Cellular and Molecular Life Sciences

, Volume 72, Issue 16, pp 3185–3200 | Cite as

F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

  • Dongdong Wang
  • Gibran K. Chadha
  • Alex Feygin
  • Andrei I. IvanovEmail author
Research Article


Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin–spectrin membrane skeleton at the areas of cell–cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.


Tight junctions Adherens junctions Non-muscle myosin II Adducin Spectrin JNK 



We thank Drs. Charles A. Parkos, Y. Peng Loh, Enrique Rodriguez-Boulan, and Andrei Budanov for providing reagents for this study. Microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility, supported, in part, with funding from the NIH-NINDS Center core grant 5P30NS047463. This work was supported by National Institute of Health grants RO1 DK083968 and DK084953 to A.I.I.

Conflict of interests

The authors declared no conflict of interests.

Supplementary material

18_2015_1890_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1640 kb)


  1. 1.
    Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64:16–64PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809CrossRefPubMedGoogle Scholar
  4. 4.
    Green KJ, Getsios S, Troyanovsky S, Godsel L (2010) Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2:a000125PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293CrossRefPubMedGoogle Scholar
  6. 6.
    Furuse M (2010) Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2:a002907PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N (2014) Molecular organization of tricellular tight junctions. Tissue barriers 2:e28960PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1:a002899PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Troyanovsky S (2012) Adherens junction assembly. Subcell Biochem 60:89–108CrossRefPubMedGoogle Scholar
  10. 10.
    Van Itallie CM, Anderson JM (2013) Claudin interactions in and out of the tight junction. Tissue barriers 1:e25247PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Han SP, Yap AS (2012) The cytoskeleton and classical cadherin adhesions. Subcell Biochem 60:111–135CrossRefPubMedGoogle Scholar
  12. 12.
    Ivanov AI (2008) Actin motors that drive formation and disassembly of epithelial apical junctions. Front Biosci 13:6662–6681CrossRefPubMedGoogle Scholar
  13. 13.
    Ivanov AI, Naydenov NG (2013) Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. Int Rev Cell Mol Biol 303:27–99CrossRefPubMedGoogle Scholar
  14. 14.
    Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309CrossRefPubMedGoogle Scholar
  15. 15.
    Troyanovsky SM (2008) Regulation of cadherin-based epithelial cell adhesion by endocytosis. Front Biosci Scholar Ed 1:61–67CrossRefGoogle Scholar
  16. 16.
    Hirokawa N, Heuser JE (1981) Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J Cell Biol 91:399–409CrossRefPubMedGoogle Scholar
  17. 17.
    Hirokawa N, Tilney LG (1982) Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 95:249–261CrossRefPubMedGoogle Scholar
  18. 18.
    Madara JL (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253:C171–C175PubMedGoogle Scholar
  19. 19.
    Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Yonemura S (2011) Cadherin–actin interactions at adherens junctions. Curr Opin Cell Biol 23:515–522CrossRefPubMedGoogle Scholar
  21. 21.
    Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410CrossRefPubMedGoogle Scholar
  22. 22.
    Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Dos Remedios C, Chhabra D, Kekic M, Dedova I, Tsubakihara M, Berry D, Nosworthy N (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473CrossRefPubMedGoogle Scholar
  24. 24.
    Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M (2013) Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue barriers 1:e26938PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    McCole DF (2013) Phosphatase regulation of intercellular junctions. Tissue barriers 1:e26713PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    D’Avino PP (2009) How to scaffold the contractile ring for a safe cytokinesis–lessons from Anillin-related proteins. J Cell Sci 122:1071–1079CrossRefPubMedGoogle Scholar
  28. 28.
    Hickson GR, O’Farrell PH (2008) Anillin: a pivotal organizer of the cytokinetic machinery. Biochem Soc Trans 36:439PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Piekny AJ, Maddox AS (2010) The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 21:881–891CrossRefPubMedGoogle Scholar
  30. 30.
    Field CM, Alberts BM (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol 131:165–178CrossRefPubMedGoogle Scholar
  31. 31.
    Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self-and actin-templated assembly of mammalian septins. Dev Cell 3:791–802CrossRefPubMedGoogle Scholar
  32. 32.
    Field CM, Coughlin M, Doberstein S, Marty T, Sullivan W (2005) Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development 132:2849–2860CrossRefPubMedGoogle Scholar
  33. 33.
    Piekny AJ, Glotzer M (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol 18:30–36CrossRefPubMedGoogle Scholar
  34. 34.
