Cellular and Molecular Life Sciences

, Volume 72, Issue 16, pp 3009–3035 | Cite as

Physiological, pathological, and structural implications of non-enzymatic protein–protein interactions of the multifunctional human transglutaminase 2

  • Kajal Kanchan
  • Mónika Fuxreiter
  • László FésüsEmail author


Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca2+-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2’s non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.


Transglutaminase 2 Non-enzymatic interactions Intrinsically disordered regions TRANSDAB database Scaffolding Anti-TG2 antibodies 



This work was supported by the Hungarian Scientific Research Fund (OTKA NK 105046], the New Hungary Development Plan via the TAMOP-4.2.2.A-11/1/KONV-2012-0023 “V´ED ELEM” project, European Union Framework Programme 7 TRANSCOM-IAPP 251506 and TRANSPATH ITN 289964. The support of the Momentum program (LP2012-41) of the Hungarian Academy of Sciences is gratefully acknowledged (M. F.). We thank Dr. Máte Demény for critical reading of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156. doi: 10.1038/nrm1014 PubMedGoogle Scholar
  2. 2.
    Kiraly R, Demeny M, Fesus L (2011) Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J 278(24):4717–4739. doi: 10.1111/j.1742-4658.2011.08345.x PubMedGoogle Scholar
  3. 3.
    Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2):377–396. doi: 10.1042/BJ20021234 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278(24):4704–4716. doi: 10.1111/j.1742-4658.2011.08346.x PubMedCentralPubMedGoogle Scholar
  5. 5.
    Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264(5165):1593–1596PubMedGoogle Scholar
  6. 6.
    Vezza R, Habib A, FitzGerald GA (1999) Differential signaling by the thromboxane receptor isoforms via the novel GTP-binding protein, Gh. J Biol Chem 274(18):12774–12779PubMedGoogle Scholar
  7. 7.
    Baek KJ, Kwon NS, Lee HS, Kim MS, Muralidhar P, Im MJ (1996) Oxytocin receptor couples to the 80-kDa Gh alpha family protein in human myometrium. Biochem J 315(Pt 3):739–744PubMedCentralPubMedGoogle Scholar
  8. 8.
    Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373(Pt 3):793–803. doi: 10.1042/BJ20021084 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M (2006) “Tissue” transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 1757(9–10):1357–1365. doi: 10.1016/j.bbabio.2006.07.007 PubMedGoogle Scholar
  10. 10.
    Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279(23):23863–23868. doi: 10.1074/jbc.M311919200 PubMedGoogle Scholar
  11. 11.
    Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281(9):5532–5538. doi: 10.1074/jbc.M506864200 PubMedGoogle Scholar
  12. 12.
    Csosz E, Mesko B, Fesus L (2009) Transdab wiki: the interactive transglutaminase substrate database on web 2.0 surface. Amino Acids 36(4):615–617. doi: 10.1007/s00726-008-0121-y PubMedGoogle Scholar
  13. 13.
    Lesort M, Attanavanich K, Zhang J, Johnson GV (1998) Distinct nuclear localization and activity of tissue transglutaminase. J Biol Chem 273(20):11991–11994PubMedGoogle Scholar
  14. 14.
    Zemskov EA, Mikhailenko I, Strickland DK, Belkin AM (2007) Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. J Cell Sci 120(Pt 18):3188–3199. doi: 10.1242/jcs.010397 PubMedGoogle Scholar
  15. 15.
    Milakovic T, Tucholski J, McCoy E, Johnson GV (2004) Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J Biol Chem 279(10):8715–8722. doi: 10.1074/jbc.M308479200 PubMedGoogle Scholar
  16. 16.
    Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41(1):1–27PubMedGoogle Scholar
  17. 17.
    Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Billett E, Johnson T, Verderio EA (2009) Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 284(27):18411–18423. doi: 10.1074/jbc.M109.012948 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M (1999) Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 274(43):30707–30714PubMedGoogle Scholar
  19. 19.
    Balklava Z, Verderio E, Collighan R, Gross S, Adams J, Griffin M (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem 277(19):16567–16575. doi: 10.1074/jbc.M109836200 PubMedGoogle Scholar
  20. 20.
    Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. International review of cell and molecular biology 294:1–97. doi: 10.1016/B978-0-12-394305-7.00001-X PubMedCentralPubMedGoogle Scholar
  21. 21.
    Akimov SS, Belkin AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci 114(Pt 16):2989–3000PubMedGoogle Scholar
  22. 22.
    Lortat-Jacob H, Burhan I, Scarpellini A, Thomas A, Imberty A, Vives RR, Johnson T, Gutierrez A, Verderio EA (2012) Transglutaminase-2 interaction with heparin: identification of a heparin binding site that regulates cell adhesion to fibronectin-transglutaminase-2 matrix. J Biol Chem 287(22):18005–18017. doi: 10.1074/jbc.M111.337089 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838PubMedCentralPubMedGoogle Scholar
  24. 24.
    Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285(33):25402–25409. doi: 10.1074/jbc.M109.097162 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Lorand L, Dailey JE, Turner PM (1988) Fibronectin as a carrier for the transglutaminase from human erythrocytes. Proc Natl Acad Sci USA 85(4):1057–1059PubMedCentralPubMedGoogle Scholar
  26. 26.
    Turner PM, Lorand L (1989) Complexation of fibronectin with tissue transglutaminase. Biochemistry 28(2):628–635PubMedGoogle Scholar
  27. 27.
    Radek JT, Jeong JM, Murthy SN, Ingham KC, Lorand L (1993) Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc Natl Acad Sci USA 90(8):3152–3156PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hang J, Zemskov EA, Lorand L, Belkin AM (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280(25):23675–23683. doi: 10.1074/jbc.M503323200 PubMedGoogle Scholar
  29. 29.
    Forsprecher J, Wang Z, Nelea V, Kaartinen MT (2009) Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin. Amino Acids 36(4):747–753. doi: 10.1007/s00726-008-0125-7 PubMedGoogle Scholar
  30. 30.
    Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS (1999) Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J Off Publ Fed Am Soc Exp Biol 13(13):1787–1795Google Scholar
  31. 31.
    Martinez J, Chalupowicz DG, Roush RK, Sheth A, Barsigian C (1994) Transglutaminase-mediated processing of fibronectin by endothelial cell monolayers. Biochemistry 33(9):2538–2545PubMedGoogle Scholar
  32. 32.
    Kleman JP, Aeschlimann D, Paulsson M, van der Rest M (1995) Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry 34(42):13768–13775PubMedGoogle Scholar
  33. 33.
    Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272(36):22736–22741PubMedGoogle Scholar
  34. 34.
    Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98(5):1567–1576PubMedGoogle Scholar
  35. 35.
    Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215. doi: 10.1186/gb-2007-8-5-215 PubMedCentralPubMedGoogle Scholar
  36. 36.
    D’Souza SE, Ginsberg MH, Plow EF (1991) Arginine–glycine–aspartic (RGD): a cell adhesion motif. Trends Biochem Sci 16(7):246–250PubMedGoogle Scholar
  37. 37.
    Verderio E, Nicholas B, Gross S, Griffin M (1998) Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res 239(1):119–138. doi: 10.1006/excr.1997.3874 PubMedGoogle Scholar
  38. 38.
    Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, Blasko B, Becsi B, Erdodi F, Lacy-Hulbert A, Zhang A, Falasca L, Birge RB, Balajthy Z, Melino G, Fesus L, Szondy Z (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182(4):2084–2092. doi: 10.4049/jimmunol.0803444 PubMedGoogle Scholar
  39. 39.
    Jones RA, Nicholas B, Mian S, Davies PJ, Griffin M (1997) Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci 110(Pt 19):2461–2472PubMedGoogle Scholar
  40. 40.
    Zemskov EA, Janiak A, Hang J, Waghray A, Belkin AM (2006) The role of tissue transglutaminase in cell–matrix interactions. Front Biosci J Virtual Libr 11:1057–1076Google Scholar
  41. 41.
    Leiss M, Beckmann K, Giros A, Costell M, Fassler R (2008) The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol 20(5):502–507. doi: 10.1016/ PubMedGoogle Scholar
  42. 42.
    Signorini M, Bortolotti F, Poltronieri L, Bergamini CM (1988) Human erythrocyte transglutaminase: purification and preliminary characterisation. Biol Chem Hoppe Seyler 369(4):275–281PubMedGoogle Scholar
  43. 43.
    Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M (2012) Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. J Biol Chem 287(16):13063–13083. doi: 10.1074/jbc.M111.294819 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Huntington JA (2003) Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost JTH 1(7):1535–1549PubMedGoogle Scholar
  45. 45.
    Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037. doi: 10.1038/nature05817 PubMedGoogle Scholar
  46. 46.
    Verderio E, Scarpellini A (2010) Significance of the syndecan-4-transglutaminase-2 interaction. Sci World J 10:1073–1077. doi: 10.1100/tsw.2010.102 Google Scholar
  47. 47.
    Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037PubMedGoogle Scholar
  48. 48.
    Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 283(30):20937–20947. doi: 10.1074/jbc.M801763200 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312(16):2973–2982. doi: 10.1016/j.yexcr.2006.05.019 PubMedGoogle Scholar
  50. 50.
    Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM (2009) Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 284(24):16693–16703. doi: 10.1074/jbc.M109.010769 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Faverman L, Mikhaylova L, Malmquist J, Nurminskaya M (2008) Extracellular transglutaminase 2 activates beta-catenin signaling in calcifying vascular smooth muscle cells. FEBS Lett 582(10):1552–1557. doi: 10.1016/j.febslet.2008.03.053 PubMedGoogle Scholar
  52. 52.
    Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Investig 108(6):779–784. doi: 10.1172/JCI13992 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Salicioni AM, Gaultier A, Brownlee C, Cheezum MK, Gonias SL (2004) Low-density lipoprotein receptor-related protein-1 promotes beta1 integrin maturation and transport to the cell surface. J Biol Chem 279(11):10005–10012. doi: 10.1074/jbc.M306625200 PubMedGoogle Scholar
  54. 54.
    Salicioni AM, Mizelle KS, Loukinova E, Mikhailenko I, Strickland DK, Gonias SL (2002) The low-density lipoprotein receptor-related protein mediates fibronectin catabolism and inhibits fibronectin accumulation on cell surfaces. J Biol Chem 277(18):16160–16166. doi: 10.1074/jbc.M201401200 PubMedGoogle Scholar
  55. 55.
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494PubMedGoogle Scholar
  56. 56.
    Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 276(21):18415–18422. doi: 10.1074/jbc.M010135200 PubMedGoogle Scholar
  57. 57.
    Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270(10):5331–5338PubMedGoogle Scholar
  58. 58.
    Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS Acta Pathol Microbiol Immunol Scand 107(1):38–44Google Scholar
  59. 59.
    Belkin AM, Zemskov EA, Hang J, Akimov SS, Sikora S, Strongin AY (2004) Cell-surface-associated tissue transglutaminase is a target of MMP-2 proteolysis. Biochemistry 43(37):11760–11769. doi: 10.1021/bi049266z PubMedGoogle Scholar
  60. 60.
    Birckbichler PJ, Bonner RB, Hurst RE, Bane BL, Pitha JV, Hemstreet GP 3rd (2000) Loss of tissue transglutaminase as a biomarker for prostate adenocarcinoma. Cancer 89(2):412–423PubMedGoogle Scholar
  61. 61.
    Lewis TE, Milam TD, Klingler DW, Rao PS, Jaggi M, Smith DJ, Hemstreet GP, Balaji KC (2005) Tissue transglutaminase interacts with protein kinase A anchor protein 13 in prostate cancer. Urol Oncol 23(6):407–412. doi: 10.1016/j.urolonc.2005.04.002 PubMedGoogle Scholar
  62. 62.
    Edwards AS, Scott JD (2000) A-kinase anchoring proteins: protein kinase A and beyond. Curr Opin Cell Biol 12(2):217–221PubMedGoogle Scholar
  63. 63.
    Michel JJ, Scott JD (2002) AKAP-mediated signal transduction. Annu Rev Pharmacol Toxicol 42:235–257. doi: 10.1146/annurev.pharmtox.42.083101.135801 PubMedGoogle Scholar
  64. 64.
    Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272(2):952–960PubMedGoogle Scholar
  65. 65.
    Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16(11):6486–6493PubMedCentralPubMedGoogle Scholar
  66. 66.
    Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362. doi: 10.1006/jmbi.1999.3310 PubMedGoogle Scholar
  67. 67.
    Wang Y, Ande SR, Mishra S (2012) Phosphorylation of transglutaminase 2 (TG2) at serine-216 plays a role in TG2-mediated activation of nuclear factor-kappa B and in the downregulation of PTEN. BMC Cancer 12(1):277. doi: 10.1186/1471-2407-12-277 PubMedCentralPubMedGoogle Scholar
  68. 68.
    McConnachie G, Langeberg LK, Scott JD (2006) AKAP signaling complexes: getting to the heart of the matter. Trends Mol Med 12(7):317–323. doi: 10.1016/j.molmed.2006.05.008 PubMedGoogle Scholar
  69. 69.
    Hodge JC, Bub J, Kaul S, Kajdacsy-Balla A, Lindholm PF (2003) Requirement of RhoA activity for increased nuclear factor kappaB activity and PC-3 human prostate cancer cell invasion. Cancer Res 63(6):1359–1364PubMedGoogle Scholar
  70. 70.
    Singh US, Pan J, Kao YL, Joshi S, Young KL, Baker KM (2003) Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Biol Chem 278(1):391–399. doi: 10.1074/jbc.M206361200 PubMedGoogle Scholar
  71. 71.
    Diviani D, Soderling J, Scott JD (2001) AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem 276(47):44247–44257. doi: 10.1074/jbc.M106629200 PubMedGoogle Scholar
  72. 72.
    Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM (2004) A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 15(10):4682–4694. doi: 10.1091/mbc.E04-04-0353 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva I, Garcia JG, Verin AD (2004) Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol 201(1):55–70. doi: 10.1002/jcp.20055 PubMedGoogle Scholar
  74. 74.
    Verma A, Wang H, Manavathi B, Fok JY, Mann AP, Kumar R, Mehta K (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66(21):10525–10533. doi: 10.1158/0008-5472.CAN-06-2387 PubMedGoogle Scholar
  75. 75.
    Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K (2007) Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 26(17):2459–2470. doi: 10.1038/sj.onc.1210035 PubMedGoogle Scholar
  76. 76.
    Mehta K, Fok JY, Mangala LS (2006) Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci J Virtual Libr 11:173–185Google Scholar
  77. 77.
    Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal BB, Mehta K (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res 66(17):8788–8795. doi: 10.1158/0008-5472.CAN-06-1457 PubMedGoogle Scholar
  78. 78.
    Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280(5369):1614–1617PubMedGoogle Scholar
  79. 79.
    Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378PubMedGoogle Scholar
  80. 80.
    Verma A, Guha S, Wang H, Fok JY, Koul D, Abbruzzese J, Mehta K (2008) Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells. Clin Cancer Res 14(7):1997–2005. doi: 10.1158/1078-0432.CCR-07-1533 PubMedGoogle Scholar
  81. 81.
    Boroughs LK, Antonyak MA, Johnson JL, Cerione RA (2011) A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration. J Biol Chem 286(43):37094–37107. doi: 10.1074/jbc.M111.242438 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Yi SJ, Groffen J, Heisterkamp N (2009) Transglutaminase 2 regulates the GTPase-activating activity of Bcr. J Biol Chem 284(51):35645–35651. doi: 10.1074/jbc.M109.062240 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Yi SJ, Groffen J, Heisterkamp N (2011) Bcr is a substrate for transglutaminase 2 cross-linking activity. BMC Biochem 12:8. doi: 10.1186/1471-2091-12-8 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Folkman J (2006) Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res 312(5):594–607. doi: 10.1016/j.yexcr.2005.11.015 PubMedGoogle Scholar
  85. 85.
    Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 103(24):9023–9028. doi: 10.1073/pnas.0602681103 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Faye C, Inforzato A, Bignon M, Hartmann DJ, Muller L, Ballut L, Olsen BR, Day AJ, Ricard-Blum S (2010) Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochem J 427(3):467–475. doi: 10.1042/BJ20091594 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Yang L, Friedland S, Corson N, Xu L (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74(4):1022–1031. doi: 10.1158/0008-5472.CAN-13-1268 PubMedCentralPubMedGoogle Scholar
  88. 88.
    L’Heureux DZ, Rothman VL, Tuszynski GP (2010) The interaction of angiocidin with tissue transglutaminase. Exp Mol Pathol 88(1):15–25. doi: 10.1016/j.yexmp.2009.11.001 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Feng JF, Gray CD, Im MJ (1999) Alpha 1B-adrenoceptor interacts with multiple sites of transglutaminase II: characteristics of the interaction in binding and activation. Biochemistry 38(7):2224–2232. doi: 10.1021/bi9823176 PubMedGoogle Scholar
  90. 90.
    Chen S, Lin F, Iismaa S, Lee KN, Birckbichler PJ, Graham RM (1996) Alpha1-adrenergic receptor signaling via Gh is subtype specific and independent of its transglutaminase activity. J Biol Chem 271(50):32385–32391PubMedGoogle Scholar
  91. 91.
    Im MJ, Russell MA, Feng JF (1997) Transglutaminase II: a new class of GTP-binding protein with new biological functions. Cell Signal 9(7):477–482PubMedGoogle Scholar
  92. 92.
    Feng JF, Rhee SG, Im MJ (1996) Evidence that phospholipase delta1 is the effector in the Gh (transglutaminase II)-mediated signaling. J Biol Chem 271(28):16451–16454PubMedGoogle Scholar
  93. 93.
    Baek KJ, Das T, Gray C, Antar S, Murugesan G, Im MJ (1993) Evidence that the Gh protein is a signal mediator from alpha 1-adrenoceptor to a phospholipase C. I. Identification of alpha 1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart. J Biol Chem 268(36):27390–27397PubMedGoogle Scholar
  94. 94.
    Hwang KC, Gray CD, Sivasubramanian N, Im MJ (1995) Interaction site of GTP binding Gh (transglutaminase II) with phospholipase C. J Biol Chem 270(45):27058–27062PubMedGoogle Scholar
  95. 95.
    Kang SK, Kim DK, Damron DS, Baek KJ, Im MJ (2002) Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1. Biochem Biophys Res Commun 293(1):383–390. doi: 10.1016/S0006-291X(02)00197-3 PubMedGoogle Scholar
  96. 96.
    Park ES, Won JH, Han KJ, Suh PG, Ryu SH, Lee HS, Yun HY, Kwon NS, Baek KJ (1998) Phospholipase C-delta1 and oxytocin receptor signalling: evidence of its role as an effector. Biochem J 331(Pt 1):283–289PubMedCentralPubMedGoogle Scholar
  97. 97.
    Feng JF, Readon M, Yadav SP, Im MJ (1999) Calreticulin down-regulates both GTP binding and transglutaminase activities of transglutaminase II. Biochemistry 38(33):10743–10749. doi: 10.1021/bi9905009 PubMedGoogle Scholar
  98. 98.
    Baek KJ, Das T, Gray CD, Desai S, Hwang KC, Gacchui R, Ludwig M, Im MJ (1996) A 50-kDa protein modulates guanine nucleotide binding of transglutaminase II. Biochemistry 35(8):2651–2657. doi: 10.1021/bi9522965 PubMedGoogle Scholar
  99. 99.
    Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386(6627):843–847. doi: 10.1038/386843a0 PubMedGoogle Scholar
  100. 100.
    Dedhar S (1994) Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci 19(7):269–271PubMedGoogle Scholar
  101. 101.
    Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ et al (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367(6462):480–483. doi: 10.1038/367480a0 PubMedGoogle Scholar
  102. 102.
    Takeuchi Y, Ohashi H, Birckbichler PJ, Ikejima T (1998) Nuclear translocation of tissue type transglutaminase during sphingosine-induced cell death: a novel aspect of the enzyme with DNA hydrolytic activity. Z Naturforsch C 53(5–6):352–358PubMedGoogle Scholar
  103. 103.
    Campisi A, Caccamo D, Raciti G, Cannavo G, Macaione V, Curro M, Macaione S, Vanella A, Ientile R (2003) Glutamate-induced increases in transglutaminase activity in primary cultures of astroglial cells. Brain Res 978(1–2):24–30 (pii: S0006899303027252) PubMedGoogle Scholar
  104. 104.
    Balajthy Z, Csomos K, Vamosi G, Szanto A, Lanotte M, Fesus L (2006) Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions. Blood 108(6):2045–2054. doi: 10.1182/blood-2004-02-007948 PubMedGoogle Scholar
  105. 105.
    Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278(24):4756–4767. doi: 10.1111/j.1742-4658.2011.08409.x PubMedGoogle Scholar
  106. 106.
    Filiano AJ, Bailey CD, Tucholski J, Gundemir S, Johnson GV (2008) Transglutaminase 2 protects against ischemic insult, interacts with HIF1beta, and attenuates HIF1 signaling. FASEB J 22(8):2662–2675. doi: 10.1096/fj.07-097709 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Oliverio S, Amendola A, Di Sano F, Farrace MG, Fesus L, Nemes Z, Piredda L, Spinedi A, Piacentini M (1997) Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 17(10):6040–6048PubMedCentralPubMedGoogle Scholar
  108. 108.
    Luciani A, Villella VR, Vasaturo A, Giardino I, Raia V, Pettoello-Mantovani M, D’Apolito M, Guido S, Leal T, Quaratino S, Maiuri L (2009) SUMOylation of tissue transglutaminase as link between oxidative stress and inflammation. J Immunol 183(4):2775–2784. doi: 10.4049/jimmunol.0900993 PubMedGoogle Scholar
  109. 109.
    Peng X, Zhang Y, Zhang H, Graner S, Williams JF, Levitt ML, Lokshin A (1999) Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett 446(1):35–39PubMedGoogle Scholar
  110. 110.
    Singh US, Li Q, Cerione R (1998) Identification of the eukaryotic initiation factor 5A as a retinoic acid-stimulated cellular binding partner for tissue transglutaminase II. J Biol Chem 273(4):1946–1950PubMedGoogle Scholar
  111. 111.
    Bernhard EJ, Gruber SB, Muschel RJ (1994) Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 91(10):4293–4297PubMedCentralPubMedGoogle Scholar
  112. 112.
    Ahn JS, Kim MK, Hahn JH, Park JH, Park KH, Cho BR, Park SB, Kim DJ (2008) Tissue transglutaminase-induced down-regulation of matrix metalloproteinase-9. Biochem Biophys Res Commun 376(4):743–747. doi: 10.1016/j.bbrc.2008.09.048 PubMedGoogle Scholar
  113. 113.
    Condello S, Cao L, Matei D (2013) Tissue transglutaminase regulates beta-catenin signaling through a c-Src-dependent mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 27(8):3100–3112. doi: 10.1096/fj.12-222620 Google Scholar
  114. 114.
    Tolentino PJ, Waghray A, Wang KK, Hayes RL (2004) Increased expression of tissue-type transglutaminase following middle cerebral artery occlusion in rats. J Neurochem 89(5):1301–1307. doi: 10.1111/j.1471-4159.2004.02436.x PubMedGoogle Scholar
  115. 115.
    Ientile R, Caccamo D, Marciano MC, Curro M, Mannucci C, Campisi A, Calapai G (2004) Transglutaminase activity and transglutaminase mRNA transcripts in gerbil brain ischemia. Neurosci Lett 363(2):173–177. doi: 10.1016/j.neulet.2004.04.003 PubMedGoogle Scholar
  116. 116.
    Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27(17):6229–6242. doi: 10.1128/MCB.02246-06 PubMedCentralPubMedGoogle Scholar
  117. 117.
    Verderio EA, Johnson TS, Griffin M (2005) Transglutaminases in wound healing and inflammation. Prog Exp Tumor Res 38:89–114. doi: 10.1159/000084235 PubMedGoogle Scholar
  118. 118.
    Verderio EA, Johnson T, Griffin M (2004) Tissue transglutaminase in normal and abnormal wound healing: review article. Amino Acids 26(4):387–404. doi: 10.1007/s00726-004-0094-4 PubMedGoogle Scholar
  119. 119.
    Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci J Virtual Libr 11:3026–3035 (pii: 3030) Google Scholar
  120. 120.
    Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D’Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875. doi: 10.1038/ncb2090 PubMedGoogle Scholar
  121. 121.
    Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M, Cexus ON, Londei M, Quaratino S (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180(11):7697–7705 (pii: 180/11/7697) PubMedGoogle Scholar
  122. 122.
    Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ, Ro JY, Jeoung D (2008) Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol Immunol 45(9):2537–2547. doi: 10.1016/j.molimm.2008.01.008 PubMedGoogle Scholar
  123. 123.
    Sohn J, Kim TI, Yoon YH, Kim JY, Kim SY (2003) Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Investig 111(1):121–128. doi: 10.1172/JCI15937 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Cheng G, Diebold BA, Hughes Y, Lambeth JD (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281(26):17718–17726. doi: 10.1074/jbc.M512751200 PubMedGoogle Scholar
  125. 125.
    Kim SY, Grant P, Lee JH, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem 274(43):30715–30721PubMedGoogle Scholar
  126. 126.
    Wilhelmus MM, Grunberg SC, Bol JG, van Dam AM, Hoozemans JJ, Rozemuller AJ, Drukarch B (2009) Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer’s disease brain. Brain Pathol 19(4):612–622. doi: 10.1111/j.1750-3639.2008.00197.x PubMedGoogle Scholar
  127. 127.
    McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJ, Antonyak MA, Cerione RA, Li B, Starkov A, Chaturvedi RK, Beal MF, Coppola G, Geschwind DH, Ryu H, Xia L, Iismaa SE, Pallos J, Pasternack R, Hils M, Fan J, Raymond LA, Marsh JL, Thompson LM, Ratan RR (2010) Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol Med 2(9):349–370. doi: 10.1002/emmm.201000084 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Munsie L, Caron N, Atwal RS, Marsden I, Wild EJ, Bamburg JR, Tabrizi SJ, Truant R (2011) Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum Mol Genet 20(10):1937–1951. doi: 10.1093/hmg/ddr075 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Piredda L, Farrace MG, Lo Bello M, Malorni W, Melino G, Petruzzelli R, Piacentini M (1999) Identification of ‘tissue’ transglutaminase binding proteins in neural cells committed to apoptosis. FASEB J Off Publ Fed Am Soc Exp Biol 13(2):355–364Google Scholar
  130. 130.
    Gutekunst CA, Levey AI, Heilman CJ, Whaley WL, Yi H, Nash NR, Rees HD, Madden JJ, Hersch SM (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl Acad Sci USA 92(19):8710–8714PubMedCentralPubMedGoogle Scholar
  131. 131.
    Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci 18(4):1261–1269PubMedGoogle Scholar
  132. 132.
    Billett HH, Puszkin EG (1991) The red cell membrane contains calmodulin-regulated crosslinking and proteolytic activity. Hematol Pathol 5(4):185–193PubMedGoogle Scholar
  133. 133.
    Zainelli GM, Ross CA, Troncoso JC, Fitzgerald JK, Muma NA (2004) Calmodulin regulates transglutaminase 2 cross-linking of huntingtin. J Neurosci 24(8):1954–1961. doi: 10.1523/JNEUROSCI.4424-03.2004 PubMedGoogle Scholar
  134. 134.
    Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271(31):18817–18824PubMedGoogle Scholar
  135. 135.
    Kim JH, Nam KH, Kwon OS, Kim IG, Bustin M, Choy HE, Park SC (2002) Histone cross-linking by transglutaminase. Biochem Biophys Res Commun 293(5):1453–1457. doi: 10.1016/S0006-291X(02)00393-5 PubMedGoogle Scholar
  136. 136.
    Shimizu T, Hozumi K, Horiike S, Nunomura K, Ikegami S, Takao T, Shimonishi Y (1996) A covalently crosslinked histone. Nature 380(6569):32. doi: 10.1038/380032a0 PubMedGoogle Scholar
  137. 137.
    Hand D, Perry MJ, Haynes LW (1993) Cellular transglutaminases in neural development. Int J Dev Neurosci Off J Int Soc Dev Neurosci 11(6):709–720Google Scholar
  138. 138.
    Del Duca S, Beninati S, Serafini-Fracassini D (1995) Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem J 305(Pt 1):233–237PubMedCentralPubMedGoogle Scholar
  139. 139.
    Matthews HR (1993) Polyamines, chromatin structure and transcription. BioEssays News Rev Mol Cell Dev Biol 15(8):561–566. doi: 10.1002/bies.950150811 Google Scholar
  140. 140.
    Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579(15):3297–3302. doi: 10.1016/j.febslet.2005.03.063 PubMedGoogle Scholar
  141. 141.
    Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279(52):54783–54792. doi: 10.1074/jbc.M410938200 PubMedGoogle Scholar
  142. 142.
    Porter GW, Khuri FR, Fu H (2006) Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Semin Cancer Biol 16(3):193–202. doi: 10.1016/j.semcancer.2006.03.003 PubMedGoogle Scholar
  143. 143.
    Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381(Pt 2):329–342. doi: 10.1042/BJ20031332 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Mishra S, Murphy LJ (2006) Phosphorylation of transglutaminase 2 by PKA at Ser216 creates 14-3-3 binding sites. Biochem Biophys Res Commun 347(4):1166–1170. doi: 10.1016/j.bbrc.2006.07.041 PubMedGoogle Scholar
  145. 145.
    Caccamo D, Condello S, Ferlazzo N, Curro M, Griffin M, Ientile R (2013) Transglutaminase 2 interaction with small heat shock proteins mediate cell survival upon excitotoxic stress. Amino Acids 44(1):151–159. doi: 10.1007/s00726-011-1083-z PubMedGoogle Scholar
  146. 146.
    Stetler RA, Gao Y, Signore AP, Cao G, Chen J (2009) HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med 9(7):863–872PubMedCentralPubMedGoogle Scholar
  147. 147.
    Caccamo D, Curro M, Cusumano G, Crisafulli G, Ientile R (2004) Excitotoxin-induced changes in transglutaminase during differentiation of cerebellar granule cells. Amino Acids 26(2):197–201. doi: 10.1007/s00726-003-0007-y PubMedGoogle Scholar
  148. 148.
    Ientile R, Caccamo D, Macaione V, Torre V, Macaione S (2002) NMDA-evoked excitotoxicity increases tissue transglutaminase in cerebellar granule cells. Neuroscience 115(3):723–729PubMedGoogle Scholar
  149. 149.
    Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187. doi: 10.1038/417182a PubMedGoogle Scholar
  150. 150.
    D’Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, Falasca L, Nardacci R, Piacentini M (2012) Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 19(7):1228–1238. doi: 10.1038/cdd.2012.2 PubMedCentralPubMedGoogle Scholar
  151. 151.
    Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28(18):3442–3444PubMedCentralPubMedGoogle Scholar
  152. 152.
    Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Mol Syst Biol 5:260. doi: 10.1038/msb.2009.17 PubMedCentralPubMedGoogle Scholar
  153. 153.
    Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA 91(15):7296–7300PubMedCentralPubMedGoogle Scholar
  154. 154.
    Noguchi K, Ishikawa K, Yokoyama K, Ohtsuka T, Nio N, Suzuki E (2001) Crystal structure of red sea bream transglutaminase. J Biol Chem 276(15):12055–12059. doi: 10.1074/jbc.M009862200 PubMedGoogle Scholar
  155. 155.
    Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747. doi: 10.1073/pnas.042454899 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327. doi: 10.1371/journal.pbio.0050327 PubMedCentralPubMedGoogle Scholar
  157. 157.
    Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM (2003) Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme. J Biol Chem 278(26):23834–23841. doi: 10.1074/jbc.M301162200 PubMedGoogle Scholar
  158. 158.
    Fox BA, Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1999) Identification of the calcium binding site and a novel ytterbium site in blood coagulation factor XIII by X-ray crystallography. J Biol Chem 274(8):4917–4923PubMedGoogle Scholar
  159. 159.
    Kiraly R, Csosz E, Kurtan T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabo IR, Keresztessy Z, Fesus L (2009) Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 276(23):7083–7096. doi: 10.1111/j.1742-4658.2009.07420.x PubMedGoogle Scholar
  160. 160.
    Bergamini CM, Dondi A, Lanzara V, Squerzanti M, Cervellati C, Montin K, Mischiati C, Tasco G, Collighan R, Griffin M, Casadio R (2010) Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 39(1):297–304. doi: 10.1007/s00726-009-0442-5 PubMedGoogle Scholar
  161. 161.
    Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ (2012) Attributes of short linear motifs. Mol Biosyst 8(1):268–281. doi: 10.1039/c1mb05231d PubMedGoogle Scholar
  162. 162.
    Fuxreiter M, Tompa P, Simon I (2007) Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23(8):950–956. doi: 10.1093/bioinformatics/btm035 PubMedGoogle Scholar
  163. 163.
    Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi: 10.1016/j.jmb.2004.02.002 PubMedGoogle Scholar
  164. 164.
    Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52(4):573–584. doi: 10.1002/prot.10437 PubMedGoogle Scholar
  165. 165.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. doi: 10.1093/bioinformatics/bti541 PubMedGoogle Scholar
  166. 166.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839. doi: 10.1016/j.jmb.2005.01.071 PubMedGoogle Scholar
  167. 167.
    Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, Speck T, Kruger D, Grebnev G, Kuban M, Strumillo M, Uyar B, Budd A, Altenberg B, Seiler M, Chemes LB, Glavina J, Sanchez IE, Diella F, Gibson TJ (2014) The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 42(Database issue):D259–D266. doi: 10.1093/nar/gkt1047 PubMedCentralPubMedGoogle Scholar
  168. 168.
    Corti A, Curnis F (2011) Isoaspartate-dependent molecular switches for integrin-ligand recognition. J Cell Sci 124(Pt 4):515–522. doi: 10.1242/jcs.077172 PubMedGoogle Scholar
  169. 169.
    Wang Z, Telci D, Griffin M (2011) Importance of syndecan-4 and syndecan-2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase–fibronectin complex. Exp Cell Res 317(3):367–381. doi: 10.1016/j.yexcr.2010.10.015 PubMedGoogle Scholar
  170. 170.
    Echtermeyer F, Harendza T, Hubrich S, Lorenz A, Herzog C, Mueller M, Schmitz M, Grund A, Larmann J, Stypmann J, Schieffer B, Lichtinghagen R, Hilfiker-Kleiner D, Wollert KC, Heineke J, Theilmeier G (2011) Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovasc Res 92(1):123–131. doi: 10.1093/cvr/cvr149 PubMedGoogle Scholar
  171. 171.
    Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE Signal Transduct Knowl Environ 308:cm10. doi: 10.1126/stke.2005/308/cm10
  172. 172.
    Hao N, Behar M, Elston TC, Dohlman HG (2007) Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene 26(22):3254–3266. doi: 10.1038/sj.onc.1210416 PubMedGoogle Scholar
  173. 173.
    Braun RFaW (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem 19(3):319–333. doi: 10.1002/(SICI)1096-987X(199802)19:3<319:AID-JCC6>3.0.CO;2-W Google Scholar
  174. 174.
    Stamnaes J, Fleckenstein B, Lund-Johansen F, Sollid LM (2008) The monoclonal antibody 6B9 recognizes CD44 and not cell surface transglutaminase 2. Scand J Immunol 68(5):534–542. doi: 10.1111/j.1365-3083.2008.02173.x PubMedGoogle Scholar
  175. 175.
    Hodrea J, Demeny MA, Majai G, Sarang Z, Korponay-Szabo IR, Fesus L (2010) Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett 130(1–2):74–81. doi: 10.1016/j.imlet.2009.12.010 PubMedGoogle Scholar
  176. 176.
    Teesalu K, Panarina M, Uibo O, Uibo R, Utt M (2012) Autoantibodies from patients with celiac disease inhibit transglutaminase 2 binding to heparin/heparan sulfate and interfere with intestinal epithelial cell adhesion. Amino Acids 42(2–3):1055–1064. doi: 10.1007/s00726-011-1020-1 PubMedGoogle Scholar
  177. 177.
    Halttunen T, Maki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116(3):566–572PubMedGoogle Scholar
  178. 178.
    Myrsky E, Kaukinen K, Syrjanen M, Korponay-Szabo IR, Maki M, Lindfors K (2008) Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clin Exp Immunol 152(1):111–119. doi: 10.1111/j.1365-2249.2008.03600.x PubMedCentralPubMedGoogle Scholar
  179. 179.
    Simon-Vecsei Z, Kiraly R, Bagossi P, Toth B, Dahlbom I, Caja S, Csosz E, Lindfors K, Sblattero D, Nemes E, Maki M, Fesus L, Korponay-Szabo IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA 109(2):431–436. doi: 10.1073/pnas.1107811108 PubMedCentralPubMedGoogle Scholar
  180. 180.
    Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190(12):5981–5991. doi: 10.4049/jimmunol.1300183 PubMedCentralPubMedGoogle Scholar
  181. 181.
    Mehta K, Kumar A, Kim HI (2010) Transglutaminase 2: a multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 80(12):1921–1929. doi: 10.1016/j.bcp.2010.06.029 PubMedGoogle Scholar
  182. 182.
    Kim Y et al (2010) Transglutaminase II interacts with rac1, regulates production of reactive oxygen species, expression of snail, secretion of Th2 cytokines and mediates in vitro and in vivo allergic inflammation. Mol Immunol 47:1010–1022. doi: 10.1016/j.molimm.2009.11.017 PubMedGoogle Scholar
  183. 183.
    Trejo Skalli AV et al. (1995) Association of a transglutaminase-related antigen with intermediate filaments. Proc Natl Acad Sci USA 92:48940–48944Google Scholar
  184. 184.
    Korponay-Szabó IR et al (2008) Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr 46:253–261. doi: 10.1097/MPG.0b013e31815ee555 PubMedGoogle Scholar
  185. 185.
    Iversen R et al (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190:5981–5991. doi: 10.4049/jimmunol.1300183 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Kajal Kanchan
    • 1
    • 4
  • Mónika Fuxreiter
    • 2
  • László Fésüs
    • 1
    • 3
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  2. 2.MTA-DE Momentum Laboratory of Protein DynamicsUniversity of DebrecenDebrecenHungary
  3. 3.MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of SciencesDebrecenHungary
  4. 4.Sainsbury LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations