Cellular and Molecular Life Sciences

, Volume 72, Issue 10, pp 1907–1929 | Cite as

Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals

  • Pablo Bosch
  • Diego O. Forcato
  • Fabrisio E. Alustiza
  • Ana P. Alessio
  • Alejandro E. Fili
  • María F. Olmos Nicotra
  • Ana C. Liaudat
  • Nancy Rodríguez
  • Thirumala R. Talluri
  • Wilfried A. Kues


Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.


Active transgenesis Livestock Binary transposon system Designer nuclease Recombinase Integrase Synthetic biology 



CRISPR-associated protein 9


Cytoplasmic injection


Chromatin transfer


Clustered regularly interspaced short palindromic repeats


Double-strand break


Gene of interest


Homologous recombination


Homology-directed repair


Intracytoplasmic sperm injection


Intracytoplasmic sperm injection-mediated transgenesis


Induced pluripotent stem (cell)


Homing endonuclease


Inverted terminal repeat




Non-homologous end joining


piggyBac transposon system


Pronuclear injection


Restriction enzyme


Recombinase A


Restriction enzyme-mediated integration


Recombinase-mediated cassette exchange


Recombinase-mediated DNA insertion


Sleeping Beauty transposon system


Somatic cell nuclear transfer


Single-guide RNA


Sperm-mediated gene transfer


Simian virus 40


Transcription activator-like element nuclease


Tol2 transposon system


Zinc finger nuclease



Authors acknowledge the financial support from CONICET, FONCyT, UNRC (Republica Argentina), ICAR (India), as well as from DAAD and DFG (Germany).


