Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 18, pp 3521–3529 | Cite as

ADF/cofilin: a crucial regulator of synapse physiology and behavior

  • Marco B. RustEmail author
Review

Abstract

Actin filaments (F-actin) are the major structural component of excitatory synapses, being present in presynaptic terminals and in postsynaptic dendritic spines. In the last decade, it has been appreciated that actin dynamics, the assembly and disassembly of F-actin, is crucial not only for the structure of excitatory synapses, but also for pre- and postsynaptic physiology. Hence, regulators of actin dynamics take a central role in mediating neurotransmitter release, synaptic plasticity, and ultimately behavior. Actin depolymerizing proteins of the ADF/cofilin family are essential regulators of actin dynamics, and a number of recent studies highlighted their crucial functions in excitatory synapses. In dendritic spines, ADF/cofilin activity is required for spine enlargement during initial long-term potentiation (LTP), but needs to be switched off during spine stabilization and LTP consolidation. Conversely, active ADF/cofilin is needed for spine pruning during long-term depression (LTD). Moreover, ADF/cofilin controls activity-induced synaptic availability of glutamate receptors, and exocytosis of synaptic vesicles. These data show that the activity of ADF/cofilin in synapses needs to be spatially and temporally tightly controlled through several upstream regulatory pathways, which have been identified recently. Hence, ADF/cofilin-controlled actin dynamics emerged as a critical and central regulator of synapse physiology. In this review, I will summarize and discuss our current knowledge on the roles of ADF/cofilin in synapse physiology and behavior, by focusing on excitatory synapses of the mammalian central nervous system.

Keywords

Actin-binding protein Structural plasticity Learning ADHD 

Notes

Acknowledgments

I thank Dr. Walter Witke for discussion on the manuscript. This work was supported by a Research grant (24/2014 MR) of the University Medical Center Giessen and Marburg (UKGM).

References

  1. 1.
    Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356CrossRefPubMedGoogle Scholar
  2. 2.
    Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757CrossRefPubMedGoogle Scholar
  5. 5.
    Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767CrossRefPubMedGoogle Scholar
  6. 6.
    Rust MB, Maritzen T (2015) Relevance of presynaptic actin dynamics for synapse function and mouse behavior. Exp Cell Res. doi: 10.1016/j.yexcr.2014.12.020 PubMedGoogle Scholar
  7. 7.
    Hild G, Kalmar L, Kardos R, Nyitrai M, Bugyi B (2014) The other side of the coin: functional and structural versatility of ADF/cofilins. Eur J Cell Biol 93:238–251CrossRefPubMedGoogle Scholar
  8. 8.
    Gurniak CB, Perlas E, Witke W (2005) The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev Biol 278:231–241CrossRefPubMedGoogle Scholar
  9. 9.
    Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21:2347–2357PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Flynn KC, Hellal F, Neukirchen D, Jacob S, Tahirovic S, Dupraz S, Stern S, Garvalov BK, Gurniak C, Shaw AE, Meyn L, Wedlich-Soldner R, Bamburg JR, Small JV, Witke W, Bradke F (2012) ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76:1091–1107CrossRefPubMedGoogle Scholar
  11. 11.
    Maciver SK, Zot HG, Pollard TD (1991) Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J Cell Biol 115:1611–1620CrossRefPubMedGoogle Scholar
  12. 12.
    Blanchoin L, Pollard TD (1999) Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J Biol Chem 274:15538–15546CrossRefPubMedGoogle Scholar
  13. 13.
    Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87:649–667CrossRefPubMedGoogle Scholar
  14. 14.
    Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23CrossRefPubMedGoogle Scholar
  15. 15.
    Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20:187–195PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac mediated actin reorganization. Nature 393:809–812CrossRefPubMedGoogle Scholar
  17. 17.
    Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246CrossRefPubMedGoogle Scholar
  18. 18.
    Görlich A, Wolf M, Zimmermann AM, Gurniak CB, Al Banchaabouchi M, Sassoe-Pognetto M, Witke W, Friauf E, Rust MB (2011) N-cofilin can compensate for the loss of adf in excitatory synapses. PLoS One 6:26789CrossRefGoogle Scholar
  19. 19.
    Racz B, Weinberg RJ (2006) Spatial organization of cofilin in dendritic spines. Neuroscience 138:447–456CrossRefPubMedGoogle Scholar
  20. 20.
    Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185:323–339PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Gorlich A, Sassoe-Pognetto M, Banchaabouch MA, Giustetto M, Triller A, Choquet D, Witke W (2010) Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 29:1889–1902PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, Zheng JQ (2010) ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13:1208–1215PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wolf M, Zimmermann AM, Görlich A, Gurniak CB, Sassoè-Pognetto M, Friauf E, Witke W, Rust MB (2014) ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex [Epub ahead of print] Google Scholar
  25. 25.
    Zimmermann AM, Jene T, Wolf M, Gorlich A, Gurniak CB, Sassoe-Pognetto M, Witke W, Friauf E, Rust MB (2014) Attention-deficit/hyperactivity disorder-like phenotype in a mouse model with impaired actin dynamics. Biol Psychiatry [Epub ahead of print] Google Scholar
  26. 26.
    Goodson M, Rust MB, Witke W, Bannerman D, Mott R, Ponting CP, Flint J (2012) Cofilin-1: a modulator of anxiety in mice. PLoS Genet 8:e1002970PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729CrossRefPubMedGoogle Scholar
  28. 28.
    Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460CrossRefPubMedGoogle Scholar
  29. 29.
    Morishita W, Marie H, Malenka RC (2005) Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat Neurosci 8:1043–1050CrossRefPubMedGoogle Scholar
  30. 30.
    Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jia Z (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133CrossRefPubMedGoogle Scholar
  31. 31.
    Chen LY, Rex CS, Casale MS, Gall CM, Lynch G (2007) Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 27:5363–5372CrossRefPubMedGoogle Scholar
  32. 32.
    Fedulov V, Rex CS, Simmons DA, Palmer L, Gall CM, Lynch G (2007) Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J Neurosci 27:8031–8039CrossRefPubMedGoogle Scholar
  33. 33.
    Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875CrossRefPubMedGoogle Scholar
  34. 34.
    Shi Y, Pontrello CG, DeFea KA, Reichardt LF, Ethell IM (2009) Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity. J Neurosci 29:8129–8142PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Pontrello CG, Sun MY, Lin A, Fiacco TA, DeFea KA, Ethell IM (2012) Cofilin under control of beta-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc Natl Acad Sci USA 109:E442–E451PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3:1718–1728CrossRefPubMedGoogle Scholar
  37. 37.
    Hayashi K, Shirao T (1999) Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons. J Neurosci 19:3918–3925PubMedGoogle Scholar
  38. 38.
    Ackermann M, Matus A (2003) Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6:1194–1200CrossRefPubMedGoogle Scholar
  39. 39.
    Pilo Boyl P, Di Nardo A, Mulle C, Sassoe-Pognetto M, Panzanelli P, Mele A, Kneussel M, Costantini V, Perlas E, Massimi M, Vara H, Giustetto M, Witke W (2007) Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 26:2991–3002PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Ivanov A, Esclapez M, Pellegrino C, Shirao T, Ferhat L (2009) Drebrin A regulates dendritic spine plasticity and synaptic function in mature cultured hippocampal neurons. J Cell Sci 122:524–534CrossRefPubMedGoogle Scholar
  41. 41.
    Nakamura Y, Wood CL, Patton AP, Jaafari N, Henley JM, Mellor JR, Hanley JG (2011) PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO J 30:719–730PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Kim IH, Racz B, Wang H, Burianek L, Weinberg R, Yasuda R, Wetsel WC, Soderling SH (2013) Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. J Neurosci 33:6081–6092PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Asrar A, Meng Y, Zhou Z, Todorovski Z, Huang WW, Jia Z (2009) Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 56:73–80CrossRefPubMedGoogle Scholar
  44. 44.
    Huang W, Zhou Z, Asrar S, Henkelman M, Xie W, Jia Z (2011) p21-Activated kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties. Mol Cell Biol 31:388–403PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Rane CK, Minden A (2014) P21 activated kinases: structure, regulation, and functions. Small GTPases. doi: 10.4161/sgtp.28003 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Irie F, Yamaguchi Z (2002) EphB receptors regulate dendritic spine development via intersection, Cdc42 and N-WASP. Nat Neurosci 5:1117–1118CrossRefPubMedGoogle Scholar
  47. 47.
    Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45:525–538CrossRefPubMedGoogle Scholar
  48. 48.
    Haditsch U, Leone DP, Farinelli M, Chrostek-Grashoff A, Brakebusch C, Mansuy IM, McConnell SK, Palmer TD (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kim IH, Wang H, Soderling SH, Yasuda R (2014) Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. eLife 8:3Google Scholar
  50. 50.
    McNair K, Spike R, Guilding C, Prendergast GC, Stone TW, Cobb SR, Morris BJ (2010) A role for RhoB in synaptic plasticity and the regulation of neuronal morphology. J Neurosci 30:3508–3517CrossRefPubMedGoogle Scholar
  51. 51.
    Zhou Z, Meng Y, Asrar S, Todorovski Z, Jia Z (2009) A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function. Neuropharmacology 56:81–89CrossRefPubMedGoogle Scholar
  52. 52.
    Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G (2009) Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol 186:85–97PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Kramar EA, Chen LY, Brandon NJ, Rex CS, Liu F, Gall CM, Lynch G (2009) Cytoskeletal changes underlie estrogen’s acute effects on synaptic transmission and plasticity. J Neurosci 29:12982–12993PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26:1923–1934PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci USA 105:19520–19525CrossRefPubMedGoogle Scholar
  56. 56.
    Legate KR, Fassler R (2009) Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci 122:187–198CrossRefPubMedGoogle Scholar
  57. 57.
    Lamb RF, Roy C, Diefenbach TJ, Vinters HV, Johnson MM, Jay DG, Hall A (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287CrossRefPubMedGoogle Scholar
  58. 58.
    Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou L, Jones EV, Murai KK (2012) EphA signaling promotes actin-based dendritic spine remodeling through slingshot phosphatase. J Biol Chem 287:9346–9359PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem 280:12683–12689CrossRefPubMedGoogle Scholar
  61. 61.
    Zhou L, Martinez SJ, Haber M, Jones EV, Bouvier Doucet G, Corera ET, Fon EA, Zisch AH, Murai KK (2007) EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci 27:5127–5138CrossRefPubMedGoogle Scholar
  62. 62.
    Wang Y, Dong Q, Xu XF, Feng X, Xin J, Wang DD, Yu H, Tian T, Chen ZY (2013) Phosphorylation of cofilin regulates extinction of conditioned aversive memory via AMPAR trafficking. J Neurosci 33:6423–6433CrossRefPubMedGoogle Scholar
  63. 63.
    Yuen EY, Liu W, Kafri T, van Praag H, Yan Z (2010) Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol 588:2361–2371PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Waites CL, Leal-Ortiz SA, Andlauer TF, Sigrist SJ, Garner CC (2011) Piccolo regulates the dynamic assembly of presynaptic f-actin. J Neurosci 31:14250–14263PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14:461–469CrossRefPubMedGoogle Scholar
  66. 66.
    Bannerman DM, Sprengel R (2010) Multiple memory mechanisms? The long and the short of it. EMBO J 29:1790–1791PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Ikeda S, Cunningham LA, Boggess D, Hawes N, Hobson CD, Sundberg LP, Naggert JK, Smith RS, Nishina PM (2003) Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Hum Mol Genet 12:1029–1037CrossRefPubMedGoogle Scholar
  68. 68.
    Shibasaki M, Mizuno K, Kurokawa K, Suzuki T, Ohkuma S (2011) Role of actin depolymerizing factor in the development of methamphetamine-induced place preference in mice. Eur J Pharmacol 671:70–78CrossRefPubMedGoogle Scholar
  69. 69.
    Itohara S, Kobayashi Y, Nakashiba T (2015) Genetic factors underlying attention and impulsivity: mouse models of attention-deficit/hyperactivity disorder. Curr Opin Behav Sci 2:46–51CrossRefGoogle Scholar
  70. 70.
    Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, Klein BP, Ensing GJ, Everett LA, Green ED, Proschel C, Gutowski NJ, Noble M, Atkinson DL, Odelberg SJ, Keating MT (1996) LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86:59–69CrossRefPubMedGoogle Scholar
  71. 71.
    Hoogenraad CC, Akhmanova A, Galjart N, De Zeeuw CI (2004) LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. BioEssays 26:141–150CrossRefPubMedGoogle Scholar
  72. 72.
    Gomez MR, Sampson JR, Whittemore VH (1999) Tuberous sclerosis complex. Oxford Univ Press, New YorkGoogle Scholar
  73. 73.
    Yeoh S, Pope B, Mannherz HG, Weeds A (2002) Determining the differences in actin binding by human ADF and cofilin. J Mol Biol 315:911–925CrossRefPubMedGoogle Scholar
  74. 74.
    Yoo Y, Ho HJ, Wang C, Guan JL (2010) Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene 29:263–272PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Minamide LS, Painter WB, Schevzov G, Gunning P, Bamburg JR (1997) Differential regulation of actin depolymerizing factor and cofilin in response to alterations in the actin monomer pool. J Biol Chem 272:8303–8309CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Molecular Neurobiology Group, Institute of Physiological ChemistryUniversity of MarburgMarburgGermany

Personalised recommendations