Cellular and Molecular Life Sciences

, Volume 72, Issue 16, pp 3157–3171 | Cite as

Inhibition of Rho-associated kinase relieves C5a-induced proteinuria in murine nephrotic syndrome

  • I-Jung Tsai
  • Chia-Hung Chou
  • Yao-Hsu Yang
  • Wei-Chou Lin
  • Yen-Hung Lin
  • Lu-Ping Chow
  • Hsiao-Hui Lee
  • Pei-Gang Kao
  • Wan-Ting Liau
  • Tzuu-Shuh JouEmail author
  • Yong-Kwei Tsau
Research Article


Childhood nephrotic syndrome is mainly caused by minimal change disease which is named because only subtle ultrastructural alteration could be observed at electron microscopic level in the pathological kidney. Glomerular podocytes are presumed to be the target cells whose protein sieving capability is compromised by a yet unidentified permeability perturbing factor. In a cohort of children with non-hereditary idiopathic nephrotic syndrome, we found the complement fragment C5a was elevated in their sera during active disease. Administration of recombinant C5a induced profound proteinuria and minimal change nephrotic syndrome in mice. Purified glomerular endothelial cells, instead of podocytes, were demonstrated to be responsible for the proteinuric effect elicited by C5a. Further studies depicted a signaling pathway involving Rho/Rho-associated kinase/myosin activation leading to endothelial cell contraction and cell adhesion complex breakdown. Significantly, application of Rho-associated kinase inhibitor, Y27632, prevented the protein leaking effects observed in both C5a-treated purified endothelial cells and mice. Taken together, our study identifies a previously unknown mechanism underlying nephrotic syndrome and provides a new insight toward identifying Rho-associated kinase inhibition as an alternative therapeutic option for nephrotic syndrome.


Minimal change disease ROCK Adherens junction VE-cadherin Actin stress fiber 



This study is supported by National Science Council (NSC100-2325-B-002-029) and National Taiwan University Hospital grants (aNTUH99P21-1 and 98P26-1) to T.S. Jou, National Science Council grants (NSC100-2314-B-002-105, NSC101-2314-B-002-062, and NSC102-2314-B-002-064) to Y.K. Tsau, and National Taiwan University Hospital grants (NTUH100 M-1741, 101 M-1997 and 102 M-2316) to I.J. Tsai. We thank the staff of the imaging core at the First Core Labs, National Taiwan University College of Medicine, for technical assistance.

Conflict of interest

All the authors declared no competing interests.

Supplementary material

18_2015_1888_MOESM1_ESM.mpg (3.8 mb)
Supplementary material 1 (MPG 3880 kb)
18_2015_1888_MOESM2_ESM.mpg (3.4 mb)
Supplementary material 2 (MPG 3472 kb)
18_2015_1888_MOESM3_ESM.pdf (87 kb)
Supplementary material 3 (PDF 87 kb)