    Straight AF, Field CM, Mitchison TJ (2005) Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16:193–201PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T, Tsuchiya E, Nakamura Y (2005) ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res 65:11314–11325CrossRefPubMedGoogle Scholar
  36. 36.
    Dorn JF, Zhang L, Paradis V, Edoh-Bedi D, Jusu S, Maddox PS, Maddox AS (2010) Actomyosin tube formation in polar body cytokinesis requires anillin in C. elegans. Curr Biol 20:2046–2051CrossRefPubMedGoogle Scholar
  37. 37.
    Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, Wu G, Homstad A, Sparks MA, Gomez J, Jiang R, Alonso A, Lavin P, Conlon P, Korstanje R, Stander MC, Shamsan G, Barua M, Spurney R, Singhal PC, Kopp JB, Haller H, Howell D, Pollak MR, Shaw AS, Schiffer M, Winn MP (2014) Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 25:1991–2002CrossRefPubMedGoogle Scholar
  38. 38.
    Toret CP, D’Ambrosio MV, Vale RD, Simon MA, Nelson WJ (2014) A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion. J Cell Biol 204:265–279PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Reyes CC, Jin M, Breznau EB, Espino R, Delgado-Gonzalo R, Goryachev AB, Miller AL (2014) Anillin regulates cell-cell junction integrity by organizing junctional accumulation of Rho-GTP and actomyosin. Curr Biol 24:1263–1270PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113(Pt 13):2363–2374PubMedGoogle Scholar
  41. 41.
    Baranwal S, Naydenov NG, Harris G, Dugina V, Morgan KG, Chaponnier C, Ivanov AI (2012) Nonredundant roles of cytoplasmic beta- and gamma-actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 23:3542–3553PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI (2013) Novel mechanism of cytokine-induced disruption of epithelial barriers: janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers 1:e25231PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Lou H, Park JJ, Phillips A, Loh YP (2013) gamma-Adducin promotes process outgrowth and secretory protein exit from the Golgi apparatus. J Mol Neurosci 49:1–10PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Chen HC (2005) Cell-scatter assay. Methods Mol Biol 294:69–77PubMedGoogle Scholar
  45. 45.
    Echard A, Hickson GR, Foley E, O’Farrell PH (2004) Terminal cytokinesis events uncovered after an RNAi screen. Curr Biol 14:1685–1693PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Elbediwy A, Zihni C, Terry SJ, Clark P, Matter K, Balda MS (2012) Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex. J Cell Biol 198:677–693PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Guillemot L, Guerrera D, Spadaro D, Tapia R, Jond L, Citi S (2014) MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Mol Biol Cell 25:1995–2005PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Priya R, Yap AS, Gomez GA (2013) E-cadherin supports steady-state Rho signaling at the epithelial zonula adherens. Differentiation 86:133–140CrossRefPubMedGoogle Scholar
  49. 49.
    Ratheesh A, Gomez GA, Priya R, Verma S, Kovacs EM, Jiang K, Brown NH, Akhmanova A, Stehbens SJ, Yap AS (2012) Centralspindlin and alpha-catenin regulate Rho signalling at the epithelial zonula adherens. Nat Cell Biol 14:818–828PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Tang VW, Brieher WM (2013) FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions. J Cell Biol 203:815–833PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392PubMedGoogle Scholar
  52. 52.
    Fowler VM (2012) The human erythrocyte plasma membrane: a rosetta stone for decoding membrane-cytoskeleton structure. Curr Top Membr 72:39–88CrossRefGoogle Scholar
  53. 53.
    Naydenov NG, Ivanov AI (2010) Adducins regulate remodeling of apical junctions in human epithelial cells. Mol Biol Cell 21:3506–3517PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Abdi KM, Bennett V (2008) Adducin promotes micrometer-scale organization of β2-spectrin in lateral membranes of bronchial epithelial cells. Mol Biol Cell 19:536–545PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Kizhatil K, Davis JQ, Davis L, Hoffman J, Hogan BL, Bennett V (2007) Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J Biol Chem 282:26552–26561CrossRefPubMedGoogle Scholar
  56. 56.
    Kizhatil K, Yoon W, Mohler PJ, Davis LH, Hoffman JA, Bennett V (2007) Ankyrin-G and β2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells. J Biol Chem 282:2029–2037CrossRefPubMedGoogle Scholar
  57. 57.
    Kevil CG, Oshima T, Alexander JS (2001) The role of p38 MAP kinase in hydrogen peroxide mediated endothelial solute permeability. Endothelium 8:107–116PubMedGoogle Scholar
  58. 58.
    Kojima T, Yamaguchi H, Ito T, Kyuno D, Kono T, Konno T, Sawada N (2013) Tight junctions in human pancreatic duct epithelial cells. Tissue barriers 1:e24894PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Naydenov NG, Hopkins AM, Ivanov AI (2009) c-Jun N-terminal kinase mediates disassembly of apical junctions in model intestinal epithelia. Cell Cycle 8:2110–2121CrossRefPubMedGoogle Scholar
  60. 60.
