGoogle Scholar
  211. 211.
    Van Goor F et al (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106(44):18825–18830PubMedCentralPubMedCrossRefGoogle Scholar
  212. 212.
    Dalemans W et al (1991) Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354(6354):526–528PubMedCrossRefGoogle Scholar
  213. 213.
    Van Goor F et al (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108(46):18843–18848PubMedCentralPubMedCrossRefGoogle Scholar
  214. 214.
    Cholon DM et al (2014) Potentiator ivacaftor abrogates pharmacological correction of DeltaF508 CFTR in cystic fibrosis. Sci Transl Med 6(246):246ra96PubMedCentralPubMedCrossRefGoogle Scholar
  215. 215.
    Lambert JA et al (2013) Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Am J Respir Cell Mol Biol 50(3):549–558CrossRefGoogle Scholar
  216. 216.
    Kew KM, Dias S, Cates CJ (2014) Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. Cochrane Database Syst Rev 3:CD010844PubMedGoogle Scholar
  217. 217.
    Boucher RC et al (1989) Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C− and A-dependent mechanisms. J Clin Invest 84(5):1424–1431PubMedCentralPubMedCrossRefGoogle Scholar
  218. 218.
    O’Riordan TG et al (2014) Acute hyperkalemia associated with inhalation of a potent ENaC antagonist: phase 1 trial of GS-9411. J Aerosol Med Pulm Drug Deliv 27(3):200–208PubMedCrossRefGoogle Scholar
  219. 219.
    Kleyman TR, Cragoe EJ Jr (1988) The mechanism of action of amiloride. Semin Nephrol 8(3):242–248PubMedGoogle Scholar
  220. 220.
    Grasemann H, Ratjen F (2010) Emerging therapies for cystic fibrosis lung disease. Expert Opin Emerg Drugs 15(4):653–659PubMedCrossRefGoogle Scholar
  221. 221.
    Chiu TF et al (1997) Rapid life-threatening hyperkalemia after addition of amiloride HCl/hydrochlorothiazide to angiotensin-converting enzyme inhibitor therapy. Ann Emerg Med 30(5):612–615PubMedCrossRefGoogle Scholar
  222. 222.
    O’Riordan TG et al (2013) GS-5737, A novel epithelial sodium channel (ENaC) inhibitor: results of a Phase 1 Safety and pharmacodynamic (PK) Study. Pediatr Pulmonol S36:290Google Scholar
  223. 223.
    Terryah s et al (2014) A SPLUNC1-derived peptide reduces lung disease in scnn1b mice. Pediatr Pulmonol S38:285Google Scholar
  224. 224.
    Lee YO et al (2014) Multiple tobacco product use among adults in the United States: cigarettes, cigars, electronic cigarettes, hookah, smokeless tobacco, and snus. Prev Med 62:14–19PubMedCrossRefGoogle Scholar
  225. 225.
    Benowitz NL, Goniewicz ML (2013) The regulatory challenge of electronic cigarettes. JAMA 310(7):685–686PubMedCrossRefGoogle Scholar
  226. 226.
    McAuley TR et al (2012) Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal Toxicol 24(12):850–857PubMedCrossRefGoogle Scholar
  227. 227.
    Wu Q et al (2014) Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One 9(9):e108342PubMedCentralPubMedCrossRefGoogle Scholar
  228. 228.
    Chen Y et al (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278(19):17036–17043PubMedCrossRefGoogle Scholar
  229. 229.
    Jensen RP et al (2015) Hidden formaldehyde in e-cigarette aerosols. N Engl J Med 372(4):392–394PubMedCrossRefGoogle Scholar
  230. 230.
    Brown JE et al (2014) Candy flavorings in tobacco. N Engl J Med 370(23):2250–2252PubMedCrossRefGoogle Scholar
  231. 231.
    Carpenter CM et al (2005) New cigarette brands with flavors that appeal to youth: tobacco marketing strategies. Health Aff (Millwood) 24(6):1601–1610CrossRefGoogle Scholar
  232. 232.
    Regan AK, Dube SR, Arrazola R (2012) Smokeless and flavored tobacco products in the US: 2009 Styles survey results. Am J Prev Med 42(1):29–36PubMedCrossRefGoogle Scholar
  233. 233.
    Willis DN et al (2011) Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J 25(12):4434–4444PubMedCentralPubMedCrossRefGoogle Scholar
  234. 234.
    Uhl GR et al (2011) Menthol preference among smokers: association with TRPA1 variants. Nicotine Tob Res 13(12):1311–1315PubMedCentralPubMedCrossRefGoogle Scholar
  235. 235.
    Shibamoto T (2014) Diacetyl: occurrence, analysis, and toxicity. J Agric Food Chem 62(18):4048–4053PubMedCrossRefGoogle Scholar
  236. 236.
    Kreiss K et al (2002) Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N Engl J Med 347(5):330–338PubMedCrossRefGoogle Scholar
  237. 237.
    McMillen R, Maduka J, Winickoff J (2012) Use of emerging tobacco products in the United States. J Environ Public Health 2012:989474PubMedCentralPubMedCrossRefGoogle Scholar
  238. 238.
    Rath JM et al (2012) Patterns of tobacco use and dual use in US young adults: the missing link between youth prevention and adult cessation. J Environ Public Health 2012:679134PubMedCentralPubMedCrossRefGoogle Scholar
  239. 239.
    Terchek JJ et al (2009) Measuring cigar use in adolescents: inclusion of a brand-specific item. Nicotine Tob Res 11(7):842–846PubMedCrossRefGoogle Scholar
  240. 240.
    Hentschel J et al (2014) Dynamics of soluble and cellular inflammatory markers in nasal lavage obtained from cystic fibrosis patients during intravenous antibiotic treatment. BMC Pulm Med 14:82PubMedCentralPubMedCrossRefGoogle Scholar
  241. 241.
    Tsoumakidou M, Tzanakis N, Siafakas NM (2003) Induced sputum in the investigation of airway inflammation of COPD. Respir Med 97(8):863–871PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Cystic Fibrosis Center/Marsico Lung Institute and the Department of Cell Biology and PhysiologyThe University of North CarolinaChapel HillUSA

Personalised recommendations