Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 11, pp 2091–2106 | Cite as

An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs

  • Jing Wang
  • Yifan Zhang
  • Ning Zhang
  • Chuandong Wang
  • Tanja Herrler
  • Qingfeng Li
Review

Abstract

Introduction

The skin is constantly exposed and responds to a wide range of biomechanical cues. The mechanobiology of skin has already been known and applied by clinicians long before the fundamental molecular mechanisms of mechanotransduction are elucidated.

Materials and methods

Despite increasing knowledge on the mediators of biomechanical signaling such as mitogen-associated protein kinases, Rho GTPases or FAK-ERK pathways, the key elements of mechano-responses transcription factors, and mechano-sensors remain unclear. Recently, canonical biochemical components of Hippo and Wnt signaling pathway YAP and β-catenin were found to exhibit undefined mechanical sensitivity. Mechanical forces were identified to be the dominant regulators of YAP/TAZ activity in a multicellular context. Furthermore, different voltage or ligand sensitive ion channels in the cell membrane exhibited their mechanical sensitivity as mechano-sensors. Additionally, a large number of microRNAs have been confirmed to regulate cellular behavior and contribute to various skin disorders under mechanical stimuli. Mechanosensitive (MS) microRNAs could not only be activated by distinct mechanical force pattern, but also responsively target MS sensors such as e-cadherin and cytoskeleton constituent RhoA.

Conclusion

Thus, a comprehensive understanding of this regulatory network of cutaneous mechanotransduction will facilitate the development of novel approaches to wound healing, hypertrophic scar formation, skin regeneration, and the progression or initiation of skin diseases.

Keywords

TRP Piezo Wound healing Hypertrophic scar Fibrosis Scleroderma 

Abbreviations

YAP

Yes-associated protein

AP-1

Activator protein 1

ECM

Extracellular matrix

MS

Mechanosensitive

MAPKs

Mitogen-associated protein kinases

FAK

Focal adhesion kinase

ERK

Extracellular regulated protein kinases

PI3K

Phosphoinositol-3-kinase

HF

Hair follicles

IFE

Interfollicular epidermal

MSCs

Mesenchymal stem cells

GPCRs

G-Protein-coupled receptors

CaSR

Calcium-sensing receptor

TRP

Transient receptor potential

ECs

Endothelial cells

Cx

Connexin

Notes

Conflict of interest

The authors state no conflict of interest.