    Samak G, Aggarwal S, Rao RK (2011) ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 301:G50–G59PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Spindler V, Rotzer V, Dehner C, Kempf B, Gliem M, Radeva M, Hartlieb E, Harms GS, Schmidt E, Waschke J (2013) Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J Clin Invest 123:800–811PubMedCentralPubMedGoogle Scholar
  62. 62.
    You H, Lei P, Andreadis ST (2013) JNK is a novel regulator of intercellular adhesion. Tissue Barriers 1:e26845PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98:13681–13686PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Hall PA, Todd CB, Hyland PL, McDade SS, Grabsch H, Hillan KJ, Russell SH (2005) The septin-binding protein anillin is overexpressed in diverse human tumors. Clin Cancer Res 11:6780–6786CrossRefPubMedGoogle Scholar
  65. 65.
    D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM (2008) Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121:1151–1158CrossRefPubMedGoogle Scholar
  66. 66.
    Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A (2012) An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS One 7:e34888PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R (2008) Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr Biol 18:25–29CrossRefPubMedGoogle Scholar
  68. 68.
    Xia W, Mruk DD, Lee WM, Cheng CY (2006) Differential interactions between transforming growth factor-beta3/TbetaR1, TAB 1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J Biol Chem 281:16799–16813CrossRefPubMedGoogle Scholar
  69. 69.
    Bennett V, Healy J (2009) Membrane domains based on ankyrin and spectrin associated with cell–cell interactions. Cold Spring Harb Perspect Biol 1:a003012PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Naydenov NG, Ivanov AI (2011) Spectrin-adducin membrane skeleton: a missing link between epithelial junctions and the actin cytoskeletion? Bioarchitecture 1:186–191PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Matsuoka Y, Li X, Bennett V (2000) Adducin: structure, function and regulation. Cell Mol Life Sci 57:884–895CrossRefPubMedGoogle Scholar
  72. 72.
    Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Zheng B, Han M, Bernier M, Wen JK (2009) Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 276:2669–2685PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Chen CL, Lin YP, Lai YC, Chen HC (2011) α-Adducin translocates to the nucleus upon loss of cell–cell adhesions. Traffic 12:1327–1340CrossRefPubMedGoogle Scholar
  75. 75.
    Miyauchi JT, Piermarini PM, Yang JD, Gilligan DM, Beyenbach KW (2013) Roles of PKC and phospho-adducin in transepithelial fluid secretion by Malpighian tubules of the yellow fever mosquito. Tissue Barriers 1:e23120PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Rötzer V, Breit A, Waschke J, Spindler V (2014) Adducin is required for desmosomal cohesion in keratinocytes. J Biol Chem 289:14925–14940PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Konno T, Ninomiya T, Kohno T, Kikuchi S, Sawada N, Kojima T (2014) c-Jun N-terminal kinase inhibitor SP600125 enhances barrier function and elongation of human pancreatic cancer cell line HPAC in a Ca-switch model. Histochem Cell Biol 16:16Google Scholar
  78. 78.
    Lee MH, Koria P, Qu J, Andreadis ST (2009) JNK phosphorylates beta-catenin and regulates adherens junctions. FASEB J 23:3874–3883PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Lee MH, Padmashali R, Koria P, Andreadis ST (2011) JNK regulates binding of alpha-catenin to adherens junctions and cell-cell adhesion. FASEB J 25:613–623PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Samak G, Chaudhry KK, Gangwar R, Narayanan D, Jaggar JH, Rao R (2015) Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium. Biochem J 465:503–515PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9:e85345PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Carrozzino F, Pugnale P, Feraille E, Montesano R (2009) Inhibition of basal p38 or JNK activity enhances epithelial barrier function through differential modulation of claudin expression. Am J Physiol Cell Physiol 297:C775–C787CrossRefPubMedGoogle Scholar
  83. 83.
    Kulshammer E, Uhlirova M (2013) The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci 126:927–938CrossRefPubMedGoogle Scholar
  84. 84.
    Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R (2007) Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 97:368–377PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Ursitti JA, Petrich BG, Lee PC, Resneck WG, Ye X, Yang J, Randall WR, Bloch RJ, Wang Y (2007) Role of an alternatively spliced form of alphaII-spectrin in localization of connexin 43 in cardiomyocytes and regulation by stress-activated protein kinase. J Mol Cell Cardiol 42:572–581PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Smith TC, Fridy PC, Li Y, Basil S, Arjun S, Friesen RM, Leszyk J, Chait BT, Rout MP, Luna EJ (2013) Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol Biol Cell 24:3603–3619PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Dongdong Wang
    • 1
  • Gibran K. Chadha
    • 1
  • Alex Feygin
    • 1
  • Andrei I. Ivanov
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Virginia Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondUSA
  3. 3.VCU Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations