Cellular and Molecular Life Sciences

, Volume 72, Issue 14, pp 2677–2695 | Cite as

Lipid droplet dynamics in budding yeast

  • Chao-Wen WangEmail author


Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast.


Endoplasmic reticulum Triacylglycerol Sterol ester Phospholipid Membrane Metabolism 



Acyl-CoA:cholesterol acyltransferase


Adipose triacylglyceride lipase


CTP:phosphocholine cytidylyltransferase


Coenzyme A


Cytidine diphosphate-diacylglycerol


Cytidine triphosphate




Acyl-CoA:diacylglycerol acyltransferase


Endoplasmic reticulum


ER-associated protein degradation


Fatty acid


Fat-inducing transcript


Glycerol-3-phosphate acyltransferase


Lipid droplet






Phosphatidic acid


Phosphatidate phosphatase










Sterol ester





I thank Dr. Rey-Huei Chen at the Institute of Molecular Biology, Academia Sinica, for reading the manuscript and her helpful commentary and Miss Yu-Chun Weng at the Institute of Plant and Microbial Biology, Academia Sinica, for help with art and design work. This work was supported by an intramural fund from Academia Sinica and the grants NSC 101-2311-B-001-028-MY3 and 103-2633-B-001-003 from the Ministry of Science and Technology, Taiwan.


