Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 17, pp 3343–3353 | Cite as

Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance

  • Shiyan Yu
  • Nan Gao
Review

Abstract

Toll-like receptors (TLRs) are membrane-bound microbial sensors that mediate important host-to-microbe responses. Cell biology aspects of TLR function have been intensively studied in professional immune cells, in particular the macrophages and dendritic cells, but not well explored in other specialized epithelial cell types. The adult intestinal epithelial cells are in close contact with trillions of enteric microbes and engage in lifelong immune surveillance. Mature intestinal epithelial cells, in contrast to immune cells, are highly polarized. Recent studies suggest that distinct mechanisms may govern TLR traffic and compartmentalization in these specialized epithelial cells to establish and maintain precise signaling of individual TLRs. We, using immune cells as references, discuss here the shared and/or unique molecular machineries used by intestinal epithelial cells to control TLR transport, localization, processing, activation, and signaling. A better understanding of these mechanisms will certainly generate important insights into both the mechanism and potential intervention of leading digestive disorders, in particular inflammatory bowel diseases.

Keywords

Toll-like receptor Intestinal epithelium Microbe Traffic 

Notes

Acknowledgments

This work was supported by the National Institute of Health (NIH) Grants DK085194, DK093809, DK102934, and CA178599; Charles and Johanna Busch Memorial Award (659160); NSF/BIO/IDBR (1353890) and Rutgers University Faculty Research Grant (281708). S.Y. was supported by New Jersey Commission on Cancer Research Postdoctoral Fellowship (DFHS13PPC016).