  1. 1.
    ISKDC (1978) Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int 13(2):159–165Google Scholar
  2. 2.
    ISKDC (1981) The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J Pediatr 98(4):561–564Google Scholar
  3. 3.
    Greenbaum LA, Benndorf R, Smoyer WE (2012) Childhood nephrotic syndrome—current and future therapies. Nat Rev Nephrol 8(8):445–458PubMedCrossRefGoogle Scholar
  4. 4.
    Audard V, Larousserie F, Grimbert P, Abtahi M, Sotto JJ, Delmer A, Boue F, Nochy D, Brousse N, Delarue R, Remy P, Ronco P, Sahali D, Lang P, Hermine O (2006) Minimal change nephrotic syndrome and classical Hodgkin’s lymphoma: report of 21 cases and review of the literature. Kidney Int 69(12):2251–2260PubMedCrossRefGoogle Scholar
  5. 5.
    Sud K, Saha T, Das A, Kakkar N, Jha V, Kohli HS, Sakhuja V (1996) Kimura’s disease and minimal-change nephrotic syndrome. Nephrol Dial Transplant 11(7):1349–1351PubMedCrossRefGoogle Scholar
  6. 6.
    Nakahara C, Wada T, Kusakari J, Kanemoto K, Kinugasa H, Sibasaki M, Nagata M, Matsui A (2000) Steroid-sensitive nephrotic syndrome associated with Kimura disease. Pediatr Nephrol 14(6):482–485PubMedCrossRefGoogle Scholar
  7. 7.
    Rajpoot DK, Pahl M, Clark J (2000) Nephrotic syndrome associated with Kimura disease. Pediatr Nephrol 14(6):486–488PubMedCrossRefGoogle Scholar
  8. 8.
    Wallbach M, Grone HJ, Kitze B, Muller GA, Koziolek MJ (2013) Nephrotic syndrome in a multiple sclerosis patient receiving long-term interferon beta therapy. Am J Kidney Dis 61(5):786–789PubMedCrossRefGoogle Scholar
  9. 9.
    Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M (1991) A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 40(3):453–460PubMedCrossRefGoogle Scholar
  10. 10.
    Birmele B, Thibault G, Nivet H, de Agostini A, Girardin EP (2001) In vitro decrease of glomerular heparan sulfate by lymphocytes from idiopathic nephrotic syndrome patients. Kidney Int 59(3):913–922PubMedCrossRefGoogle Scholar
  11. 11.
    Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362(9384):629–639PubMedCrossRefGoogle Scholar
  12. 12.
    Tejani A, Stablein DH (1992) Recurrence of focal segmental glomerulosclerosis posttransplantation: a special report of the North American Pediatric Renal Transplant Cooperative Study. J Am Soc Nephrol 2(12 Suppl):S258–S263PubMedGoogle Scholar
  13. 13.
    Webb NJ, Watson CJ, Roberts IS, Bottomley MJ, Jones CA, Lewis MA, Postlethwaite RJ, Brenchley PE (1999) Circulating vascular endothelial growth factor is not increased during relapses of steroid-sensitive nephrotic syndrome. Kidney Int 55(3):1063–1071PubMedCrossRefGoogle Scholar
  14. 14.
    Cheong HI, Lee JH, Hahn H, Park HW, Ha IS, Choi Y (2001) Circulating VEGF and TGF-beta1 in children with idiopathic nephrotic syndrome. J Nephrol 14(4):263–269PubMedGoogle Scholar
  15. 15.
    Boner G, Cox AJ, Kelly DJ, Tobar A, Bernheim J, Langham RG, Cooper ME, Gilbert RE (2003) Does vascular endothelial growth factor (VEGF) play a role in the pathogenesis of minimal change disease? Nephrol Dial Transplant 18(11):2293–2299PubMedCrossRefGoogle Scholar
  16. 16.
    Araya CE, Wasserfall CH, Brusko TM, Mu W, Segal MS, Johnson RJ, Garin EH (2006) A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 21(5):603–610PubMedCrossRefGoogle Scholar
  17. 17.
    Schulman ES, Post TJ, Henson PM, Giclas PC (1988) Differential effects of the complement peptides, C5a and C5a des Arg on human basophil and lung mast cell histamine release. J Clin Invest 81(3):918–923PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Becker EL (1972) The relationship of the chemotactic behavior of the complement-derived factors, C3a, C5a, and C567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes. J Exp Med 135(2):376–387PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wenderfer SE, Ke B, Hollmann TJ, Wetsel RA, Lan HY, Braun MC (2005) C5a receptor deficiency attenuates T cell function and renal disease in MRLlpr mice. J Am Soc Nephrol 16(12):3572–3582PubMedCrossRefGoogle Scholar
  20. 20.
    Gueler F, Rong S, Gwinner W, Mengel M, Brocker V, Schon S, Greten TF, Hawlisch H, Polakowski T, Schnatbaum K, Menne J, Haller H, Shushakova N (2008) Complement 5a receptor inhibition improves renal allograft survival. J Am Soc Nephrol 19(12):2302–2312PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Arumugam TV, Shiels IA, Strachan AJ, Abbenante G, Fairlie DP, Taylor SM (2003) A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int 63(1):134–142PubMedCrossRefGoogle Scholar
  22. 22.
    de Vries B, Kohl J, Leclercq WK, Wolfs TG, van Bijnen AA, Heeringa P, Buurman WA (2003) Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J Immunol 170(7):3883–3889PubMedCrossRefGoogle Scholar
  23. 23.
    Caulfield JP, Reid JJ, Farquhar MG (1976) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest 34(1):43–59PubMedGoogle Scholar
  24. 24.
    Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, Krofft RD, Logar CM, Marshall CB, Ohse T, Shankland SJ (2009) Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol 296(2):F213–F229PubMedCrossRefGoogle Scholar
  25. 25.
    Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273(5272):245–248PubMedCrossRefGoogle Scholar
  26. 26.
    Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271(34):20246–20249PubMedCrossRefGoogle Scholar
  27. 27.
    Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15(9):2208–2216PubMedPubMedCentralGoogle Scholar
  28. 28.
    Krug N, Tschernig T, Erpenbeck VJ, Hohlfeld JM, Kohl J (2001) Complement factors C3a and C5a are increased in bronchoalveolar lavage fluid after segmental allergen provocation in subjects with asthma. Am J Respir Crit Care Med 164(10 Pt 1):1841–1843PubMedCrossRefGoogle Scholar
  29. 29.
    Khan MA, Maasch C, Vater A, Klussmann S, Morser J, Leung LL, Atkinson C, Tomlinson S, Heeger PS, Nicolls MR (2013) Targeting complement component 5a promotes vascular integrity and limits airway remodeling. Proc Natl Acad Sci USA 110(15):6061–6066PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Huber-Lang MS, Riedeman NC, Sarma JV, Younkin EM, McGuire SR, Laudes IJ, Lu KT, Guo RF, Neff TA, Padgaonkar VA, Lambris JD, Spruce L, Mastellos D, Zetoune FS, Ward PA (2002) Protection of innate immunity by C5aR antagonist in septic mice. FASEB J 16(12):1567–1574PubMedCrossRefGoogle Scholar
  31. 31.
    Nangaku M, Pippin J, Couser WG (1999) Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J Am Soc Nephrol 10(11):2323–2331PubMedGoogle Scholar
  32. 32.
    Ogrodowski JL, Hebert LA, Sedmak D, Cosio FG, Tamerius J, Kolb W (1991) Measurement of SC5b-9 in urine in patients with the nephrotic syndrome. Kidney Int 40(6):1141–1147PubMedCrossRefGoogle Scholar
  33. 33.
    Barbaux S, Niaudet P, Gubler MC, Grunfeld JP, Jaubert F, Kuttenn F, Fekete CN, Souleyreau-Therville N, Thibaud E, Fellous M, McElreavey K (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17(4):467–470PubMedCrossRefGoogle Scholar
  34. 34.
    Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286(5438):312–315PubMedCrossRefGoogle Scholar
  35. 35.
    Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24(4):349–354PubMedCrossRefGoogle Scholar
  36. 36.
    Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24(3):251–256PubMedCrossRefGoogle Scholar
  37. 37.
    Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300(5623):1298–1300PubMedCrossRefGoogle Scholar
  38. 38.
    Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1(4):575–582PubMedCrossRefGoogle Scholar
  39. 39.
    Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, Antignac CK, Kashtan CE, Homberg C, Olsen A, Kestila M, Tryggvason K (1999) Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet 64(1):51–61PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Caridi G, Bertelli R, Carrea A, Di Duca M, Catarsi P, Artero M, Carraro M, Zennaro C, Candiano G, Musante L, Seri M, Ginevri F, Perfumo F, Ghiggeri GM (2001) Prevalence, genetics, and clinical features of patients carrying podocin mutations in steroid-resistant nonfamilial focal segmental glomerulosclerosis. J Am Soc Nephrol 12(12):2742–2746PubMedGoogle Scholar
  41. 41.
    Frishberg Y, Rinat C, Megged O, Shapira E, Feinstein S, Raas-Rothschild A (2002) Mutations in NPHS2 encoding podocin are a prevalent cause of steroid-resistant nephrotic syndrome among Israeli-Arab children. J Am Soc Nephrol 13(2):400–405PubMedGoogle Scholar
  42. 42.
    Karle SM, Uetz B, Ronner V, Glaeser L, Hildebrandt F, Fuchshuber A (2002) Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J Am Soc Nephrol 13(2):388–393PubMedGoogle Scholar
  43. 43.
    Singh A, Ramnath RD, Foster RR, Wylie EC, Friden V, Dasgupta I, Haraldsson B, Welsh GI, Mathieson PW, Satchell SC (2013) Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One 8(2):e55852PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, Advani SL, Connelly KA, Takano T, Zhu L, Cox AJ, Kelly DJ, Gibson IW, Takahashi T, Harris RC, Advani A (2012) eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol 23(11):1810–1823PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Slater SC, Ramnath RD, Uttridge K, Saleem MA, Cahill PA, Mathieson PW, Welsh GI, Satchell SC (2012) Chronic exposure to laminar shear stress induces Kruppel-like factor 2 in glomerular endothelial cells and modulates interactions with co-cultured podocytes. Int J Biochem Cell Biol 44(9):1482–1490PubMedCrossRefGoogle Scholar
  46. 46.
