Cellular and Molecular Life Sciences

, Volume 72, Issue 11, pp 2041–2059 | Cite as

The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond

  • Nicole Stopa
  • Jocelyn E. KrebsEmail author
  • David ShechterEmail author


Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5–MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5–MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.


Protein arginine methyltransferase Histones Spliceosome Development Cancer 



N.S. and J.K. were supported by NIH/NIGMS [P20GM103395]. D.S. is funded by an NIH/NIGMS grant [R01GM108646] and by The American Cancer Society—Robbie Sue Mudd Kidney Cancer Research Scholar Grant [124891-RSG-13-396-01-DMC]. We are grateful to Emmanuel Burgos for structural and enzymatic insight and for rendering Fig. 6. The analysis shown in Fig. 7 is based upon data generated by the TCGA Research Network: and from KM-plotter: We thank the specimen donors to these projects for their essential contributions. We thank the many investigators studying PRMT5 and we apologize to the authors whose work on PRMT5 was not included due to space limitations.


  1. 1.
    Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031. doi: 10.1016/j.febslet.2010.11.010 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274(2):814–824PubMedCrossRefGoogle Scholar
  3. 3.
    Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13. doi: 10.1016/j.molcel.2008.12.013 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC, Sahu SK, Gunaratne J, Capasso P, Bassi C, Cecatiello V, De Marco A, Blackstock W, Kuznetsov V, Amati B, Mapelli M, Guccione E (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19(2):136–144. doi: 10.1038/nsmb.2209 PubMedCrossRefGoogle Scholar
  5. 5.
    Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG (2012) Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J Biol Chem 287(11):7859–7870. doi: 10.1074/jbc.M111.336271 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C, Al-Hadid Q, Clark AT, Bedford MT, Masson JY, Clarke SG (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288(52):37010–37025. doi: 10.1074/jbc.M113.525345 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509(7502):575–581. doi: 10.1038/nature13302 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Cook JR, Lee JH, Yang ZH, Krause CD, Herth N, Hoffmann R, Pestka S (2006) FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem Biophys Res Commun 342(2):472–481. doi: 10.1016/j.bbrc.2006.01.167 PubMedCrossRefGoogle Scholar
  9. 9.
    Ma XJ, Lu Q, Grunstein M (1996) A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae. Genes Dev 10(11):1327–1340PubMedCrossRefGoogle Scholar
  10. 10.
    Gilbreth M, Yang P, Bartholomeusz G, Pimental RA, Kansra S, Gadiraju R, Marcus S (1998) Negative regulation of mitosis in fission yeast by the shk1 interacting protein skb1 and its human homolog, Skb1Hs. Proc Natl Acad Sci USA 95(25):14781–14786PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Pollack BP, Kotenko SV, He W, Izotova LS, Barnoski BL, Pestka S (1999) The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem 274(44):31531–31542PubMedCrossRefGoogle Scholar
  12. 12.
    Branscombe TL, Frankel A, Lee JH, Cook JR, Yang Z, Pestka S, Clarke S (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276(35):32971–32976. doi: 10.1074/jbc.M105412200 PubMedCrossRefGoogle Scholar
  13. 13.
    Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24(21):9630–9645. doi: 10.1128/mcb.24.21.9630-9645.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jahan S, Davie JR (2014) Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul. doi: 10.1016/j.jbior.2014.09.003 PubMedGoogle Scholar
  15. 15.
    Zhou L, Hosohata K, Gao S, Gu Z, Wang Z (2013) cGMP-dependent protein kinase Ibeta interacts with p44/WDR77 to regulate androgen receptor-driven gene expression. PLoS ONE 8(6):e63119. doi: 10.1371/journal.pone.0063119 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Li Y, Tian L, Ligr M, Daniels G, Peng Y, Wu X, Singh M, Wei J, Shao Y, Lepor H, Xu R, Chang Z, Wang Z, Lee P (2013) Functional domains of androgen receptor coactivator p44/Mep50/WDR77 and its interaction with Smad1. PLoS ONE 8(5):e64663. doi: 10.1371/journal.pone.0064663 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gao S, Wang Z (2012) Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells. PLoS ONE 7(11):e49173. doi: 10.1371/journal.pone.0049173 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Vincent B, Wu H, Gao S, Wang Z (2012) Loss of the androgen receptor cofactor p44/WDR77 induces astrogliosis. Mol Cell Biol 32(17):3500–3512. doi: 10.1128/mcb.00298-12 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ligr M, Patwa RR, Daniels G, Pan L, Wu X, Li Y, Tian L, Wang Z, Xu R, Wu J, Chen F, Liu J, Wei JJ, Lee P (2011) Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer. PLoS ONE 6(10):e26250. doi: 10.1371/journal.pone.0026250 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gu Z, Zhou L, Gao S, Wang Z (2011) Nuclear transport signals control cellular localization and function of androgen receptor cofactor p44/WDR77. PLoS ONE 6(7):e22395. doi: 10.1371/journal.pone.0022395 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gao S, Wu H, Wang F, Wang Z (2010) Altered differentiation and proliferation of prostate epithelium in mice lacking the androgen receptor cofactor p44/WDR77. Endocrinology 151(8):3941–3953. doi: 10.1210/en.2009-1080 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Peng Y, Li Y, Gellert LL, Zou X, Wang J, Singh B, Xu R, Chiriboga L, Daniels G, Pan R, Zhang DY, Garabedian MJ, Schneider RJ, Wang Z, Lee P (2010) Androgen receptor coactivator p44/Mep50 in breast cancer growth and invasion. J Cell Mol Med 14(12):2780–2789. doi: 10.1111/j.1582-4934.2009.00936.x PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Peng Y, Chen F, Melamed J, Chiriboga L, Wei J, Kong X, McLeod M, Li Y, Li CX, Feng A, Garabedian MJ, Wang Z, Roeder RG, Lee P (2008) Distinct nuclear and cytoplasmic functions of androgen receptor cofactor p44 and association with androgen-independent prostate cancer. Proc Natl Acad Sci USA 105(13):5236–5241. doi: 10.1073/pnas.0712262105 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zhou L, Wu H, Lee P, Wang Z (2006) Roles of the androgen receptor cofactor p44 in the growth of prostate epithelial cells. J Mol Endocrinol 37(2):283–300. doi: 10.1677/jme.1.02062 PubMedCrossRefGoogle Scholar
  25. 25.
    Schapira M, Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. MedChemComm. doi: 10.1039/C4MD00269E Google Scholar
  26. 26.
    Sun L, Wang M, Lv Z, Yang N, Liu Y, Bao S, Gong W, Xu RM (2011) Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc Natl Acad Sci USA 108(51):20538–20543. doi: 10.1073/pnas.1106946108 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11(5):509–520 pii: S0969212603000716PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19(14):3509–3519. doi: 10.1093/emboj/19.14.3509 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yue WW, Hassler M, Roe SM, Thompson-Vale V, Pearl LH (2007) Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J 26(20):4402–4412. doi: 10.1038/sj.emboj.7601856 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26(20):4391–4401. doi: 10.1038/sj.emboj.7601855 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Cheng Y, Frazier M, Lu F, Cao X, Redinbo MR (2011) Crystal structure of the plant epigenetic protein arginine methyltransferase 10. J Mol Biol 414(1):106–122. doi: 10.1016/j.jmb.2011.09.040 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Siarheyeva A, Senisterra G, Allali-Hassani A, Dong A, Dobrovetsky E, Wasney GA, Chau I, Marcellus R, Hajian T, Liu F, Korboukh I, Smil D, Bolshan Y, Min J, Wu H, Zeng H, Loppnau P, Poda G, Griffin C, Aman A, Brown PJ, Jin J, Al-Awar R, Arrowsmith CH, Schapira M, Vedadi M (2012) An allosteric inhibitor of protein arginine methyltransferase 3. Structure 20(8):1425–1435. doi: 10.1016/j.str.2012.06.001 PubMedCrossRefGoogle Scholar
  33. 33.
    Wang C, Zhu Y, Chen J, Li X, Peng J, Chen J, Zou Y, Zhang Z, Jin H, Yang P, Wu J, Niu L, Gong Q, Teng M, Shi Y (2014) Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei. PLoS ONE 9(2):e87267. doi: 10.1371/journal.pone.0087267 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ho M-C, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T, Carter LG, Onikubo T, Kumar PR, Chan MK, Brenowitz M, Cheng RH, Reimer U, Almo SC, Shechter D (2013) Structure of the arginine methyltransferase PRMT5–MEP50 reveals a mechanism for substrate specificity. PLoS ONE 8(2):e57008. doi: 10.1371/journal.pone.0057008 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109(44):17960–17965. doi: 10.1073/pnas.1209814109 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Furuno K, Masatsugu T, Sonoda M, Sasazuki T, Yamamoto K (2006) Association of Polycomb group SUZ12 with WD-repeat protein MEP50 that binds to histone H2A selectively in vitro. Biochem Biophys Res Commun 345(3):1051–1058. doi: 10.1016/j.bbrc.2006.05.014 PubMedCrossRefGoogle Scholar
  37. 37.
    Wilczek C, Chitta R, Woo E, Shabanowitz J, Chait BT, Hunt DF, Shechter D (2011) Protein arginine methyltransferase Prmt5–Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs. J Biol Chem 286(49):42221–42231. doi: 10.1074/jbc.M111.303677 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Wang M, Xu RM, Thompson PR (2013) Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5. Biochemistry 52(32):5430–5440. doi: 10.1021/bi4005123 PubMedCrossRefGoogle Scholar
  39. 39.
    Osborne TC, Obianyo O, Zhang X, Cheng X, Thompson PR (2007) Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Biochemistry 46(46):13370–13381. doi: 10.1021/bi701558t PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Gui S, Gathiaka S, Li J, Qu J, Acevedo O, Hevel JM (2014) A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine. J Biol Chem 289(13):9320–9327. doi: 10.1074/jbc.M113.535278 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178(5):733–740. doi: 10.1083/jcb.200702147 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Brahms H, Meheus L, de Brabandere V, Fischer U, Luhrmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7(11):1531–1542PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7(5):1111–1117. doi: 10.1016/S1097-2765(01)00244-1 PubMedCrossRefGoogle Scholar
  44. 44.
    Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11(24):1990–1994PubMedCrossRefGoogle Scholar
  45. 45.
    Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21(24):8289–8300. doi: 10.1128/mcb.21.24.8289-8300.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Chari A, Golas MM, Klingenhager M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135(3):497–509. doi: 10.1016/j.cell.2008.09.020 PubMedCrossRefGoogle Scholar
  47. 47.
    Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U (2013) Structural basis of assembly chaperone-mediated snRNP formation. Mol Cell 49(4):692–703. doi: 10.1016/j.molcel.2012.12.009 PubMedCrossRefGoogle Scholar
  48. 48.
    Meister G, Buhler D, Pillai R, Lottspeich F, Fischer U (2001) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3(11):945–949. doi: 10.1038/ncb1101-945 PubMedCrossRefGoogle Scholar
  49. 49.
    Meister G, Fischer U (2002) Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 21(21):5853–5863PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296(1):51–56. doi: 10.1016/j.yexcr.2004.03.022 PubMedCrossRefGoogle Scholar
  51. 51.
    Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298(5599):1775–1779. doi: 10.1126/science.1074962 PubMedCrossRefGoogle Scholar
  52. 52.
    Raker VA, Plessel G, Luhrmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15(9):2256–2269PubMedCentralPubMedGoogle Scholar
  53. 53.
    Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E (2013) Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 27(17):1903–1916. doi: 10.1101/gad.219899.113 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, Surani MA (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8(6):623–630. doi: 10.1038/ncb1413 PubMedCrossRefGoogle Scholar
  55. 55.
    Bedford MT (2007) Arginine methylation at a glance. J Cell Sci 120(Pt 24):4243–4246. doi: 10.1242/jcs.019885 PubMedCrossRefGoogle Scholar
  56. 56.
    Xu X, Hoang S, Mayo MW, Bekiranov S (2010) Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinform 11:396. doi: 10.1186/1471-2105-11-396 Google Scholar
  57. 57.
    Wang L, Pal S, Sif S (2008) Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 28(20):6262–6277. doi: 10.1128/mcb.00923-08 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, Kumar J, Tempst P, Sif S (2003) mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 23(21):7475–7487PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH, Negre V, Rousset M, Pestka S, Le Cam A, Sardet C (2002) Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3(7):641–645. doi: 10.1093/embo-reports/kvf136 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Seth-Vollenweider T, Joshi S, Dhawan P, Sif S, Christakos S (2014) Novel mechanism of negative regulation of 1,25-dihydroxyvitamin D3 induced CYP24A1 transcription: epigenetic modification involving crosstalk between protein arginine methyltransferase 5 and the SWI/SNF complex. J Biol Chem. doi: 10.1074/jbc.M114.583302 PubMedGoogle Scholar
  61. 61.
    Majumder S, Alinari L, Roy S, Miller T, Datta J, Sif S, Baiocchi R, Jacob ST (2010) Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription. J Cell Biochem 109(3):553–563. doi: 10.1002/jcb.22432 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Yue M, Li Q, Zhang Y, Zhao Y, Zhang Z, Bao S (2013) Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS ONE 8(12):e83258. doi: 10.1371/journal.pone.0083258 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Wang X, Zhang Y, Ma Q, Zhang Z, Xue Y, Bao S, Chong K (2007) SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J 26(7):1934–1941. doi: 10.1038/sj.emboj.7601647 PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Tsutsui T, Fukasawa R, Shinmyouzu K, Nakagawa R, Tobe K, Tanaka A, Ohkuma Y (2013) Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J Biol Chem 288(29):20955–20965. doi: 10.1074/jbc.M113.486746 PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA (2010) Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 24(24):2772–2777. doi: 10.1101/gad.606110 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837PubMedCrossRefGoogle Scholar
  67. 67.
    Girardot M, Hirasawa R, Kacem S, Fritsch L, Pontis J, Kota SK, Filipponi D, Fabbrizio E, Sardet C, Lohmann F, Kadam S, Ait-Si-Ali S, Feil R (2014) PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Res 42(1):235–248. doi: 10.1093/nar/gkt884 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Capurso D, Xiong H, Segal MR (2012) A histone arginine methylation localizes to nucleosomes in satellite II and III DNA sequences in the human genome. BMC Genom 13:630. doi: 10.1186/1471-2164-13-630 CrossRefGoogle Scholar
  69. 69.
    Harris DP, Bandyopadhyay S, Maxwell TJ, Willard B, DiCorleto PE (2014) Tumor necrosis factor (TNF)-alpha induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-kappaB p65 methylation. J Biol Chem 289(22):15328–15339. doi: 10.1074/jbc.M114.547349 PubMedCrossRefGoogle Scholar
  70. 70.
    Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB, Ghosh G, Stark GR, Lu T (2013) PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci USA 110(33):13516–13521. doi: 10.1073/pnas.1311784110 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10(12):1431–1439. doi: 10.1038/ncb1802 PubMedCrossRefGoogle Scholar
  72. 72.
    Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S, McGouran JF, Alexander L, Fedorov O, Munro S, Kessler B, Bedford MT, Yu Q, La Thangue NB (2013) Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 52(1):37–51. doi: 10.1016/j.molcel.2013.08.039 PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839(8):702–710. doi: 10.1016/j.bbagrm.2014.02.015 PubMedCrossRefGoogle Scholar
  74. 74.
    Côté J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280(31):28476–28483. doi: 10.1074/jbc.M414328200 PubMedCrossRefGoogle Scholar
  75. 75.
    Liu K, Chen C, Guo Y, Lam R, Bian C, Xu C, Zhao DY, Jin J, MacKenzie F, Pawson T, Min J (2010) Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc Natl Acad Sci USA 107(43):18398–18403. doi: 10.1073/pnas.1013106107 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311. doi: 10.1038/nsmb.1568 PubMedCrossRefGoogle Scholar
  77. 77.
    Rank G, Cerruti L, Simpson RJ, Moritz RL, Jane SM, Zhao Q (2010) Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood 116(9):1585–1592. doi: 10.1182/blood-2009-10-251116 PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10(11):1235–1241. doi: 10.1038/embor.2009.218 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Li J, Zhou F, Zhan D, Gao Q, Cui N, Li J, Iakhiaeva E, Zwieb C, Lin B, Wong J (2012) A novel histone H4 arginine 3 methylation-sensitive histone H4 binding activity and transcriptional regulatory function for signal recognition particle subunits SRP68 and SRP72. J Biol Chem 287(48):40641–40651. doi: 10.1074/jbc.M112.414284 PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Yuan C-C, Matthews Adam GW, Jin Y, Chen Chang F, Chapman Brad A, Ohsumi Toshiro K, Glass Karen C, Kutateladze Tatiana G, Borowsky Mark L, Struhl K, Oettinger Marjorie A (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Reports 1(2):83–90PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Karkhanis V, Hu Y-J, Baiocchi RA, Imbalzano AN, Sif S (2011) Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 36(12):633–641. doi: 10.1016/j.tibs.2011.09.001 PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Dacwag CS, Ohkawa Y, Pal S, Sif S, Imbalzano AN (2007) The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol Cell Biol 27(1):384–394. doi: 10.1128/mcb.01528-06 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WA, Cohen A, Lasonder E, Stunnenberg HG (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 26(3):843–851. doi: 10.1128/mcb.26.3.843-851.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Dacwag CS, Bedford MT, Sif S, Imbalzano AN (2009) Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol 29(7):1909–1921. doi: 10.1128/mcb.00742-08 PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Mallappa C, Hu YJ, Shamulailatpam P, Tae S, Sif S, Imbalzano AN (2011) The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt)5 but directly requires Prmt4. Nucleic Acids Res 39(4):1243–1255. doi: 10.1093/nar/gkq896 PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Gkountela S, Li Z, Chin CJ, Lee SA, Clark AT (2014) PRMT5 is required for human embryonic stem cell proliferation but not pluripotency. Stem cell Rev 10(2):230–239. doi: 10.1007/s12015-013-9490-z PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Nicklay JJ, Shechter D, Chitta RK, Garcia BA, Shabanowitz J, Allis CD, Hunt DF (2009) Analysis of histones in Xenopus laevis. II. Mass spectrometry reveals an index of cell type-specific modifications on H3 and H4. J Biol Chem 284(2):1075–1085. doi: 10.1074/jbc.M807274200 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Shechter D, Nicklay JJ, Chitta RK, Shabanowitz J, Hunt DF, Allis CD (2009) Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 284(2):1064–1074. doi: 10.1074/jbc.M807273200 PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Wang WL, Anderson LC, Nicklay JJ, Chen H, Gamble MJ, Shabanowitz J, Hunt DF, Shechter D (2014) Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development. Epigenetics Chromatin 7:22. doi: 10.1186/1756-8935-7-22 PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Chittka A, Nitarska J, Grazini U, Richardson WD (2012) Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J Biol Chem 287(51):42995–43006. doi: 10.1074/jbc.M112.392746 PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Huang J, Vogel G, Yu Z, Almazan G, Richard S (2011) Type II arginine methyltransferase PRMT5 regulates the gene expression of inhibitors of differentiation/DNA binding ID2 and ID4 during glial cell differentiation. J Biol Chem 286:44429–44432. doi: 10.1074/jbc.M111.277046 Google Scholar
  92. 92.
    Kanade SR, Eckert RL (2012) Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cdelta- and p38delta-dependent signaling and keratinocyte differentiation. J Biol Chem 287(10):7313–7323. doi: 10.1074/jbc.M111.331660 PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Paul C, Sardet C, Fabbrizio E (2012) The histone- and PRMT5-associated protein COPR5 is required for myogenic differentiation. Cell Death Differ 19(5):900–908. doi: 10.1038/cdd.2011.193 PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Batut J, Duboe C, Vandel L (2011) The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS ONE 6(10):e25427. doi: 10.1371/journal.pone.0025427 PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16(1):70–78. doi: 10.1261/rna.1869710 PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC (2009) Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 28(24):3820–3831. doi: 10.1038/emboj.2009.365 PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11(5):652–658. doi: 10.1038/ncb1872 PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15):1749–1762. doi: 10.1101/gad.1814809 PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS (2009) Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 16(6):639–646. doi: 10.1038/nsmb.1615 PubMedCrossRefGoogle Scholar
  100. 100.
    Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi–piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. doi: 10.1126/science.1146484 PubMedCrossRefGoogle Scholar
  101. 101.
    Siomi MC, Mannen T, Siomi H (2010) How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 24(7):636–646. doi: 10.1101/gad.1899210 PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Kirino Y, Vourekas A, Kim N, de Lima Alves F, Rappsilber J, Klein PS, Jongens TA, Mourelatos Z (2010) Arginine methylation of vasa protein is conserved across phyla. J Biol Chem 285(11):8148–8154. doi: 10.1074/jbc.M109.089821 PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Kim S, Günesdogan U, Zylicz Jan J, Hackett Jamie A, Cougot D, Bao S, Lee C, Dietmann S, Allen George E, Sengupta R, Surani MA (2014) PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell. doi: 10.1016/j.molcel.2014.10.003 Google Scholar
  104. 104.
    Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213. doi: 10.1038/nature03813 PubMedCrossRefGoogle Scholar
  105. 105.
    Durcova-Hills G, Tang F, Doody G, Tooze R, Surani MA (2008) Reprogramming primordial germ cells into pluripotent stem cells. PLoS ONE 3(10):e3531. doi: 10.1371/journal.pone.0003531 PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science 316(5823):394–396. doi: 10.1126/science.1137545 PubMedCrossRefGoogle Scholar
  107. 107.
    Dhar S, Vemulapalli V, Patananan AN, Huang GL, Di Lorenzo A, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT (2013) Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311. doi: 10.1038/srep01311 PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmler M (2011) RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J Biol Chem 286(3):1976–1986. doi: 10.1074/jbc.M110.148486 PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Teng Y, Girvan AC, Casson LK, Pierce WM Jr, Qian M, Thomas SD, Bates PJ (2007) AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res 67(21):10491–10500. doi: 10.1158/0008-5472.can-06-4206 PubMedCrossRefGoogle Scholar
  110. 110.
    Gurung B, Feng Z, Iwamoto DV, Thiel A, Jin G, Fan CM, Ng JM, Curran T, Hua X (2013) Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome. Cancer Res 73(8):2650–2658. doi: 10.1158/0008-5472.can-12-3158 PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Gurung B, Hua X (2013) Menin/PRMT5/hedgehog signaling: a potential target for the treatment of multiple endocrine neoplasia type 1 tumors. Epigenomics 5(5):469–471. doi: 10.2217/epi.13.47 PubMedCrossRefGoogle Scholar
  112. 112.
    Gurung B, Feng Z, Hua X (2013) Menin directly represses Gli1 expression independent of canonical Hedgehog signaling. Mol Cancer Res 11(10):1215–1222. doi: 10.1158/1541-7786.mcr-13-0170 PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Pesiridis GS, Diamond E, Van Duyne GD (2009) Role of pICLn in methylation of Sm proteins by PRMT5. J Biol Chem 284(32):21347–21359. doi: 10.1074/jbc.M109.015578 PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Lacroix M, El Messaoudi S, Rodier G, Le Cam A, Sardet C, Fabbrizio E (2008) The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 9(5):452–458. doi: 10.1038/embor.2008.45 PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ (2014) The UCSC Genome Browser database: 2014 update. Nucleic Acids Res 42(D1):D764–D770. doi: 10.1093/nar/gkt1168 PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, Zheng YG (2011) Histone H4 acetylation differentially modulates arginine methylation by an in cis mechanism. J Biol Chem 286(23):20323–20334. doi: 10.1074/jbc.M110.207258 PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O, Harr MW, Levine RL, Xu H, Tefferi A, Deblasio A, Hatlen M, Menendez S, Nimer SD (2011) JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19(2):283–294. doi: 10.1016/j.ccr.2010.12.020 PubMedCrossRefGoogle Scholar
  118. 118.
    Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H, Herlyn M, Hua X, Rustgi AK, McMahon SB, Diehl JA (2010) Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 18(4):329–340. doi: 10.1016/j.ccr.2010.08.012 PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Chen M, Yi B, Sun J (2014) Inhibition of cardiomyocyte hypertrophy by protein arginine methyltransferase 5. J Biol Chem 289(35):24325–24335. doi: 10.1074/jbc.M114.577494 PubMedCrossRefGoogle Scholar
  120. 120.
    Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD, Rauscher FJ 3rd (2008) The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 28(10):3198–3207. doi: 10.1128/mcb.01435-07 PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Rho J, Choi S, Seong YR, Cho WK, Kim SH, Im DS (2001) Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J Biol Chem 276(14):11393–11401. doi: 10.1074/jbc.M008660200 PubMedCrossRefGoogle Scholar
  122. 122.
    Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S (2007) Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 26(15):3558–3569. doi: 10.1038/sj.emboj.7601794 PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Gu Z, Gao S, Zhang F, Wang Z, Ma W, Davis RE, Wang Z (2012) Protein arginine methyltransferase 5 is essential for growth of lung cancer cells. Biochem J 446(2):235–241. doi: 10.1042/bj20120768 PubMedCrossRefGoogle Scholar
  124. 124.
    Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132(14):3151–3161. doi: 10.1242/dev.01907 PubMedCrossRefGoogle Scholar
  125. 125.
    Liang JJ, Wang Z, Chiriboga L, Greco MA, Shapiro E, Huang H, Yang XJ, Huang J, Peng Y, Melamed J, Garabedian MJ, Lee P (2007) The expression and function of androgen receptor coactivator p44 and protein arginine methyltransferase 5 in the developing testis and testicular tumors. J Urol 177(5):1918–1922. doi: 10.1016/j.juro.2007.01.017 PubMedCrossRefGoogle Scholar
  126. 126.
    Powers MA, Fay MM, Factor RE, Welm AL, Ullman KS (2011) Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res 71(16):5579–5587. doi: 10.1158/0008-5472.can-11-0458 PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Eckert D, Biermann K, Nettersheim D, Gillis AJ, Steger K, Jack HM, Muller AM, Looijenga LH, Schorle H (2008) Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol 8:106. doi: 10.1186/1471-213x-8-106 PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Bao X, Zhao S, Liu T, Liu Y, Liu Y, Yang X (2013) Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem 61(3):206–217. doi: 10.1369/0022155413475452 PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Nicholas C, Yang J, Peters SB, Bill MA, Baiocchi RA, Yan F, Sif S, Tae S, Gaudio E, Wu X, Grever MR, Young GS, Lesinski GB (2013) PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1.). PLoS ONE 8(9):e74710. doi: 10.1371/journal.pone.0074710 PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469. doi: 10.1038/nrc2876 PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Sawan C, Herceg Z (2010) Histone modifications and cancer. Adv Genet 70:57–85. doi: 10.1016/b978-0-12-380866-0.60003-4 PubMedCrossRefGoogle Scholar
  132. 132.
    Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50. doi: 10.1038/nrc3409 PubMedCrossRefGoogle Scholar
  133. 133.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signal 6(269):pl1. doi: 10.1126/scisignal.2004088 CrossRefGoogle Scholar
  134. 134.
    Kim JM, Sohn HY, Yoon SY, Oh JH, Yang JO, Kim JH, Song KS, Rho SM, Yoo HS, Kim YS, Kim JG, Kim NS (2005) Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res 11(2 Pt 1):473–482PubMedGoogle Scholar
  135. 135.
    Wei TY, Juan CC, Hisa JY, Su LJ, Lee YC, Chou HY, Chen JM, Wu YC, Chiu SC, Hsu CP, Liu KL, Yu CT (2012) Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci 103(9):1640–1650. doi: 10.1111/j.1349-7006.2012.02367.x PubMedCrossRefGoogle Scholar
  136. 136.
    Uzdensky A, Demyanenko S, Bibov M, Sharifulina S, Kit O, Przhedetski Y, Pozdnyakova V (2014) Expression of proteins involved in epigenetic regulation in human cutaneous melanoma and peritumoral skin. Tumour Biol 35(8):8225–8233. doi: 10.1007/s13277-014-2098-3 PubMedCrossRefGoogle Scholar
  137. 137.
    Han X, Li R, Zhang W, Yang X, Wheeler CG, Friedman GK, Province P, Ding Q, You Z, Fathallah-Shaykh HM, Gillespie GY, Zhao X, King PH, Nabors LB (2014) Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro. J Neurooncol 118(1):61–72. doi: 10.1007/s11060-014-1419-0 PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Yan F, Alinari L, Lustberg ME, Katherine Martin L, Cordero-Nieves HM, Banasavadi-Siddegowda Y, Virk S, Barnholtz-Sloan J, Bell EH, Wojton J, Jacob NK, Chakravarti A, Nowicki MO, Wu X, Lapalombella R, Datta J, Yu B, Gordon K, Haseley A, Patton JT, Smith PL, Ryu J, Zhang X, Mo X, Marcucci G, Nuovo G, Kwon CH, Byrd JC, Chiocca EA, Li C, Sif S, Jacob S, Lawler S, Kaur B, Baiocchi RA (2014) Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res 74(6):1752–1765. doi: 10.1158/0008-5472.can-13-0884 PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Gyorffy B, Surowiak P, Budczies J, Lanczky A (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8(12):e82241. doi: 10.1371/journal.pone.0082241 PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Ibrahim R, Matsubara D, Osman W, Morikawa T, Goto A, Morita S, Ishikawa S, Aburatani H, Takai D, Nakajima J, Fukayama M, Niki T, Murakami Y (2014) Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition. Hum Pathol 45(7):1397–1405. doi: 10.1016/j.humpath.2014.02.013 PubMedCrossRefGoogle Scholar
  141. 141.
    Shilo K, Wu X, Sharma S, Welliver M, Duan W, Villalona-Calero M, Fukuoka J, Sif S, Baiocchi R, Hitchcock CL, Zhao W, Otterson GA (2013) Cellular localization of protein arginine methyltransferase-5 correlates with grade of lung tumors. Diagn Pathol 8:201. doi: 10.1186/1746-1596-8-201 PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Wei TY, Hsia JY, Chiu SC, Su LJ, Juan CC, Lee YC, Chen JM, Chou HY, Huang JY, Huang HM, Yu CT (2014) Methylosome protein 50 promotes androgen- and estrogen-independent tumorigenesis. Cell Signal 26(12):2940–2950. doi: 10.1016/j.cellsig.2014.09.014 PubMedCrossRefGoogle Scholar
  143. 143.
    Scoumanne A, Zhang J, Chen X (2009) PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 37(15):4965–4976. doi: 10.1093/nar/gkp516 PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Zhang HT, Zhang D, Zha ZG (1839) Hu CD (2014) Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells. Biochim Biophys Acta 11:1330–1340. doi: 10.1016/j.bbagrm.2014.09.015 Google Scholar
  145. 145.
    Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC (2011) Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 13(2):174–181. doi: 10.1038/ncb2158 PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Lim JH, Lee YM, Lee G, Choi YJ, Lim BO, Kim YJ, Choi DK, Park JW (2014) PRMT5 is essential for the eIF4E-mediated 5′-cap dependent translation. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.09.033 Google Scholar
  147. 147.
    De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23(18):3189–3199. doi: 10.1038/sj.onc.1207545 PubMedCrossRefGoogle Scholar
  148. 148.
    Jia Y, Polunovsky V, Bitterman PB, Wagner CR (2012) Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med Res Rev 32(4):786–814. doi: 10.1002/med.21260 PubMedCrossRefGoogle Scholar
  149. 149.
    Jiang W, Roemer ME, Newsham IF (2005) The tumor suppressor DAL-1/4.1B modulates protein arginine N-methyltransferase 5 activity in a substrate-specific manner. Biochem Biophys Res Commun 329(2):522–530. doi: 10.1016/j.bbrc.2005.01.153 PubMedCrossRefGoogle Scholar
  150. 150.
    Jiang W, Newsham IF (2006) The tumor suppressor DAL-1/4.1B and protein methylation cooperate in inducing apoptosis in MCF-7 breast cancer cells. Mol Cancer 5:4. doi: 10.1186/1476-4598-5-4 PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Fay MM, Clegg JM, Uchida KA, Powers MA, Ullman KS (2014) Enhanced arginine methylation of programmed cell death 4 protein during nutrient deprivation promotes tumor cell viability. J Biol Chem 289(25):17541–17552. doi: 10.1074/jbc.M113.541300 PubMedCrossRefGoogle Scholar
  152. 152.
    Fisk JC, Read LK (2011) Protein arginine methylation in parasitic protozoa. Eukaryot Cell 10(8):1013–1022. doi: 10.1128/ec.05103-11 PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Liu CD, Cheng CP, Fang JS, Chen LC, Zhao B, Kieff E, Peng CW (2013) Modulation of Epstein–Barr virus nuclear antigen 2-dependent transcription by protein arginine methyltransferase 5. Biochem Biophys Res Commun 430(3):1097–1102. doi: 10.1016/j.bbrc.2012.12.032 PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Shire K, Kapoor P, Jiang K, Hing MN, Sivachandran N, Nguyen T, Frappier L (2006) Regulation of the EBNA1 Epstein–Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80(11):5261–5272. doi: 10.1128/jvi.02682-05 PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Doueiri R, Anupam R, Kvaratskhelia M, Green KB, Lairmore MD, Green PL (2012) Comparative host protein interactions with HTLV-1 p30 and HTLV-2 p28: insights into difference in pathobiology of human retroviruses. Retrovirology 9:64. doi: 10.1186/1742-4690-9-64 PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA, Richard S (2005) Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 79(1):124–131. doi: 10.1128/jvi.79.1.124-131.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Beltran-Alvarez P, Espejo A, Schmauder R, Beltran C, Mrowka R, Linke T, Batlle M, Perez-Villa F, Perez GJ, Scornik FS, Benndorf K, Pagans S, Zimmer T, Brugada R (2013) Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel. FEBS Lett 587(19):3159–3165. doi: 10.1016/j.febslet.2013.07.043 PubMedCrossRefGoogle Scholar
  158. 158.
    Yost JM, Korboukh I, Liu F, Gao C, Jin J (2011) Targets in epigenetics: inhibiting the methyl writers of the histone code. Curr Chem Genomics 5(Suppl 1):72–84. doi: 10.2174/1875397301005010072 PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8(9):724–732. doi: 10.1038/nrd2974 PubMedCrossRefGoogle Scholar
  160. 160.
    Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65. doi: 10.1016/j.ccr.2011.06.009 PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A, Marineau JJ, Qi J, Barsyte-Lovejoy D, Yi J, Marcellus R, Iacob RE, Engen JR, Griffin C, Aman A, Wienholds E, Li F, Pineda J, Estiu G, Shatseva T, Hajian T, Al-awar R, Dick JE, Vedadi M, Brown PJ, Arrowsmith CH, Bradner JE, Schapira M (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3:1288. doi: 10.1038/ncomms2304 PubMedCrossRefGoogle Scholar
  162. 162.
    Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X, Reinberg D, Lee MG (2012) Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev 26(24):2749–2762. doi: 10.1101/gad.203356.112 PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    Tsai WW, Niessen S, Goebel N, Yates JR 3rd, Guccione E, Montminy M (2013) PRMT5 modulates the metabolic response to fasting signals. Proc Natl Acad Sci USA 110(22):8870–8875. doi: 10.1073/pnas.1304602110 PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Tae S, Karkhanis V, Velasco K, Yaneva M, Erdjument-Bromage H, Tempst P, Sif S (2011) Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic Acids Res 39(13):5424–5438. doi: 10.1093/nar/gkr170 PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    Neuenkirchen N, Chari A, Fischer U (2008) Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett 582(14):1997–2003. doi: 10.1016/j.febslet.2008.03.009 PubMedCrossRefGoogle Scholar
  166. 166.
    Gonsalvez GB, Rajendra TK, Tian L, Matera AG (2006) The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance. Curr Biol 16(11):1077–1089. doi: 10.1016/j.cub.2006.04.037 PubMedCrossRefGoogle Scholar
  167. 167.
    Friesen WJ, Wyce A, Paushkin S, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem 277(10):8243–8247. doi: 10.1074/jbc.M109984200 PubMedCrossRefGoogle Scholar
  168. 168.
    Anne J, Ollo R, Ephrussi A, Mechler BM (2007) Arginine methyltransferase Capsuleen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development 134(1):137–146. doi: 10.1242/dev.02687 PubMedCrossRefGoogle Scholar
  169. 169.
    Li Z, Yu J, Hosohama L, Nee K, Gkountela S, Chaudhari S, Cass AA, Xiao X, Clark AT (2014) The Sm protein methyltransferase PRMT5 is not required for primordial germ cell specification in mice. EMBO J. doi: 10.15252/embj.201489319 Google Scholar
  170. 170.
    Ren J, Wang Y, Liang Y, Zhang Y, Bao S, Xu Z (2010) Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem 285(17):12695–12705. doi: 10.1074/jbc.M110.103911 PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Guo Z, Zheng L, Xu H, Dai H, Zhou M, Pascua MR, Chen QM, Shen B (2010) Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol 6(10):766–773. doi: 10.1038/nchembio.422 PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Wei TY, Hsia JY, Chiu SC, Su LJ, Juan CC, Lee YC, Chen JM, Chou HY, Huang JY, Huang HM, Yu CT (2014) Methylosome protein 50 promotes androgen- and estrogen-independent tumorigenesis. Cell Signal. doi: 10.1016/j.cellsig.2014.09.014 Google Scholar
  173. 173.
    Anne J, Mechler BM (2005) Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase Capsuleen. Development 132(9):2167–2177. doi: 10.1242/dev.01809 PubMedCrossRefGoogle Scholar
  174. 174.
    Lacroix M, Messaoudi SE, Rodier G, Le Cam A, Sardet C, Fabbrizio E (2008) The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 9(5):452–458.
  175. 175.
    Nishioka K, Reinberg D (2003) Methods and tips for the purification of human histone methyltransferases. Methods (San Diego, Calif) 31(1):49–58 pii: S1046202303000872CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Alaska AnchorageAnchorageUSA
  2. 2.Department of BiochemistryAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA

Personalised recommendations