  1. 1.
    Miao X (2013) Recent advances in the development of new transgenic animal technology. Cell Mol Life Sci 70(5):815–828. doi: 10.1007/s00018-012-1081-7 PubMedGoogle Scholar
  2. 2.
    Laible G, Wei J, Wagner S (2014) Improving livestock for agriculture: technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol J. doi: 10.1002/biot.201400193 PubMedGoogle Scholar
  3. 3.
    Prather RS (2013) Pig genomics for biomedicine. Nat Biotechnol 31(2):122–124. doi: 10.1038/nbt.2490 PubMedGoogle Scholar
  4. 4.
    Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135–158. doi: 10.1146/annurev-genom-091212-153435 PubMedGoogle Scholar
  5. 5.
    Cibelli J, Emborg ME, Prockop DJ, Roberts M, Schatten G, Rao M, Harding J, Mirochnitchenko O (2013) Strategies for improving animal models for regenerative medicine. Cell Stem Cell 12(3):271–274. doi: 10.1016/j.stem.2013.01.004 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Shinohara ET, Kaminski JM, Segal DJ, Pelczar P, Kolhe R, Ryan T, Coates CJ, Fraser MJ, Handler AM, Yanagimachi R, Moisyadi S (2007) Active integration: new strategies for transgenesis. Transgenic Res 16(3):333–339PubMedGoogle Scholar
  7. 7.
    Garrels W, Ivics Z, Kues WA (2012) Precision genetic engineering in large mammals. Trends Biotechnol 30(7):386–393. doi: 10.1016/j.tibtech.2012.03.008 PubMedGoogle Scholar
  8. 8.
    Keravala A, Liu D, Lechman ER, Wolfe D, Nash JA, Lampe DJ, Robbins PD (2006) Hyperactive Himar1 transposase mediates transposition in cell culture and enhances gene expression in vivo. Hum Gene Ther 17(10):1006–1018. doi: 10.1089/hum.2006.17.1006 PubMedGoogle Scholar
  9. 9.
    Zayed H, Izsvák Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9(2):292–304. doi: 10.1016/j.ymthe.2003.11.024 PubMedGoogle Scholar
  10. 10.
    Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvak Z (2009) Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761. doi: 10.1038/ng.343 PubMedGoogle Scholar
  11. 11.
    Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108(4):1531–1536. doi: 10.1073/pnas.1008322108 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334. doi: 10.1038/nrg3686 PubMedGoogle Scholar
  13. 13.
    Jakobsen JE, Johansen MG, Schmidt M, Dagnaes-Hansen F, Dam K, Gunnarsson A, Liu Y, Kragh PM, Li R, Holm IE, Callesen H, Mikkelsen JG, Nielsen AL, Jorgensen AL (2013) Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res 22(4):709–723. doi: 10.1007/s11248-012-9671-6 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, Guo Z, Zhang Y (2013) A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS ONE 8(5):e62457. doi: 10.1371/journal.pone.0062457 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Whitelaw CB, Lillico SG, King T (2008) Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Anim 43(Suppl 2):355–358. doi: 10.1111/j.1439-0531.2008.01184.x PubMedGoogle Scholar
  16. 16.
    Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31(2):159–173. doi: 10.1152/physiolgenomics.00069.2007 PubMedGoogle Scholar
  17. 17.
    Pfeifer A, Hofmann A (2009) Lentiviral transgenesis. Methods Mol Biol 530:391–405. doi: 10.1007/978-1-59745-471-1_21 PubMedGoogle Scholar
  18. 18.
    Lillico S, Vasey D, King T, Whitelaw B (2011) Lentiviral transgenesis in livestock. Transgenic Res 20(3):441–442. doi: 10.1007/s11248-010-9448-8 PubMedGoogle Scholar
  19. 19.
    Carlson DF, Tan W, Hackett PB, Fahrenkrug SC (2013) Editing livestock genomes with site-specific nucleases. Reprod Fertil Dev 26(1):74–82. doi: 10.1071/RD13260 PubMedGoogle Scholar
  20. 20.
    Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA 110(41):16526–16531. doi: 10.1073/pnas.1310478110 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Gun G, Kues WA (2014) Current progress of genetically engineered pig models for biomedical research. Biores Open Access 3(6):255–264. doi: 10.1089/biores.2014.0039 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439. doi: 10.1146/annurev-biochem-060713-035418 PubMedGoogle Scholar
  23. 23.
    Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88(17):7585–7589PubMedCentralPubMedGoogle Scholar
  24. 24.
    Black M, Seeber F, Soldati D, Kim K, Boothroyd JC (1995) Restriction enzyme-mediated integration elevates transformation frequency and enables co-transfection of Toxoplasma gondii. Mol Biochem Parasitol 74(1):55–63PubMedGoogle Scholar
  25. 25.
    Maier FJ, Schafer W (1999) Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem 380(7–8):855–864. doi: 10.1515/BC.1999.105 PubMedGoogle Scholar
  26. 26.
    Marsh-Armstrong N, Huang H, Berry DL, Brown DD (1999) Germ-line transmission of transgenes in Xenopus laevis. Proc Natl Acad Sci USA 96(25):14389–14393PubMedCentralPubMedGoogle Scholar
  27. 27.
    Cavolina P, Agnese C, Maddalena A, Sciandrello G, Di Leonardo A (1989) Induction of CAD gene amplification by restriction endonucleases in V79, B7 Chinese hamster cells. Mutat Res 225(1–2):61–64PubMedGoogle Scholar
  28. 28.
    Costa ND, Masson WK, Thacker J (1993) The effectiveness of restriction endonucleases in cell killing and mutation. Somat Cell Mol Genet 19(5):479–490PubMedGoogle Scholar
  29. 29.
    Seo BB, Kim CH, Yamanouchi K, Takahashi M, Sawasaki T, Tachi C, Tojo H (2000) Co-injection of restriction enzyme with foreign DNA into the pronucleus for elevating production efficiencies of transgenic animals. Anim Reprod Sci 63(1–2):113–122PubMedGoogle Scholar
  30. 30.
    Wall RJ (1996) Transgenic livestock: progress and prospects for the future. Theriogenology 45:57–68Google Scholar
  31. 31.
    Abella Columna E, Giaccia AJ, Evans JW, Yates BL, Morgan WF (1993) Analysis of restriction enzyme-induced chromosomal aberrations by fluorescence in situ hybridization. Environ Mol Mutagen 22(1):26–33PubMedGoogle Scholar
  32. 32.
    Dewey WC, Miller HH, Leeper DB (1971) Chromosomal aberrations and mortality of x-irradiated mammalian cells: emphasis on repair. Proc Natl Acad Sci USA 68(3):667–671PubMedCentralPubMedGoogle Scholar
  33. 33.
    Obe G, Von der Hude W, Scheutwinkel-Reich M, Basler A (1986) The restriction endonuclease Alu I induces chromosomal aberrations and mutations in the hypoxanthine phosphoribosyltransferase locus, but not in the Na+/K+ ATPase locus in V79 hamster cells. Mutat Res 174(1):71–74. doi: 10.1016/0165-7992(86)90079-5 PubMedGoogle Scholar
  34. 34.
    Singh B, Bryant PE (1991) Induction of mutations at the thymidine kinase locus in CHO cells by restriction endonucleases. Mutagenesis 6(3):219–223PubMedGoogle Scholar
  35. 35.
    Hafez M, Hausner G (2012) Homing endonucleases: DNA scissors on a mission. Genome 55(8):553–569. doi: 10.1139/g2012-049 PubMedGoogle Scholar
  36. 36.
    Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41(2):383–394PubMedGoogle Scholar
  37. 37.
    Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123(2):103–113PubMedGoogle Scholar
  38. 38.
    Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118(1–2):91–98PubMedGoogle Scholar
  39. 39.
    Bevacqua RJ, Canel NG, Hiriart MI, Sipowicz P, Rozenblum GT, Vitullo A, Radrizzani M, Fernandez Martin R, Salamone DF (2013) Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos. Theriogenology 80(2):104–113. doi: 10.1016/j.theriogenology.2013.03.017 PubMedGoogle Scholar
  40. 40.
    Ortega MN, Benítez SB, Barrionuevo BE, Olmos Nicotra MF, Alessio AP, Fili AE, Forcato DO, Stice SL, Bosch P (2012) Meganuclease I-SceI enhances stable transgene integration in cultured bovine fetal fibroblasts. Reprod Fertil Dev 25(1):170–171. doi: 10.1071/RDv25n1Ab46 Google Scholar
  41. 41.
    Wang Y, Zhou XY, Xiang PY, Wang LL, Tang H, Xie F, Li L, Wei H (2014) The meganuclease I-SceI containing nuclear localization signal (NLS-I-SceI) efficiently mediated mammalian germline transgenesis via embryo cytoplasmic microinjection. PLoS ONE 9(9):e108347. doi: 10.1371/journal.pone.0108347 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Brackett BG, Baranska W, Sawicki W, Koprowski H (1971) Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA 68(2):353–357PubMedCentralPubMedGoogle Scholar
  43. 43.
    Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5):717–723PubMedGoogle Scholar
  44. 44.
    Brinster RL, Sandgren EP, Behringer RR, Palmiter RD (1989) No simple solution for making transgenic mice. Cell 59(2):239–241PubMedGoogle Scholar
  45. 45.
    Tsai HJ (2000) Electroporated sperm mediation of a gene transfer system for finfish and shellfish. Mol Reprod Dev 56(2 Suppl):281–284. doi: 10.1002/(SICI)1098-2795(200006)56:2+<281:AID-MRD15>3.0.CO;2-B PubMedGoogle Scholar
  46. 46.
    Shamila Y, Mathavan S (2000) Sperm/DNA interaction: DNA binding proteins in sperm cell of silkworm Bombyx mori. Mol Reprod Dev 56(2 Suppl):289–291. doi: 10.1002/(SICI)1098-2795(200006)56:2+<289:AID-MRD17>3.0.CO;2-Y PubMedGoogle Scholar
  47. 47.
    Fernandez MA, Mani SA, Rangarajan PN, Seshagiri PB (1999) Sperm-mediated gene transfer into oocytes of the golden hamster: assessment of sperm function. Indian J Exp Biol 37(11):1085–1092PubMedGoogle Scholar
  48. 48.
    Cappello F, Stassi G, Lazzereschi D, Renzi L, Di Stefano C, Marfe G, Giancotti P, Wang HJ, Stoppacciaro A, Forni M, Bacci ML, Turchi V, Sinibaldi P, Rossi M, Bruzzone P, Pretagostini R, Della Casa G, Cortesini R, Frati L, Lavitrano M (2000) hDAF expression in hearts of transgenic pigs obtained by sperm-mediated gene transfer. Transplant Proc 32(5):895–896PubMedGoogle Scholar
  49. 49.
    Shemesh M, Gurevich M, Harel-Markowitz E, Benvenisti L, Shore LS, Stram Y (2000) Gene integration into bovine sperm genome and its expression in transgenic offspring. Mol Reprod Dev 56(S2):306–308PubMedGoogle Scholar
  50. 50.
    Sciamanna I, Piccoli S, Barberi L, Zaccagnini G, Magnano AR, Giordano R, Campedelli P, Hodgson C, Lorenzini R, Spadafora C (2000) DNA dose and sequence dependence in sperm-mediated gene transfer. Mol Reprod Dev 56(2 Suppl):301–305. doi: 10.1002/(SICI)1098-2795(200006)56:2+<301:AID-MRD20>3.0.CO;2-B PubMedGoogle Scholar
  51. 51.
    Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R (1999) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284(5417):1180–1183PubMedGoogle Scholar
  52. 52.
    Umeyama K, Saito H, Kurome M, Matsunari H, Watanabe M, Nakauchi H, Nagashima H (2012) Characterization of the ICSI-mediated gene transfer method in the production of transgenic pigs. Mol Reprod Dev 79(3):218–228. doi: 10.1002/mrd.22015 PubMedGoogle Scholar
  53. 53.
    Hirabayashi M, Kato M, Ito J, Hochi S (2005) Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13(1):79–85PubMedGoogle Scholar
  54. 54.
    Pereyra-Bonnet F, Fernandez-Martin R, Olivera R, Jarazo J, Vichera G, Gibbons A, Salamone D (2008) A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species. Reprod Fertil Dev 20(7):741–749PubMedGoogle Scholar
  55. 55.
    Bevacqua RJ, Pereyra-Bonnet F, Fernandez-Martin R, Salamone DF (2010) High rates of bovine blastocyst development after ICSI-mediated gene transfer assisted by chemical activation. Theriogenology 74(6):922–931. doi: 10.1016/j.theriogenology.2010.04.017 PubMedGoogle Scholar
  56. 56.
    Chan AW, Luetjens CM, Dominko T, Ramalho-Santos J, Simerly CR, Hewitson L, Schatten G (2000) Foreign DNA transmission by ICSI: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live rhesus monkey births. Mol Hum Reprod 6(1):26–33PubMedGoogle Scholar
  57. 57.
    Mizushima S, Takagi S, Ono T, Atsumi Y, Tsukada A, Saito N, Sasanami T, Okabe M, Shimada K (2010) Novel method of gene transfer in birds: intracytoplasmic sperm injection for green fluorescent protein expression in quail blastoderms. Biol Reprod 83(6):965–969. doi: 10.1095/biolreprod.110.085860 PubMedGoogle Scholar
  58. 58.
    Henikoff S (1998) Conspiracy of silence among repeated transgenes. Bioessays 20(7):532–535. doi: 10.1002/(sici)1521-1878(199807)20:7<532:aid-bies3>3.0.co;2-m PubMedGoogle Scholar
  59. 59.
    Kues WA, Schwinzer R, Wirth D, Verhoeyen E, Lemme E, Herrmann D, Barg-Kues B, Hauser H, Wonigeit K, Niemann H (2006) Epigenetic silencing and tissue independent expression of a novel tetracycline inducible system in double-transgenic pigs. FASEB J 20(8):1200–1202. doi: 10.1096/fj.05-5415fje PubMedGoogle Scholar
  60. 60.
    Kaneko T, Moisyadi S, Suganuma R, Hohn B, Yanagimachi R, Pelczar P (2005) Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection. Theriogenology 64(8):1704–1715PubMedGoogle Scholar
  61. 61.
    Suganuma R, Pelczar P, Spetz JF, Hohn B, Yanagimachi R, Moisyadi S (2005) Tn5 transposase-mediated mouse transgenesis. Biol Reprod 73(6):1157–1163PubMedGoogle Scholar
  62. 62.
    Maga EA, Sargent RG, Zeng H, Pati S, Zarling DA, Oppenheim SM, Collette NM, Moyer AL, Conrad-Brink JS, Rowe JD, BonDurant RH, Anderson GB, Murray JD (2003) Increased efficiency of transgenic livestock production. Transgenic Res 12(4):485–496PubMedGoogle Scholar
  63. 63.