References

  1. 1.
    DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319PubMedCentralPubMedGoogle Scholar
  2. 2.
    Zhou SB, Wang J, Chiang CA, Sheng LL, Li QF (2013) Mechanical stretch upregulates SDF-1alpha in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells 31:2703–2713PubMedGoogle Scholar
  3. 3.
    Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Bio 10:63–73Google Scholar
  4. 4.
    Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M et al (2012) Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18:148–152Google Scholar
  5. 5.
    Wong VW, Akaishi S, Longaker MT, Gurtner GC (2011) Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol 131:2186–2196PubMedGoogle Scholar
  6. 6.
    Lim X, Nusse R (2013) Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol 5. doi: 10.1101/cshperspect.a008029
  7. 7.
    Watt FM, Collins CA (2008) Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb Symp Quant Biol 73:503–512PubMedGoogle Scholar
  8. 8.
    Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736PubMedCentralPubMedGoogle Scholar
  9. 9.
    Lim X, Tan SH, Koh WL, Chau RM, Yan KS, Kuo CJ et al (2013) Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342:1226–1230PubMedCentralPubMedGoogle Scholar
  10. 10.
    Yonemura S (2011) A mechanism of mechanotransduction at the cell-cell interface: emergence of alpha-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. Bioessays News Rev Mol Cell Dev Biol 33:732–736Google Scholar
  11. 11.
    Case N, Ma M, Sen B, Xie Z, Gross TS, Rubin J (2008) Beta-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283:29196–29205PubMedCentralPubMedGoogle Scholar
  12. 12.
    Sen B, Styner M, Xie Z, Case N, Rubin CT, Rubin J (2009) Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem 284:34607–34617PubMedCentralPubMedGoogle Scholar
  13. 13.
    Valbuena A, Vera AM, Oroz J, Menendez M, Carrion-Vazquez M (2012) Mechanical properties of beta-catenin revealed by single-molecule experiments. Biophys J 103:1744–1752PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ray S, Foote HP, Lechler T (2013) beta-Catenin protects the epidermis from mechanical stresses. J Cell Biol 202:45–52PubMedCentralPubMedGoogle Scholar
  15. 15.
    Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P et al (2011) Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–791PubMedCentralPubMedGoogle Scholar
  16. 16.
    Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17:2054–2060PubMedGoogle Scholar
  17. 17.
    Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434PubMedGoogle Scholar
  18. 18.
    Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13:877–883PubMedCentralPubMedGoogle Scholar
  19. 19.
    Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei QY et al (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Gene Dev 25:51–63PubMedCentralPubMedGoogle Scholar
  20. 20.
    Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al (2011) Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144:782–795PubMedCentralPubMedGoogle Scholar
  21. 21.
    Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM et al (2012) Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 19:955–962PubMedGoogle Scholar
  22. 22.
    Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791PubMedCentralPubMedGoogle Scholar
  23. 23.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183PubMedGoogle Scholar
  24. 24.
    Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059PubMedGoogle Scholar
  25. 25.
    Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13:645–652PubMedCentralPubMedGoogle Scholar
  26. 26.
    Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15:637–646PubMedGoogle Scholar
  27. 27.
    Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M (2014) YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588:2663–2670PubMedGoogle Scholar
  28. 28.
    Lee MJ (2014) Ran Byun M, Furutani-Seiki M, Hong JH, Jung HS. YAP and TAZ regulate skin wound healing. J Invest Dermatol 134:518–525PubMedGoogle Scholar
  29. 29.
    Beverdam A, Claxton C, Zhang X, James G, Harvey KF, Key B (2012) Yap Controls Stem/Progenitor Cell Proliferation in the Mouse Postnatal Epidermis. J Invest Dermatol 133:1497–1505PubMedGoogle Scholar
  30. 30.
    Zhang H, Pasolli HA, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci USA 108:2270–2275PubMedCentralPubMedGoogle Scholar
  31. 31.
    Quan T, Xu Y, Qin Z, Robichaud P, Betcher S, Calderone K et al (2014) Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation. Am J Pathol 184:937–943PubMedCentralPubMedGoogle Scholar
  32. 32.
    Nallet-Staub F, Marsaud V, Li L, Gilbert C, Dodier S, Bataille V et al (2014) Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J Invest Dermatol 134:123–132PubMedCentralPubMedGoogle Scholar
  33. 33.
    Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB et al (2008) Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther 10:201PubMedCentralPubMedGoogle Scholar
  34. 34.
    Angel P, Szabowski A, Schorpp-Kistner M (2001) Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20:2413–2423PubMedGoogle Scholar
  35. 35.
    Eckert RL, Welter JF (1996) Transcription factor regulation of epidermal keratinocyte gene expression. Mol Biol Rep 23:59–70PubMedGoogle Scholar
  36. 36.
    Passegue E, Wagner EF (2000) JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 19:2969–2979PubMedCentralPubMedGoogle Scholar
  37. 37.
    Yates S, Rayner TE (2002) Transcription factor activation in response to cutaneous injury: role of AP-1 in reepithelialization. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc 10:5–15Google Scholar
  38. 38.
    Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400PubMedGoogle Scholar
  39. 39.
    Yang M, Liang Y, Sheng L, Shen G, Liu K, Gu B et al (2011) A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration. Arch Dermatol Res 303:125–133PubMedGoogle Scholar
  40. 40.
    Du W, Mills I, Sumpio BE (1995) Cyclic strain causes heterogeneous induction of transcription factors, AP-1, CRE binding protein and NF-kB, in endothelial cells: species and vascular bed diversity. J Biomech 28:1485–1491PubMedGoogle Scholar
  41. 41.
    Chien S, Li S, Shyy YJ (1998) Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169PubMedGoogle Scholar
  42. 42.
    Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M et al (1999) AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol 277:C294–C301PubMedGoogle Scholar
  43. 43.
    Peverali FA, Basdra EK, Papavassiliou AG (2001) Stretch-mediated activation of selective MAPK subtypes and potentiation of AP-1 binding in human osteoblastic cells. Mol Med 7:68–78PubMedCentralPubMedGoogle Scholar
  44. 44.
    Kumar A, Lnu S, Malya R, Barron D, Moore J, Corry DB et al (2003) Mechanical stretch activates nuclear factor-kappaB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: implications in asthma. FASEB J Off Publ Fed Am Soc Exp Biol 17:1800–1811Google Scholar
  45. 45.
    Mohan AR, Sooranna SR, Lindstrom TM, Johnson MR, Bennett PR (2007) The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-kappaB activity in human amnion cells. Endocrinology 148:1850–1857PubMedGoogle Scholar
  46. 46.
    Demicheva E, Hecker M, Korff T (2008) Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Circ Res 103:477–484PubMedGoogle Scholar
  47. 47.
    Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275PubMedGoogle Scholar
  48. 48.
    Sachs F (2010) Stretch-activated ion channels: what are they? Physiology 25:50–56PubMedCentralPubMedGoogle Scholar
  49. 49.
    Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT et al (2007) Universal physical responses to stretch in the living cell. Nature 447:592–595PubMedCentralPubMedGoogle Scholar
  50. 50.
    Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S (1996) Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J Clin Investig 97:1085–1093PubMedCentralPubMedGoogle Scholar
  51. 51.
    Ruder WC, Pratt ED, Brandy NZ, LaVan DA, LeDuc PR, Antaki JF (2012) Calcium signaling is gated by a mechanical threshold in three-dimensional environments. Sci Rep 2:554PubMedCentralPubMedGoogle Scholar
  52. 52.
    Godbout C, Follonier Castella L, Smith EA, Talele N, Chow ML, Garonna A et al (2013) The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts. PLoS One 8:e64560PubMedCentralPubMedGoogle Scholar
  53. 53.
    Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annual Rev Biophys 41:519–542Google Scholar
  54. 54.
    Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83:2560–2574PubMedCentralPubMedGoogle Scholar
  55. 55.
    Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G (2009) Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 296:G833–G839PubMedCentralPubMedGoogle Scholar
  56. 56.
    Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947PubMedCentralPubMedGoogle Scholar
  57. 57.
    Oda Y, Tu CL, Chang W, Crumrine D, Komuves L, Mauro T et al (2000) The calcium sensing receptor and its alternatively spliced form in murine epidermal differentiation. J Biol Chem 275:1183–1190PubMedGoogle Scholar
  58. 58.
    Tu CL, Chang W, Bikle DD (2001) The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem 276:41079–41085PubMedGoogle Scholar
  59. 59.
    Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506PubMedGoogle Scholar
  60. 60.
    Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 103:15463–15468PubMedCentralPubMedGoogle Scholar
  61. 61.
    Malhotra R, D’Souza KM, Staron ML, Birukov KG, Bodi I, Akhter SA (2010) G alpha(q)-mediated activation of GRK2 by mechanical stretch in cardiac myocytes: the role of protein kinase C. J Biol Chem 285:13748–13760PubMedCentralPubMedGoogle Scholar
  62. 62.
    Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K et al (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103PubMedGoogle Scholar
  63. 63.
    Storch U, MederosySchnitzler M, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol Heart Circ Physiol H302:1241–1249Google Scholar
  64. 64.
    D’Souza KM, Malhotra R, Philip JL, Staron ML, Theccanat T, Jeevanandam V et al (2011) G protein-coupled receptor kinase-2 is a novel regulator of collagen synthesis in adult human cardiac fibroblasts. J Biol Chem 286:15507–15516PubMedCentralPubMedGoogle Scholar
  65. 65.
    Tu CL, Chang W, Bikle DD (2011) The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J Invest Dermatol 131:1119–1128PubMedCentralPubMedGoogle Scholar
  66. 66.
    Tu CL, Chang W, Xie Z, Bikle DD (2008) Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem 283:3519–3528PubMedGoogle Scholar
  67. 67.
    Tu CL, Crumrine DA, Man MQ, Chang W, Elalieh H, You M et al (2012) Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function. J Invest Dermatol 132:2350–2359PubMedCentralPubMedGoogle Scholar
  68. 68.
    Tsutsumi M, Denda S, Ikeyama K, Goto M, Denda M (2010) Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Invest Dermatol 130:1945–1948PubMedGoogle Scholar
  69. 69.
    Toth BI, Olah A, Szollosi AG, Biro T (2014) TRP channels in the skin. Br J Pharmacol 171:2568–2581PubMedCentralPubMedGoogle Scholar
  70. 70.
    Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S (2010) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 130:1942–1945PubMedGoogle Scholar
  71. 71.
    Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E et al (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J Off Publ Fed Am Soc Exp Biol 27:3549–3563Google Scholar
  72. 72.
    Toth BI, Dobrosi N, Dajnoki A, Czifra G, Olah A, Szollosi AG et al (2011) Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential vanilloid-1. J Invest Dermatol 131:1095–1104PubMedGoogle Scholar
  73. 73.
    Bodo E, Biro T, Telek A, Czifra G, Griger Z, Toth BI et al (2005) A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 166:985–998PubMedCentralPubMedGoogle Scholar
  74. 74.
    Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222PubMedGoogle Scholar
  75. 75.
    O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci USA 111:1316–1321PubMedCentralPubMedGoogle Scholar
  76. 76.
    Akazawa Y, Yuki T, Yoshida H, Sugiyama Y, Inoue S (2013) Activation of TRPV4 strengthens the tight-junction barrier in human epidermal keratinocytes. Skin Pharmacol Physiol 26:15–21PubMedGoogle Scholar
  77. 77.
    Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758PubMedCentralPubMedGoogle Scholar
  78. 78.
    Fusi C, Materazzi S, Minocci D, Maio V, Oranges T, Massi D et al (2014) Transient receptor potential vanilloid 4 (TRPV4) is downregulated in keratinocytes in human non-melanoma skin cancer. J Invest Dermatol 134:2408–2417PubMedGoogle Scholar
  79. 79.
    Richard G (2000) Connexins: a connection with the skin. Exp Dermatol 9:77–96PubMedGoogle Scholar
  80. 80.
    Plotkin LI, Bellido T (2013) Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52:157–166PubMedCentralPubMedGoogle Scholar
  81. 81.
    Scott CA, Tattersall D, O’Toole EA, Kelsell DP (2012) Connexins in epidermal homeostasis and skin disease. Biochim Biophys Acta 1818:1952–1961PubMedGoogle Scholar
  82. 82.
    Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF et al (2012) Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci USA 109:3359–3364PubMedCentralPubMedGoogle Scholar
  83. 83.
    Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E et al (2008) Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem 283:26374–26382PubMedCentralPubMedGoogle Scholar
  84. 84.
    Ziambaras K, Lecanda F, Steinberg TH, Civitelli R (1998) Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res Off J Am Soc Bone and Miner Res 13:218–228Google Scholar
  85. 85.
    Martin PE, Easton JA, Hodgins MB, Wright CS (2014) Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 588:1304–1314PubMedGoogle Scholar
  86. 86.
    Langlois S, Maher AC, Manias JL, Shao Q, Kidder GM, Laird DW (2007) Connexin levels regulate keratinocyte differentiation in the epidermis. J Biol Chem 282:30171–30180PubMedGoogle Scholar
  87. 87.
    Brandner JM, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122:1310–1320PubMedGoogle Scholar
  88. 88.
    Rezze GG, Fregnani JH, Duprat J, Landman G (2011) Cell adhesion and communication proteins are differentially expressed in melanoma progression model. Hum Pathol 42:409–418PubMedGoogle Scholar
  89. 89.
    King TJ, Lampe PD (2004) The gap junction protein connexin32 is a mouse lung tumor suppressor. Cancer Res 64:7191–7196PubMedGoogle Scholar
  90. 90.
    Ableser MJ, Penuela S, Lee J, Shao Q, Laird DW (2014) Connexin43 reduces melanoma growth within a keratinocyte microenvironment and during tumorigenesis in vivo. J Biol Chem 289:1592–1603PubMedCentralPubMedGoogle Scholar
  91. 91.
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60PubMedCentralPubMedGoogle Scholar
  92. 92.
    Gottlieb PA, Sachs F (2012) Piezo1: properties of a cation selective mechanical channel. Channels 6:214–219PubMedCentralPubMedGoogle Scholar
  93. 93.
    Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181PubMedCentralPubMedGoogle Scholar
  94. 94.
    Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M, Takayama Y et al (2014) Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem 289:16565–16575PubMedGoogle Scholar
  95. 95.
    Pathak MM, Nourse JL, Tran T, Hwe J, Arulmoli J, Le DT et al (2014) Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci USA 111:16148–16153PubMedGoogle Scholar
  96. 96.
    Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626PubMedCentralPubMedGoogle Scholar
  97. 97.
    Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA et al (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730PubMedGoogle Scholar
  98. 98.
    Senatore S (2010) Rami Reddy V, Semeriva M, Perrin L, Lalevee N. Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 6:e1001088PubMedCentralPubMedGoogle Scholar
  99. 99.
    Feng NH, Lee HH, Shiang JC, Ma MC (2008) Transient receptor potential vanilloid type 1 channels act as mechanoreceptors and cause substance P release and sensory activation in rat kidneys. Am J Physiol Renal Physiol 294:F316–F325PubMedGoogle Scholar
  100. 100.
    Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668PubMedGoogle Scholar
  101. 101.
    Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T (2005) Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol 289:C633–C643PubMedGoogle Scholar
  102. 102.
    Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728PubMedGoogle Scholar
  103. 103.
    Dunn CA, Lampe PD (2014) Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 127:455–464PubMedCentralPubMedGoogle Scholar
  104. 104.
    Wang CM, Lincoln J, Cook JE, Becker DL (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56:2809–2817PubMedGoogle Scholar
  105. 105.
    Villares GJ, Dobroff AS, Wang H, Zigler M, Melnikova VO, Huang L et al (2009) Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43. Cancer Res 69:6730–6737PubMedCentralPubMedGoogle Scholar
  106. 106.
    Gerner L, Youssef G, O’Shaughnessy RF (2013) The protein phosphatase 2A regulatory subunit Ppp2r2a is required for Connexin-43 dephosphorylation during epidermal barrier acquisition. Exp Dermatol 22:754–756PubMedGoogle Scholar
  107. 107.
    Zhang WK, Wang D, Duan Y, Loy MM, Chan HC, Huang P (2010) Mechanosensitive gating of CFTR. Nat Cell Biol 12:507–512PubMedGoogle Scholar
  108. 108.
    Kim NH, Cheong KA, Lee TR, Lee AY (2012) PDZK1 upregulation in estrogen-related hyperpigmentation in melasma. J Invest Dermatol 132:2622–2631PubMedGoogle Scholar
  109. 109.
    Marin T, Gongol B, Chen Z, Woo B, Subramaniam S, Chien S et al (2013) Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state. Free Radic Biol Med 64:61–68PubMedCentralPubMedGoogle Scholar
  110. 110.
    Yehya N, Yerrapureddy A, Tobias J, Margulies SS (2012) MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genom 13:154Google Scholar
  111. 111.
    Banerjee J, Chan YC, Sen CK (2011) MicroRNAs in skin and wound healing. Physiol Genomics 43:543–556PubMedCentralPubMedGoogle Scholar
  112. 112.
    Schneider MR (2012) MicroRNAs as novel players in skin development, homeostasis and disease. Br J Dermatol 166:22–28PubMedGoogle Scholar
  113. 113.
    Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG (2009) MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci 53:169–175PubMedGoogle Scholar
  114. 114.
    Wong VW, Longaker MT, Gurtner GC (2012) Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol 23:981–986PubMedGoogle Scholar
  115. 115.
    Yagmur C, Akaishi S, Ogawa R, Guneren E (2010) Mechanical receptor-related mechanisms in scar management: a review and hypothesis. Plast Reconstr Surg 126:426–434PubMedGoogle Scholar
  116. 116.
    Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393:643–648PubMedCentralPubMedGoogle Scholar
  117. 117.
    Weber M, Kim S, Patterson N, Rooney K, Searles CD (2014) MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol 306:H1192–H1203PubMedCentralPubMedGoogle Scholar
  118. 118.
    Song J, Hu B, Qu H, Bi C, Huang X, Zhang M (2012) Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells. PLoS One 7:e47657PubMedCentralPubMedGoogle Scholar
  119. 119.
    Wang T, Feng Y, Sun H, Zhang L, Hao L, Shi C et al (2012) miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol 181:1911–1920PubMedGoogle Scholar
  120. 120.
    Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H et al (2012) Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 287:29324–29335PubMedCentralPubMedGoogle Scholar
  121. 121.
    Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC et al (2013) Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 11:70–92PubMedCentralPubMedGoogle Scholar
  122. 122.
    Reich A, Meurer M, Eckes B, Friedrichs J, Muller DJ (2009) Surface morphology and mechanical properties of fibroblasts from scleroderma patients. J Cell Mol Med 13:1644–1652PubMedGoogle Scholar
  123. 123.
    Ogawa R, Hsu CK (2013) Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J Cell Mol Med 17:817–822PubMedCentralPubMedGoogle Scholar
  124. 124.
    Zhu H, Luo H, Li Y, Zhou Y, Jiang Y, Chai J et al (2013) MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol 33:1100–1109PubMedGoogle Scholar
  125. 125.
    Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J et al (2010) MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 107:3240–3244PubMedCentralPubMedGoogle Scholar
  126. 126.
    Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I et al (2012) microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology 51:1550–1556PubMedGoogle Scholar
  127. 127.
    Huang Y, Crawford M, Higuita-Castro N, Nana-Sinkam P, Ghadiali SN (2012) miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium. FASEB J Off Publ Fed Am Soc Exp Biol 26:3351–3364Google Scholar
  128. 128.
    Xu J, Wu W, Zhang L, Dorset-Martin W, Morris MW, Mitchell ME et al (2012) The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes 61:2906–2912PubMedCentralPubMedGoogle Scholar
  129. 129.
    Smalley KS (2010) Understanding melanoma signaling networks as the basis for molecular targeted therapy. J Invest Dermatol 130:28–37PubMedGoogle Scholar
  130. 130.
    Clarijs R, Ruiter DJ, De Waal RM (2003) Pathophysiological implications of stroma pattern formation in uveal melanoma. J Cell Physiol 194:267–271PubMedGoogle Scholar
  131. 131.
    Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115:337–344PubMedGoogle Scholar
  132. 132.
    Ruiter D, Bogenrieder T, Elder D, Herlyn M (2002) Melanoma-stroma interactions: structural and functional aspects. Lancet Oncol 3:35–43PubMedGoogle Scholar
  133. 133.
    Satzger I, Mattern A, Kuettler U, Weinspach D, Niebuhr M, Kapp A et al (2012) microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol 21:509–514PubMedGoogle Scholar
  134. 134.
    Saldanha G, Potter L, Shendge P, Osborne J, Nicholson S, Yii N et al (2013) Plasma microRNA-21 is associated with tumor burden in cutaneous melanoma. J Invest Dermatol 133:1381–1384PubMedGoogle Scholar
  135. 135.
    Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, Muller A et al (2010) Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 70:4163–4173PubMedGoogle Scholar
  136. 136.
    Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin DG et al (2013) In-depth characterization of microRNA transcriptome in melanoma. PLoS One 8:e72699PubMedCentralPubMedGoogle Scholar
  137. 137.
    Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3beta. J Biol Chem 285:29336–29347PubMedCentralPubMedGoogle Scholar
  138. 138.
    Reuland SN, Smith SM, Bemis LT, Goldstein NB, Almeida AR, Partyka KA et al (2013) MicroRNA-26a is strongly downregulated in melanoma and induces cell death through repression of silencer of death domains (SODD). J Invest Dermatol 133:1286–1293PubMedCentralPubMedGoogle Scholar
  139. 139.
    Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S et al (2012) Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 72:460–471PubMedGoogle Scholar
  140. 140.
    Zhu HY, Li C, Bai WD, Su LL, Liu JQ, Li Y et al (2014) MicroRNA-21 Regulates hTERT via PTEN in Hypertrophic Scar Fibroblasts. PLoS One 9:e97114PubMedCentralPubMedGoogle Scholar
  141. 141.
    Guinea-Viniegra J, Jimenez M, Schonthaler HB, Navarro R, Delgado Y, Concha-Garzon MJ et al (2014) Targeting miR-21 to treat psoriasis. Science translational medicine 6:225re1PubMedGoogle Scholar
  142. 142.
    Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O et al (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21:312–314PubMedGoogle Scholar
  143. 143.
    Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A et al (2011) Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 20:4025–4040PubMedCentralPubMedGoogle Scholar
  144. 144.
    Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q et al (2011) Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 20:635–648PubMedGoogle Scholar
  145. 145.
    Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z et al (2013) The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene 32:1497–1507PubMedCentralPubMedGoogle Scholar
  146. 146.
    Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S et al (2010) Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci USA 107:3234–3239PubMedCentralPubMedGoogle Scholar
  147. 147.
    Kraemer A, Chen IP, Henning S, Faust A, Volkmer B, Atkinson MJ et al (2013) UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One 8:e83392PubMedCentralPubMedGoogle Scholar
  148. 148.
    Hildebrand J, Rutze M, Walz N, Gallinat S, Wenck H, Deppert W et al (2011) A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 131:20–29PubMedGoogle Scholar
  149. 149.
    Luna C, Li G, Qiu J, Epstein DL, Gonzalez P (2011) MicroRNA-24 regulates the processing of latent TGFbeta1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 226:1407–1414PubMedCentralPubMedGoogle Scholar
  150. 150.
    Amelio I, Lena AM, Viticchie G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D et al (2012) miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol 199:347–363PubMedCentralPubMedGoogle Scholar
  151. 151.
    Zhang S, Wang W, Gu Q, Xue J, Cao H, Tang Y et al (2014) Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radic Biol Med 69:96–107PubMedGoogle Scholar
  152. 152.
    Cha HJ, Lee KS, Lee GT, Lee KK, Hong JT, Lee SN et al (2014) Altered miRNA expression profiles are involved in the protective effects of troxerutin against ultraviolet B radiation in normal human dermal fibroblasts. Int J Mol Med 33:957–963PubMedGoogle Scholar
  153. 153.
    Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA et al (2013) Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 351:85–98PubMedGoogle Scholar
  154. 154.
    Ryu B, Hwang S, Alani RM (2013) MicroRNAs as an emerging target for melanoma therapy. J Invest Dermatol 133:1137–1139PubMedGoogle Scholar
  155. 155.
    Sand M, Skrygan M, Georgas D, Sand D, Hahn SA, Gambichler T et al (2012) Microarray analysis of microRNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 68:119–126PubMedGoogle Scholar
  156. 156.
    Cheng BB, Qu MJ, Wu LL, Shen Y, Yan ZQ, Zhang P et al (2014) MicroRNA-34a targets Forkhead box j2 to modulate differentiation of endothelial progenitor cells in response to shear stress. J Mol Cell Cardiol 74C:4–12Google Scholar
  157. 157.
    Herbert KJ, Cook AL, Snow ET (2014) SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes. Toxicol Appl Pharmacol 277:288–297PubMedGoogle Scholar
  158. 158.
    Lefort K, Brooks Y, Ostano P, Cario-Andre M, Calpini V, Guinea-Viniegra J et al (2013) A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 32:2248–2263PubMedCentralPubMedGoogle Scholar
  159. 159.
    Xie H, Lee L, Caramuta S, Hoog A, Browaldh N, Bjornhagen V et al (2014) MicroRNA expression patterns related to merkel cell polyomavirus infection in human merkel cell carcinoma. J Invest Dermatol 134:507–517PubMedCentralPubMedGoogle Scholar
  160. 160.
    Cozzolino AM, Pedace L, Castori M, De Simone P, Preziosi N, Sperduti I et al (2012) Analysis of the miR-34a locus in 62 patients with familial cutaneous melanoma negative for CDKN2A/CDK4 screening. Fam Cancer 11:201–208PubMedGoogle Scholar
  161. 161.
    Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C (2010) Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 130:1249–1257PubMedGoogle Scholar
  162. 162.
    Zhou L, Qi RQ, Liu M, Xu YP, Li G, Weiland M et al (2014) microRNA miR-17-92 cluster is highly expressed in epidermal Langerhans cells but not required for its development. Genes Immun 15:57–61PubMedGoogle Scholar
  163. 163.
    Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T et al (2012) Expression of microRNAs in basal cell carcinoma. Br J Dermatol 167:847–855PubMedGoogle Scholar
  164. 164.
    Maj J, Jankowska-Konsur A, Sadakierska-Chudy A, Noga L, Reich A (2012) Altered microRNA expression in mycosis fungoides. Br J Dermatol 166:331–336PubMedGoogle Scholar
  165. 165.
    Turczynska KM, Bhattachariya A, Sall J, Goransson O, Sward K, Hellstrand P et al (2013) Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One 8:e65135PubMedCentralPubMedGoogle Scholar
  166. 166.
    Hu B, Song JT, Qu HY, Bi CL, Huang XZ, Liu XX et al (2014) Mechanical stretch suppresses microRNA-145 expression by activating extracellular signal-regulated kinase 1/2 and upregulating angiotensin-converting enzyme to alter vascular smooth muscle cell phenotype. PLoS One 9:e96338PubMedCentralPubMedGoogle Scholar
  167. 167.
    Kohlstedt K, Trouvain C, Boettger T, Shi L, Fisslthaler B, Fleming I (2013) AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. Circ Res 112:1150–1158PubMedGoogle Scholar
  168. 168.
    Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256PubMedGoogle Scholar
  169. 169.
    Dynoodt P, Speeckaert R, De Wever O, Chevolet I, Brochez L, Lambert J et al (2013) miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int J Oncol 42:1443–1451PubMedGoogle Scholar
  170. 170.
    Yamashita J, Iwakiri T, Fukushima S, Jinnin M, Miyashita A, Hamasaki T et al (2013) The rs2910164 G>C polymorphism in microRNA-146a is associated with the incidence of malignant melanoma. Melanoma Res 23:13–20PubMedGoogle Scholar
  171. 171.
    Xia P, Fang X, Zhang ZH, Huang Q, Yan KX, Kang KF et al (2012) Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol Lett 148:151–162PubMedGoogle Scholar
  172. 172.
    Farzan SF, Karagas MR, Christensen BC, Li Z, Kuriger JK, Nelson HH et al (2014) RNASEL and MIR146A SNP-SNP interaction as a susceptibility factor for non-melanoma skin cancer. PLoS One 9:e93602PubMedCentralPubMedGoogle Scholar
  173. 173.
    van Solingen C, Araldi E, Chamorro-Jorganes A, Fernandez-Hernando C, Suarez Y (2014) Improved repair of dermal wounds in mice lacking microRNA-155. J Cell Mol Med 18:1104–1112PubMedGoogle Scholar
  174. 174.
    Moyal L, Barzilai A, Gorovitz B, Hirshberg A, Amariglio N, Jacob-Hirsch J et al (2013) miR-155 is involved in tumor progression of mycosis fungoides. Exp Dermatol 22:431–433PubMedGoogle Scholar
  175. 175.
    Kopp KL, Ralfkiaer U, Gjerdrum LM, Helvad R, Pedersen IH, Litman T et al (2013) STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle 12:1939–1947PubMedCentralPubMedGoogle Scholar
  176. 176.
    Kopp KL, Ralfkiaer U, Nielsen BS, Gniadecki R, Woetmann A, Odum N et al (2013) Expression of miR-155 and miR-126 in situ in cutaneous T-cell lymphoma. APMIS Acta Pathol Microbiol Immunol Scand 121:1020–1024Google Scholar
  177. 177.
    Monsalvez V, Montes-Moreno S, Artiga MJ, Rodriguez ME, Sanchez-Espiridion B, Lozano M et al (2013) MicroRNAs as prognostic markers in indolent primary cutaneous B-cell lymphoma. Mod Pathol Off J U S Can Acad Pathol Inc 26:171–181Google Scholar
  178. 178.
    Benner MF, Ballabio E, van Kester MS, Saunders NJ, Vermeer MH, Willemze R et al (2012) Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides. Exp Dermatol 21:632–634PubMedGoogle Scholar
  179. 179.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N, Lovendorf MB, Ahler CB, Svensson L et al (2011) Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118:5891–5900PubMedCentralPubMedGoogle Scholar
  180. 180.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601PubMedGoogle Scholar
  181. 181.
    Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907PubMedCentralPubMedGoogle Scholar
  182. 182.
    Gotte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M et al (2010) miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29:6569–6580PubMedGoogle Scholar
  183. 183.
    Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106:3207–3212PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Jing Wang
    • 1
  • Yifan Zhang
    • 1
  • Ning Zhang
    • 2
  • Chuandong Wang
    • 2
  • Tanja Herrler
    • 3
  • Qingfeng Li
    • 1
  1. 1.Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS)Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.Hand, Plastic, and Aesthetic Surgery, Department of General, Trauma, Hand, and Plastic SurgeryUniversity of MunichMunichGermany

Personalised recommendations