  1. 1.
    Pol A, Gross SP, Parton RG (2014) Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204(5):635–646. doi: 10.1083/jcb.201311051 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. doi: 10.1146/annurev-biochem-061009-102430 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat–store ‘em up or burn ‘em down. Genetics 193(1):1–50. doi: 10.1534/genetics.112.143362 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791(6):467–473. doi: 10.1016/j.bbalip.2008.11.001 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P, Chapman KD (2007) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48(4):837–847. doi: 10.1194/jlr.M600413-JLR200 PubMedGoogle Scholar
  6. 6.
    Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A (1821) Daum G (2012) Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 4:647–653. doi: 10.1016/j.bbalip.2012.01.015 Google Scholar
  7. 7.
    Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283(25):17065–17074. doi: 10.1074/jbc.M800401200 PubMedGoogle Scholar
  8. 8.
    Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146(4):741–754PubMedCentralPubMedGoogle Scholar
  9. 9.
    Grillitsch K, Connerth M, Kofeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 1811(12):1165–1176. doi: 10.1016/j.bbalip.2011.07.015 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H, Kohlwein SD (2013) The emergence of lipid droplets in yeast: current status and experimental approaches. Curr Genet 59(4):231–242. doi: 10.1007/s00294-013-0407-9 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Thiam AR, Farese RV Jr, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14(12):775–786. doi: 10.1038/nrm3699 PubMedGoogle Scholar
  12. 12.
    Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180(3):473–482. doi: 10.1083/jcb.200711136 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P, Huang X, Parton RG, Wenk MR, Walther TC, Yang H (2011) A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7(7):e1002201. doi: 10.1371/journal.pgen.1002201 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Wang CW, Miao YH, Chang YS (2014) Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J Cell Sci 127(Pt 6):1214–1228. doi: 10.1242/jcs.137737 PubMedGoogle Scholar
  15. 15.
    Wang CW, Miao YH, Chang YS (2014) A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Biol 206(3):357–366. doi: 10.1083/jcb.201404115 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Connerth M, Czabany T, Wagner A, Zellnig G, Leitner E, Steyrer E, Daum G (2010) Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285(35):26832–26841. doi: 10.1074/jbc.M110.122085 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277(8):6478–6482. doi: 10.1074/jbc.M109109200 PubMedGoogle Scholar
  18. 18.
    Sorger D, Daum G (2002) Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184(2):519–524PubMedCentralPubMedGoogle Scholar
  19. 19.
    Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97(12):6487–6492. doi: 10.1073/pnas.120067297 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275(21):15609–15612. doi: 10.1074/jbc.C000144200 PubMedGoogle Scholar
  21. 21.
    Yu C, Kennedy NJ, Chang CC, Rothblatt JA (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem 271(39):24157–24163PubMedGoogle Scholar
  22. 22.
    Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285(21):15663–15667. doi: 10.1074/jbc.R110.118356 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277(11):8877–8881. doi: 10.1074/jbc.M111646200 PubMedGoogle Scholar
  24. 24.
    Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process. Science 272(5266):1353–1356PubMedGoogle Scholar
  25. 25.
    Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G (2000) Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem FEBS 267(4):1075–1082Google Scholar
  26. 26.
    Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47(3):157–171PubMedGoogle Scholar
  27. 27.
    Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993) Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268(15):10946–10952PubMedGoogle Scholar
  28. 28.
    Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM (2001) Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21(17):5710–5722PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281(1):491–500. doi: 10.1074/jbc.M508414200 PubMedGoogle Scholar
  30. 30.
    Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, Kohlwein SD, von Grunberg HH (2008) Quantitative modeling of triacylglycerol homeostasis in yeast–metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. The FEBS journal 275(22):5552–5563. doi: 10.1111/j.1742-4658.2008.06681.x PubMedGoogle Scholar
  31. 31.
    Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem FEBS 266(1):1–16Google Scholar
  32. 32.
    Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276(45):41710–41716. doi: 10.1074/jbc.M104749200 PubMedGoogle Scholar
  33. 33.
    Zaremberg V, McMaster CR (2002) Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem 277(41):39035–39044. doi: 10.1074/jbc.M207753200 PubMedGoogle Scholar
  34. 34.
    Marr N, Foglia J, Terebiznik M, Athenstaedt K, Zaremberg V (2012) Controlling lipid fluxes at glycerol-3-phosphate acyltransferase step in yeast: unique contribution of Gat1p to oleic acid-induced lipid particle formation. J Biol Chem 287(13):10251–10264. doi: 10.1074/jbc.M111.314112 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007) SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem 282(42):30845–30855. doi: 10.1074/jbc.M702719200 PubMedGoogle Scholar
  36. 36.
    Ayciriex S, Le Guedard M, Camougrand N, Velours G, Schoene M, Leone S, Wattelet-Boyer V, Dupuy JW, Shevchenko A, Schmitter JM, Lessire R, Bessoule JJ, Testet E (2012) YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell 23(2):233–246. doi: 10.1091/mbc.E11-07-0650 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Han GS, Wu WI, Carman GM (2006) The Saccharomyces cerevisiae Lipin homolog is a Mg2+ -dependent phosphatidate phosphatase enzyme. J Biol Chem 281(14):9210–9218. doi: 10.1074/jbc.M600425200 PubMedCentralPubMedGoogle Scholar
  38. 38.
    O’Hara L, Han GS, Peak-Chew S, Grimsey N, Carman GM, Siniossoglou S (2006) Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+ -dependent phosphatidate phosphatase. J Biol Chem 281(45):34537–34548. doi: 10.1074/jbc.M606654200 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Carman GM, Han GS (2006) Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 31(12):694–699. doi: 10.1016/j.tibs.2006.10.003 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem 271(23):13293–13296PubMedGoogle Scholar
  41. 41.
    Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38(5–6):361–399PubMedGoogle Scholar
  42. 42.
    Hirsch JP, Henry SA (1986) Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol Cell Biol 6(10):3320–3328PubMedCentralPubMedGoogle Scholar
  43. 43.
    Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304(5677):1644–1647. doi: 10.1126/science.1096083 PubMedGoogle Scholar
  44. 44.
    Han GS, O’Hara L, Siniossoglou S, Carman GM (2008) Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J Biol Chem 283(29):20443–20453. doi: 10.1074/jbc.M802866200 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Fakas S, Qiu Y, Dixon JL, Han GS, Ruggles KV, Garbarino J, Sturley SL, Carman GM (2011) Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast. J Biol Chem 286(33):29074–29085. doi: 10.1074/jbc.M111.258798 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD (2005) The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics MCP 4(5):662–672. doi: 10.1074/mcp.M400123-MCP200 Google Scholar
  47. 47.
    Gibellini F, Smith TK (2010) The Kennedy pathway–De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62(6):414–428. doi: 10.1002/iub.337 PubMedGoogle Scholar
  48. 48.
    Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190(2):317–349. doi: 10.1534/genetics.111.130286 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175(10):2853–2858PubMedCentralPubMedGoogle Scholar
  50. 50.
    Jandrositz A, Turnowsky F, Hogenauer G (1991) The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene 107(1):155–160PubMedGoogle Scholar
  51. 51.
    Leber R, Landl K, Zinser E, Ahorn H, Spok A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9(2):375–386PubMedCentralPubMedGoogle Scholar
  52. 52.
    Shi Z, Buntel CJ, Griffin JH (1994) Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 91(15):7370–7374PubMedCentralPubMedGoogle Scholar
  53. 53.
    Milla P, Athenstaedt K, Viola F, Oliaro-Bosso S, Kohlwein SD, Daum G, Balliano G (2002) Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. J Biol Chem 277(4):2406–2412. doi: 10.1074/jbc.M104195200 PubMedGoogle Scholar
  54. 54.
    Foresti O, Ruggiano A, Hannibal-Bach HK, Ejsing CS, Carvalho P (2013) Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. eLife 2:e00953. doi: 10.7554/eLife.00953 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124(Pt 14):2424–2437. doi: 10.1242/jcs.076836 PubMedGoogle Scholar
  56. 56.
    Guo Y, Cordes KR, Farese RV Jr, Walther TC (2009) Lipid droplets at a glance. J Cell Sci 122(Pt 6):749–752. doi: 10.1242/jcs.037630 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Zanghellini J, Wodlei F, von Grunberg HH (2010) Phospholipid demixing and the birth of a lipid droplet. J Theor Biol 264(3):952–961. doi: 10.1016/j.jtbi.2010.02.025 PubMedGoogle Scholar
  58. 58.
    Hussain MM (2000) A proposed model for the assembly of chylomicrons. Atherosclerosis 148(1):1–15PubMedGoogle Scholar
  59. 59.
    Sorger D, Athenstaedt K, Hrastnik C, Daum G (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 279(30):31190–31196. doi: 10.1074/jbc.M403251200 PubMedGoogle Scholar
  60. 60.
    Wang CW, Lee SC (2012) The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J Cell Sci 125(Pt 12):2930–2939. doi: 10.1242/jcs.100230 PubMedGoogle Scholar
  61. 61.
    Choudhary V, Jacquier N, Schneiter R (2011) The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Commun Integr Biol 4(6):781–784PubMedCentralPubMedGoogle Scholar
  62. 62.