References

  1. 1.
    Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10(5):323–335PubMedCentralPubMedGoogle Scholar
  2. 2.
    Kashyap PC et al (2013) Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc Natl Acad Sci USA 110(42):17059–17064PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Erkosar B et al (2013) Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 13(1):8–14PubMedCrossRefGoogle Scholar
  4. 4.
    Pickard JM et al (2014) Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature 514(7524):638–641PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14(7):676–684PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13(11):790–801PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Maier L et al (2013) Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 14(6):641–651PubMedCrossRefGoogle Scholar
  9. 9.
    Clemente JC et al (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270PubMedCrossRefGoogle Scholar
  10. 10.
    Sekirov I et al (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904PubMedCrossRefGoogle Scholar
  11. 11.
    Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7(5):349–359PubMedCrossRefGoogle Scholar
  12. 12.
    Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15(1):19–33PubMedCrossRefGoogle Scholar
  13. 13.
    Mabbott NA et al (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6(4):666–677PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wells JM et al (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10(2):131–144PubMedCrossRefGoogle Scholar
  16. 16.
    Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153PubMedCrossRefGoogle Scholar
  17. 17.
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650PubMedCrossRefGoogle Scholar
  18. 18.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511PubMedCrossRefGoogle Scholar
  19. 19.
    Kang JY et al (2009) Recognition of lipopeptide patterns by toll-like receptor 2-toll-like receptor 6 heterodimer. Immunity 31(6):873–884PubMedCrossRefGoogle Scholar
  20. 20.
    Jin MS et al (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082PubMedCrossRefGoogle Scholar
  21. 21.
    Koblansky AA et al (2013) Recognition of profilin by toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38(1):119–130PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Oldenburg M et al (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337(6098):1111–1115PubMedCrossRefGoogle Scholar
  23. 23.
    Rifkin IR et al (2005) Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 204:27–42PubMedCrossRefGoogle Scholar
  24. 24.
    Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9(1):57–63PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang P et al (2009) Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol 183(1):27–31PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Barton GM, Kagan JC (2009) A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9(8):535–542PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gay NJ et al (2014) Assembly and localization of toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558PubMedCrossRefGoogle Scholar
  28. 28.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384PubMedCrossRefGoogle Scholar
  29. 29.
    O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol 7(5):353–364PubMedCrossRefGoogle Scholar
  30. 30.
    Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32(3):305–315PubMedCrossRefGoogle Scholar
  31. 31.
    Otte JM, Cario E, Podolsky DK (2004) Mechanisms of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 126(4):1054–1070PubMedCrossRefGoogle Scholar
  32. 32.
    Cario E et al (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160(1):165–173PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Melmed G et al (2003) Human intestinal epithelial cells are broadly unresponsive to toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol 170(3):1406–1415PubMedCrossRefGoogle Scholar
  34. 34.
    Lavelle EC et al (2010) The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 3(1):17–28PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Fusunyan RD et al (2001) Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res 49(4):589–593PubMedCrossRefGoogle Scholar
  36. 36.
    Chabot S et al (2006) TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J Immunol 176(7):4275–4283PubMedCrossRefGoogle Scholar
  37. 37.
    Cario E, Podolsky DK (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68(12):7010–7017PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ortega-Cava CF et al (2003) Strategic compartmentalization of toll-like receptor 4 in the mouse gut. J Immunol 170(8):3977–3985PubMedCrossRefGoogle Scholar
  39. 39.
    Hornef MW et al (2002) Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 195(5):559–570PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ortega-Cava CF et al (2006) Epithelial toll-like receptor 5 is constitutively localized in the mouse cecum and exhibits distinctive down-regulation during experimental colitis. Clin Vaccine Immunol 13(1):132–138PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gewirtz AT et al (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167(4):1882–1885PubMedCrossRefGoogle Scholar
  42. 42.
    Rhee SH et al (2005) Pathophysiological role of toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc Natl Acad Sci USA 102(38):13610–13615PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Bambou JC et al (2004) In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem 279(41):42984–42992PubMedCrossRefGoogle Scholar
  44. 44.
    Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7(1):49–56PubMedCrossRefGoogle Scholar
  45. 45.
    Onji M et al (2013) An essential role for the N-terminal fragment of toll-like receptor 9 in DNA sensing. Nat Commun 4:1949PubMedCrossRefGoogle Scholar
  46. 46.