    Siddiqi FS, Advani A (2013) Endothelial–podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62(11):3647–3655PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rostoker G, Behar A, Lagrue G (2000) Vascular hyperpermeability in nephrotic edema. Nephron 85(3):194–200PubMedCrossRefGoogle Scholar
  48. 48.
    Gerard C, Gerard NP (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol 12:775–808PubMedCrossRefGoogle Scholar
  49. 49.
    Haviland DL, McCoy RL, Whitehead WT, Akama H, Molmenti EP, Brown A, Haviland JC, Parks WC, Perlmutter DH, Wetsel RA (1995) Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung. J Immunol 154(4):1861–1869PubMedGoogle Scholar
  50. 50.
    Zwirner J, Fayyazi A, Gotze O (1999) Expression of the anaphylatoxin C5a receptor in non-myeloid cells. Mol Immunol 36(13–14):877–884PubMedCrossRefGoogle Scholar
  51. 51.
    Fayyazi A, Scheel O, Werfel T, Schweyer S, Oppermann M, Gotze O, Radzun HJ, Zwirner J (2000) The C5a receptor is expressed in normal renal proximal tubular but not in normal pulmonary or hepatic epithelial cells. Immunology 99(1):38–45PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Laudes IJ, Chu JC, Huber-Lang M, Guo RF, Riedemann NC, Sarma JV, Mahdi F, Murphy HS, Speyer C, Lu KT, Lambris JD, Zetoune FS, Ward PA (2002) Expression and function of C5a receptor in mouse microvascular endothelial cells. J Immunol 169(10):5962–5970PubMedCrossRefGoogle Scholar
  53. 53.
    Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R (2002) Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J Immunol 169(4):2102–2110PubMedCrossRefGoogle Scholar
  54. 54.
    Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC (2003) Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 17(9):1003–1014PubMedCrossRefGoogle Scholar
  55. 55.
    Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39(4–5):187–199PubMedCrossRefGoogle Scholar
  56. 56.
    Walsh SV, Hopkins AM, Chen J, Narumiya S, Parkos CA, Nusrat A (2001) Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology 121(3):566–579PubMedCrossRefGoogle Scholar
  57. 57.
    Sahai E, Marshall CJ (2002) ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4(6):408–415PubMedCrossRefGoogle Scholar
  58. 58.
    Wiege K, Ali SR, Gewecke B, Novakovic A, Konrad FM, Pexa K, Beer-Hammer S, Reutershan J, Piekorz RP, Schmidt RE, Nurnberg B, Gessner JE (2013) Galphai2 is the essential Galphai protein in immune complex-induced lung disease. J Immunol 190(1):324–333PubMedCrossRefGoogle Scholar
  59. 59.
    Skokowa J, Ali SR, Felda O, Kumar V, Konrad S, Shushakova N, Schmidt RE, Piekorz RP, Nurnberg B, Spicher K, Birnbaumer L, Zwirner J, Claassens JW, Verbeek JS, van Rooijen N, Kohl J, Gessner JE (2005) Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol 174(5):3041–3050PubMedCrossRefGoogle Scholar
  60. 60.
    Sheth B, Banks P, Burton DR, Monk PN (1991) The regulation of actin polymerization in differentiating U937 cells correlates with increased membrane levels of the pertussis-toxin-sensitive G-protein Gi2. Biochem J 275(Pt3):809–811PubMedPubMedCentralGoogle Scholar
  61. 61.
    Amatruda TT 3rd, Gerard NP, Gerard C, Simon MI (1993) Specific interactions of chemoattractant factor receptors with G-proteins. J Biol Chem 268(14):10139–10144PubMedGoogle Scholar
  62. 62.
    Grisk O, Schluter T, Reimer N, Zimmermann U, Katsari E, Plettenburg O, Lohn M, Wollert HG, Rettig R (2012) The Rho kinase inhibitor SAR407899 potently inhibits endothelin-1-induced constriction of renal resistance arteries. J Hypertens 30(5):980–989PubMedCrossRefGoogle Scholar
  63. 63.
    Van de Velde S, Van Bergen T, Sijnave D, Hollanders K, Castermans K, Defert O, Leysen D, Vandewalle E, Moons L, Stalmans I (2014) AMA0076, a novel, locally acting Rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia. Invest Ophthalmol Vis Sci 55(2):1006–1016PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • I-Jung Tsai
    • 1
  • Chia-Hung Chou
    • 2
  • Yao-Hsu Yang
    • 1
  • Wei-Chou Lin
    • 3
  • Yen-Hung Lin
    • 4
  • Lu-Ping Chow
    • 5
  • Hsiao-Hui Lee
    • 6
  • Pei-Gang Kao
    • 7
  • Wan-Ting Liau
    • 2
  • Tzuu-Shuh Jou
    • 4
    • 7
    Email author
  • Yong-Kwei Tsau
    • 1
  1. 1.Department of PediatricsNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
  2. 2.Department of Obstetrics and GynecologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
  3. 3.Department of PathologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
  4. 4.Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
  5. 5.Graduate Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
  6. 6.Department of Life Sciences and Institute of Genome SciencesNational Yang-Ming UniversityTaipeiTaiwan
  7. 7.Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan

Personalised recommendations