    Pagac M, de la Mora HV, Duperrex C, Roubaty C, Vionnet C, Conzelmann A (2011) Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae. J Biol Chem 286(42):36438–36447. doi: 10.1074/jbc.M111.256511 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV Jr, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24(4):384–399. doi: 10.1016/j.devcel.2013.01.013 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192(6):1043–1055. doi: 10.1083/jcb.201010111 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Skinner JR, Shew TM, Schwartz DM, Tzekov A, Lepus CM, Abumrad NA, Wolins NE (2009) Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J Biol Chem 284(45):30941–30948. doi: 10.1074/jbc.M109.013995 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV Jr, Walther TC (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14(4):504–515. doi: 10.1016/j.cmet.2011.07.013 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286(24):21330–21339. doi: 10.1074/jbc.M110.202424 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Athenstaedt K, Daum G (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem 275(1):235–240PubMedGoogle Scholar
  69. 69.
    Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RG, Goodman JM (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104(52):20890–20895. doi: 10.1073/pnas.0704154104 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, Beh CT (2008) Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. Eukaryot Cell 7(2):401–414. doi: 10.1128/EC.00386-07 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Cartwright BR, Goodman JM (2012) Seipin: from human disease to molecular mechanism. J Lipid Res 53(6):1042–1055. doi: 10.1194/jlr.R023754 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49(50):10747–10755. doi: 10.1021/bi1013003 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM (2014) Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell. doi: 10.1091/mbc.E14-08-1303 PubMedGoogle Scholar
  74. 74.
    Talukder MM, Sim MF, O’Rahilly S, Edwardson JM, Rochford JJ (2015) Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Mol Metab 4(3):199–209. doi: 10.1016/j.molmet.2014.12.013 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Bi J, Wang W, Liu Z, Huang X, Jiang Q, Liu G, Wang Y, Huang X (2014) Seipin promotes adipose tissue fat storage through the ER Ca(2)(+)-ATPase SERCA. Cell Metab 19(5):861–871. doi: 10.1016/j.cmet.2014.03.028 PubMedGoogle Scholar
  76. 76.
    Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL, Severina N, Torregroza I, Evans T, Silver DL (2008) Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105(1):94–99. doi: 10.1073/pnas.0708579105 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Gross DA, Snapp EL, Silver DL (2010) Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT) protein 2. PLoS One 5(5):e10796. doi: 10.1371/journal.pone.0010796 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Moir RD, Gross DA, Silver DL, Willis IM (2012) SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 8(8):e1002890. doi: 10.1371/journal.pgen.1002890 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453(7195):657–661. doi: 10.1038/nature06928 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195(6):953–963. doi: 10.1083/jcb.201104142 PubMedCentralPubMedGoogle Scholar
  81. 81.
    Sun Z, Gong J, Wu H, Xu W, Wu L, Xu D, Gao J, Wu JW, Yang H, Yang M, Li P (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4:1594. doi: 10.1038/ncomms2581 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386. doi: 10.1126/science.1100747 PubMedGoogle Scholar
  83. 83.
    Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, Brasaemle DL (2004) Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem 279(40):42062–42071. doi: 10.1074/jbc.M407462200 PubMedGoogle Scholar
  84. 84.
    Gruber A, Cornaciu I, Lass A, Schweiger M, Poeschl M, Eder C, Kumari M, Schoiswohl G, Wolinski H, Kohlwein SD, Zechner R, Zimmermann R, Oberer M (2010) The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J Biol Chem 285(16):12289–12298. doi: 10.1074/jbc.M109.064469 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Wang H, Bell M, Sreenivasan U, Hu H, Liu J, Dalen K, Londos C, Yamaguchi T, Rizzo MA, Coleman R, Gong D, Brasaemle D, Sztalryd C (2011) Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J Biol Chem 286(18):15707–15715. doi: 10.1074/jbc.M110.207779 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281(52):40236–40241. doi: 10.1074/jbc.M608048200 PubMedGoogle Scholar
  87. 87.
    Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M, Schoiswohl G, Preiss-Landl K, Jaeger D, Reiter B, Koefeler HC, Wojciechowski J, Theussl C, Penninger JM, Lass A, Haemmerle G, Zechner R, Zimmermann R (2011) Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286(20):17467–17477. doi: 10.1074/jbc.M110.215434 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Heier C, Taschler U, Rengachari S, Oberer M, Wolinski H, Natter K, Kohlwein SD, Leber R, Zimmermann R (2010) Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1801(9):1063–1071. doi: 10.1016/j.bbalip.2010.06.001 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Athenstaedt K, Daum G (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 278(26):23317–23323. doi: 10.1074/jbc.M302577200 PubMedGoogle Scholar
  90. 90.
    Athenstaedt K, Daum G (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 280(45):37301–37309. doi: 10.1074/jbc.M507261200 PubMedGoogle Scholar
  91. 91.
    Daum G, Wagner A, Czabany T, Athenstaedt K (2007) Dynamics of neutral lipid storage and mobilization in yeast. Biochimie 89(2):243–248. doi: 10.1016/j.biochi.2006.06.018 PubMedGoogle Scholar
  92. 92.
    Koch B, Schmidt C, Ploier B, Daum G (2014) Modifications of the C terminus affect functionality and stability of yeast triacylglycerol lipase Tgl3p. J Biol Chem 289(28):19306–19316. doi: 10.1074/jbc.M114.556944 PubMedGoogle Scholar
  93. 93.
    Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein SD (2009) Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33(1):53–63. doi: 10.1016/j.molcel.2008.12.019 PubMedGoogle Scholar
  94. 94.
    Rajakumari S, Rajasekharan R, Daum G (2010) Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1801(12):1314–1322. doi: 10.1016/j.bbalip.2010.08.004 PubMedGoogle Scholar
  95. 95.
    Ploier B, Scharwey M, Koch B, Schmidt C, Schatte J, Rechberger G, Kollroser M, Hermetter A, Daum G (2013) Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae. J Biol Chem 288(50):36061–36072. doi: 10.1074/jbc.M113.509927 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Thoms S, Debelyy MO, Connerth M, Daum G, Erdmann R (2011) The putative Saccharomyces cerevisiae hydrolase Ldh1p is localized to lipid droplets. Eukaryot Cell 10(6):770–775. doi: 10.1128/EC.05038-11 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Debelyy MO, Thoms S, Connerth M, Daum G, Erdmann R (2011) Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis. Eukaryot Cell 10(6):776–781. doi: 10.1128/EC.05040-11 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Koffel R, Tiwari R, Falquet L, Schneiter R (2005) The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol 25(5):1655–1668. doi: 10.1128/MCB.25.5.1655-1668.2005 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Mullner H, Deutsch G, Leitner E, Ingolic E, Daum G (2005) YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae. J Biol Chem 280(14):13321–13328. doi: 10.1074/jbc.M409914200 PubMedGoogle Scholar
  100. 100.
    Koffel R, Schneiter R (2006) Yeh1 constitutes the major steryl ester hydrolase under heme-deficient conditions in Saccharomyces cerevisiae. Eukaryot Cell 5(7):1018–1025. doi: 10.1128/EC.00002-06 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Wagner A, Grillitsch K, Leitner E, Daum G (2009) Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1791(2):118–124. doi: 10.1016/j.bbalip.2008.11.004 PubMedGoogle Scholar
  102. 102.
    Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA (2014) An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Reports 6(1):44–55. doi: 10.1016/j.celrep.2013.11.046 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51(3):468–471. doi: 10.1194/jlr.R000034 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173(5):719–731. doi: 10.1083/jcb.200511125 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Currie E, Guo X, Christiano R, Chitraju C, Kory N, Harrison K, Haas J, Walther TC, Farese RV Jr (2014) High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J Lipid Res 55(7):1465–1477. doi: 10.1194/jlr.M050229 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181(20):6441–6448PubMedCentralPubMedGoogle Scholar
  107. 107.
    Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181(20):6441–6448PubMedCentralPubMedGoogle Scholar
  108. 108.
    Neuber O, Jarosch E, Volkwein C, Walter J, Sommer T (2005) Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat Cell Biol 7(10):993–998. doi: 10.1038/ncb1298 PubMedGoogle Scholar
  109. 109.
    Surma MA, Klose C, Peng D, Shales M, Mrejen C, Stefanko A, Braberg H, Gordon DE, Vorkel D, Ejsing CS, Farese R Jr, Simons K, Krogan NJ, Ernst R (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519–530. doi: 10.1016/j.molcel.2013.06.014 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Kolawa N, Sweredoski MJ, Graham RL, Oania R, Hess S, Deshaies RJ (2013) Perturbations to the ubiquitin conjugate proteome in yeast deltaubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics MCP 12(10):2791–2803. doi: 10.1074/mcp.M113.030163 Google Scholar
  111. 111.
    Olzmann JA, Kopito RR (2011) Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J Biol Chem 286(32):27872–27874. doi: 10.1074/jbc.C111.266452 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Wolinski H, Kolb D, Hermann S, Koning RI, Kohlwein SD (2011) A role for seipin in lipid droplet dynamics and inheritance in yeast. J Cell Sci 124(Pt 22):3894–3904. doi: 10.1242/jcs.091454 PubMedGoogle Scholar
  113. 113.
    van den Hazel HB, Pichler H, do Valle Matta MA, Leitner E, Goffeau A, Daum G (1999) PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem 274(4):1934–1941PubMedGoogle Scholar
  114. 114.
    Ren J, Pei-Chen Lin C, Pathak MC, Temple BR, Nile AH, Mousley CJ, Duncan MC, Eckert DM, Leiker TJ, Ivanova PT, Myers DS, Murphy RC, Brown HA, Verdaasdonk J, Bloom KS, Ortlund EA, Neiman AM, Bankaitis VA (2014) A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis. Mol Biol Cell 25(5):712–727. doi: 10.1091/mbc.E13-11-0634 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Pu J, Ha CW, Zhang S, Jung JP, Huh WK, Liu P (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2(6):487–496. doi: 10.1007/s13238-011-1061-y PubMedGoogle Scholar
  116. 116.
    Lafer G, Szolderits G, Paltauf F, Daum G (1991) Isolation of a phosphatidylserine transfer protein from yeast cytosol. Biochim Biophys Acta 1069(2):139–144PubMedGoogle Scholar
  117. 117.
    Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 94(4):1200–1205PubMedCentralPubMedGoogle Scholar
  118. 118.
    Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM (1997) Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9(8):1481–1493. doi: 10.1105/tpc.9.8.1481 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6(7):911–927PubMedCentralPubMedGoogle Scholar
  120. 120.
    Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152(5):1079–1085PubMedCentralPubMedGoogle Scholar
  121. 121.
    Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152(5):1071–1078PubMedCentralPubMedGoogle Scholar
  122. 122.
    Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RG (2009) Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 122(pt 20):3694–3702. doi: 10.1242/jcs.054700 PubMedCentralPubMedGoogle Scholar
  123. 123.
    Turro S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernandez MA, Albor CV, Gaus K, Grewal T, Enrich C, Pol A (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7(9):1254–1269PubMedGoogle Scholar
  124. 124.
    Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12):2601–2611. doi: 10.1242/jcs.02401 PubMedGoogle Scholar
  125. 125.
    Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161(6):1093–1103. doi: 10.1083/jcb.200210169 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Garbarino J, Sturley SL (2005) Homoeostatic systems for sterols and other lipids. Biochem Soc Trans 33(Pt 5):1182–1185. doi: 10.1042/BST20051182 PubMedGoogle Scholar
  127. 127.
    Han GS, Siniossoglou S, Carman GM (2007) The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem 282(51):37026–37035. doi: 10.1074/jbc.M705777200 PubMedGoogle Scholar
  128. 128.
    Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284(45):30981–30993. doi: 10.1074/jbc.M109.024752 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Rockenfeller P, Ring J, Muschett V, Beranek A, Buettner S, Carmona-Gutierrez D, Eisenberg T, Khoury C, Rechberger G, Kohlwein SD, Kroemer G, Madeo F (2010) Fatty acids trigger mitochondrion-dependent necrosis. Cell Cycle 9(14):2836–2842 12346 [pii]PubMedGoogle Scholar
  130. 130.
    Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J 24(11):1931–1941. doi: 10.1038/sj.emboj.7600672 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Carman GM, Han GS (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 284(5):2593–2597. doi: 10.1074/jbc.R800059200 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci USA 107(41):17539–17544. doi: 10.1073/pnas.1007974107 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Choi HS, Su WM, Morgan JM, Han GS, Xu Z, Karanasios E, Siniossoglou S, Carman GM (2011) Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in Saccharomyces cerevisiae: identification of SER(602), THR(723), AND SER(744) as the sites phosphorylated by CDC28 (CDK1)-encoded cyclin-dependent kinase. J Biol Chem 286(2):1486–1498. doi: 10.1074/jbc.M110.155598 PubMedCentralPubMedGoogle Scholar
  134. 134.
    Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135. doi: 10.1038/nature07976 PubMedCentralPubMedGoogle Scholar
  135. 135.
    van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD (2014) Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 25(2):290–301. doi: 10.1091/mbc.E13-08-0448 PubMedCentralPubMedGoogle Scholar
  136. 136.
    Toulmay A, Prinz WA (2013) Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J Cell Biol 202(1):35–44. doi: 10.1083/jcb.201301039 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Neiman AM (2011) Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189(3):737–765. doi: 10.1534/genetics.111.127126 PubMedCentralPubMedGoogle Scholar
  138. 138.
    Rajakumari S, Daum G (2010) Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell 21(4):501–510. doi: 10.1091/mbc.E09-09-0775 PubMedCentralPubMedGoogle Scholar
  139. 139.
    Lam C, Santore E, Lavoie E, Needleman L, Fiacco N, Kim C, Neiman AM (2014) A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell 13(3):383–391. doi: 10.1128/EC.00333-13 PubMedCentralPubMedGoogle Scholar
  140. 140.
    Lin CP, Kim C, Smith SO, Neiman AM (2013) A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. PLoS Genet 9(8):e1003700. doi: 10.1371/journal.pgen.1003700 PubMedCentralPubMedGoogle Scholar
  141. 141.
    Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87(1):180–196PubMedGoogle Scholar
  142. 142.
    Krahmer N, Farese RV Jr, Walther TC (2013) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5(7):905–915. doi: 10.1002/emmm.201100671 PubMedCentralPubMedGoogle Scholar
  143. 143.
    Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R (2009) Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 297(2):E289–E296. doi: 10.1152/ajpendo.00099.2009 PubMedGoogle Scholar
  144. 144.
    Vigouroux C, Caron-Debarle M, Le Dour C, Magre J, Capeau J (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43(6):862–876. doi: 10.1016/j.biocel.2011.03.002 PubMedGoogle Scholar
  145. 145.
    Fei W, Du X, Yang H (2011) Seipin, adipogenesis and lipid droplets. Trend Endocrinol Metab TEM 22(6):204–210. doi: 10.1016/j.tem.2011.02.004 Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan

Personalised recommendations