    Ewald SE et al (2008) The ectodomain of toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456(7222):658–662PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Park B et al (2008) Proteolytic cleavage in an endolysosomal compartment is required for activation of toll-like receptor 9. Nat Immunol 9(12):1407–1414PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Ewald SE et al (2011) Nucleic acid recognition by toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med 208(4):643–651PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Mouchess ML et al (2011) Transmembrane mutations in toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation. Immunity 35(5):721–732PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Lee J et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8(12):1327–1336PubMedCrossRefGoogle Scholar
  51. 51.
    Yu S et al (2014) TLR sorting by Rab11 endosomes maintains intestinal epithelial-microbial homeostasis. EMBO J 33(17):1882–1895PubMedCrossRefGoogle Scholar
  52. 52.
    Rumio C et al (2004) Degranulation of Paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Rumio C et al (2012) Induction of Paneth cell degranulation by orally administered toll-like receptor ligands. J Cell Physiol 227(3):1107–1113PubMedCrossRefGoogle Scholar
  54. 54.
    Schulz O, Pabst O (2013) Antigen sampling in the small intestine. Trends Immunol 34(4):155–161PubMedCrossRefGoogle Scholar
  55. 55.
    De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273–284PubMedCrossRefGoogle Scholar
  56. 56.
    Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525PubMedCrossRefGoogle Scholar
  57. 57.
    Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156PubMedCrossRefGoogle Scholar
  59. 59.
    Takahashi K et al (2007) A protein associated with toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. J Exp Med 204(12):2963–2976PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Liu B et al (2010) Folding of toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79PubMedCrossRefGoogle Scholar
  61. 61.
    Yang Y et al (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26(2):215–226PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Bonifacino JS (2014) Adaptor proteins involved in polarized sorting. J Cell Biol 204(1):7–17PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597–608PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Hsu VW, Bai M, Li J (2012) Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol 13(5):323–328PubMedGoogle Scholar
  65. 65.
    Hirokawa N et al (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696PubMedCrossRefGoogle Scholar
  66. 66.
    Roberts AJ et al (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14(11):713–726PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Hammer JA 3rd, Sellers JR (2012) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13(1):13–26Google Scholar
  68. 68.
    Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10(11):765–777PubMedCrossRefGoogle Scholar
  69. 69.
    Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5(6):393–399PubMedCrossRefGoogle Scholar
  70. 70.
    Hancock WO (2014) Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 15(9):615–628PubMedCrossRefGoogle Scholar
  71. 71.
    Ivanov II et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Martin-Belmonte F et al (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128(2):383–397PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Leifer CA et al (2006) Cytoplasmic targeting motifs control localization of toll-like receptor 9. J Biol Chem 281(46):35585–35592PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Lee BL et al (2013) UNC93B1 mediates differential trafficking of endosomal TLRs. Elife 2:e00291PubMedCentralPubMedGoogle Scholar
  76. 76.
    Ohno H (2006) Clathrin-associated adaptor protein complexes. J Cell Sci 119(Pt 18):3719–3721PubMedCrossRefGoogle Scholar
  77. 77.
    Hase K et al (2013) AP-1B-mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice. Gastroenterology 145(3):625–635PubMedCrossRefGoogle Scholar
  78. 78.
    Takahashi D et al (2011) The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology 141(2):621–632PubMedCrossRefGoogle Scholar
  79. 79.
    Shafaq-Zadah M et al (2012) AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 139(11):2061–2070PubMedCrossRefGoogle Scholar
  80. 80.
    Setta-Kaffetzi N et al (2014) AP1S3 Mutations are associated with pustular psoriasis and impaired toll-like receptor 3 trafficking. Am J Hum Genet 94(5):790–797PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Mantegazza AR et al (2012) Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4+ T cells. Immunity 36(5):782–794PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Sasai M, Linehan MM, Iwasaki A (2010) Bifurcation of toll-like receptor 9 signaling by adaptor protein 3. Science 329(5998):1530–1534PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Blasius AL et al (2010) Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for toll-like receptor signaling in plasmacytoid dendritic cells. Proc Natl Acad Sci USA 107(46):19973–19978PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Weisz OA, Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122(Pt 23):4253–4266PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Weber AN, Morse MA, Gay NJ (2004) Four N linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J Biol Chem 279(33):34589–34594PubMedCrossRefGoogle Scholar
  86. 86.
    Sun J et al (2006) Structural and functional analyses of the human toll-like receptor 3. Role of glycosylation. J Biol Chem 281(16):11144–11151PubMedCrossRefGoogle Scholar
  87. 87.
    Istomin AY, Godzik A (2009) Understanding diversity of human innate immunity receptors: analysis of surface features of leucine-rich repeat domains in NLRs and TLRs. BMC Immunol 10:48PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Xu S et al (2011) A Rab11a-enriched subapical membrane compartment regulates a cytoskeleton-dependent transcytotic pathway in secretory epithelial cells of the lacrimal gland. J Cell Sci 124(Pt 20):3503–3514PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Roland JT et al (2011) Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc Natl Acad Sci USA 108(7):2789–2794PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Husebye H et al (2010) The Rab11a GTPase controls toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33(4):583–596PubMedCrossRefGoogle Scholar
  91. 91.
    Wang D et al (2010) Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci USA 107(31):13806–13811PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Schuck S et al (2007) Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic 8(1):47–60PubMedCrossRefGoogle Scholar
  93. 93.
    Chen S et al (2014) SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans. Proc Natl Acad Sci USA 111(43):15432–15437PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Tuma P, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83(3):871–932PubMedCrossRefGoogle Scholar
  95. 95.
    Su T et al (2010) A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 12(12):1143–1153PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Piper RC, Luzio JP (2007) Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes. Curr Opin Cell Biol 19(4):459–465PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Chiang CY et al (2012) Cofactors required for TLR7- and TLR9-dependent innate immune responses. Cell Host Microbe 11(3):306–318PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Husebye H et al (2006) Endocytic pathways regulate toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 25(4):683–692PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Mashukova A, Wald FA, Salas PJ (2011) Tumor necrosis factor alpha and inflammation disrupt the polarity complex in intestinal epithelial cells by a posttranslational mechanism. Mol Cell Biol 31(4):756–765PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    St Johnston D, Ahringer J (2010) Cell polarity in eggs and epithelia: parallels and diversity. Cell 141(5):757–774PubMedCrossRefGoogle Scholar
  101. 101.
    Pasparakis M (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 9(11):778–788PubMedCrossRefGoogle Scholar
  102. 102.
    Eyster KM (2007) The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ 31(1):5–16PubMedCrossRefGoogle Scholar
  103. 103.
    Kagan JC, Medzhitov R (2006) Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell 125(5):943–955PubMedCrossRefGoogle Scholar
  104. 104.
    Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Tabeta K et al (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via toll-like receptors 3, 7 and 9. Nat Immunol 7(2):156–164PubMedCrossRefGoogle Scholar
  106. 106.
    Lee BL, Barton GM (2014) Trafficking of endosomal toll-like receptors. Trends Cell Biol 24(6):360–369PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Brinkmann MM et al (2007) The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 177(2):265–275PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Kim J et al (2013) Acidic amino acid residues in the juxtamembrane region of the nucleotide-sensing TLRs are important for UNC93B1 binding and signaling. J Immunol 190(10):5287–5295PubMedCrossRefGoogle Scholar
  109. 109.
    Itoh H et al (2011) UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling. PLoS One 6(12):e28500PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Funami K et al (2004) The cytoplasmic ‘linker region’ in toll-like receptor 3 controls receptor localization and signaling. Int Immunol 16(8):1143–1154PubMedCrossRefGoogle Scholar
  111. 111.
    Pohar J et al (2012) The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists. J Biol Chem 288(1):442–454PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Huh JW et al (2014) UNC93B1 is essential for the plasma membrane localization and signaling of toll-like receptor 5. Proc Natl Acad Sci USA 111(19):7072–7077PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Qi R, Singh D, Kao CC (2012) Proteolytic processing regulates toll-like receptor 3 stability and endosomal localization. J Biol Chem 287(39):32617–32629PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Pelka K et al (2014) Cutting edge: the UNC93B1 tyrosine-based motif regulates trafficking and TLR responses via separate mechanisms. J Immunol 193(7):3257–3261PubMedCrossRefGoogle Scholar
  115. 115.
    Latz E et al (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277(49):47834–47843PubMedCrossRefGoogle Scholar
  116. 116.
    Ishihara S et al (2004) Essential role of MD-2 in TLR4-dependent signaling during Helicobacter pylori-associated gastritis. J Immunol 173(2):1406–1416PubMedCrossRefGoogle Scholar
  117. 117.
    Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for toll-like receptors and their function. Nat Rev Immunol 12(3):168–179PubMedCentralPubMedGoogle Scholar
  118. 118.
    Zanoni I et al (2011) CD14 controls the LPS-induced endocytosis of toll-like receptor 4. Cell 147(4):868–880PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Jiang Z et al (2005) CD14 is required for MyD88-independent LPS signaling. Nat Immunol 6(6):565–570PubMedCrossRefGoogle Scholar
  120. 120.
    Abreu MT et al (2002) TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 277(23):20431–20437PubMedCrossRefGoogle Scholar
  121. 121.
    Frolova L et al (2008) Expression of toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem 56(3):267–274PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Liaunardy-Jopeace A, Bryant CE, Gay NJ (2014) The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal 7(336):ra70PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesRutgers UniversityNewarkUSA
  2. 2.Rutgers Cancer Institute of New JerseyNew BrunswickUSA

Personalised recommendations