    Mason JB, Najarian JG, Anderson GB, Murray JD, Maga EA (2006) The effect of coating single- and double-stranded DNA with the recombinase A protein of Escherichia coli on transgene integration in mice. Transgenic Res 15(6):703–710. doi: 10.1007/s11248-006-9005-7 PubMedGoogle Scholar
  64. 64.
    Moisyadi S, Kaminski JM, Yanagimachi R (2009) Use of intracytoplasmic sperm injection (ICSI) to generate transgenic animals. Comp Immunol Microbiol Infect Dis 32(2):47–60. doi: 10.1016/j.cimid.2008.05.003 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B, Niemann H, Izsvak Z, Ivics Z, Kues WA (2011) Germline transgenic pigs by sleeping beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE 6(8):e23573. doi: 10.1371/journal.pone.0023573 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Ivics Z, Garrels W, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Kues WA, Izsvák Z (2014) Germline transgenesis in pigs by cytoplasmic microinjection of sleeping beauty transposons. Nat Protoc 9(4):810–827. doi: 10.1038/nprot.2014.010 PubMedGoogle Scholar
  67. 67.
    Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7. doi: 10.1186/gb-2007-8-s1-s7 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Suster ML, Abe G, Schouw A, Kawakami K (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6(12):1998–2021. doi: 10.1038/nprot.2011.416 PubMedGoogle Scholar
  69. 69.
    Schnutgen F, Stewart AF, von Melchner H, Anastassiadis K (2006) Engineering embryonic stem cells with recombinase systems. Methods Enzymol 420:100–136. doi: 10.1016/s0076-6879(06)20007-7 PubMedGoogle Scholar
  70. 70.
    Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963. doi: 10.1038/nmeth.2649 PubMedCentralPubMedGoogle Scholar
  71. 71.
    McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36(6):344–355PubMedCentralPubMedGoogle Scholar
  72. 72.
    Makałowski W, Pande A, Gotea V, Makałowska I (2012) Transposable elements and their identification. Methods Mol Biol 855:337–359. doi: 10.1007/978-1-61779-582-4_12 PubMedGoogle Scholar
  73. 73.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi: 10.1038/35057062 PubMedGoogle Scholar
  74. 74.
    Muñoz-López M, García-Pérez JL (2010) DNA transposons: nature and applications in genomics. Curr Genomics 11(2):115–128. doi: 10.2174/138920210790886871 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Ostertag EM, Kazazian HH (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538. doi: 10.1146/annurev.genet.35.102401.091032 PubMedGoogle Scholar
  76. 76.
    Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110(3):315–325PubMedGoogle Scholar
  77. 77.
    Plasterk RH, Izsvák Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15(8):326–332PubMedGoogle Scholar
  78. 78.
    Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6(6):415–422. doi: 10.1038/nmeth.1332 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510PubMedGoogle Scholar
  80. 80.
    van Luenen HG, Colloms SD, Plasterk RH (1994) The mechanism of transposition of Tc3 in C. elegans. Cell 79(2):293–301PubMedGoogle Scholar
  81. 81.
    Mátés L, Izsvák Z, Ivics Z (2007) Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 8(Suppl 1):S1. doi: 10.1186/gb-2007-8-s1-s1 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483. doi: 10.1016/j.cell.2005.07.013 PubMedGoogle Scholar
  83. 83.
    Horie K, Yusa K, Yae K, Odajima J, Fischer SE, Keng VW, Hayakawa T, Mizuno S, Kondoh G, Ijiri T, Matsuda Y, Plasterk RH, Takeda J (2003) Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol Cell Biol 23(24):9189–9207PubMedCentralPubMedGoogle Scholar
  84. 84.
    Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2(11):e169. doi: 10.1371/journal.pgen.0020169 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Rostovskaya M, Naumann R, Fu J, Obst M, Mueller D, Stewart AF, Anastassiadis K (2013) Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes. Genesis 51(2):135–141. doi: 10.1002/dvg.22362 PubMedGoogle Scholar
  86. 86.
    Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22(9):3157–3173PubMedCentralPubMedGoogle Scholar
  87. 87.
    Carlson DF, Garbe JR, Tan W, Martin MJ, Dobrinsky JR, Hackett PB, Clark KJ, Fahrenkrug SC (2011) Strategies for selection marker-free swine transgenesis using the sleeping beauty transposon system. Transgenic Res 20(5):1125–1137. doi: 10.1007/s11248-010-9481-7 PubMedGoogle Scholar
  88. 88.
    Ryding AD, Sharp MG, Mullins JJ (2001) Conditional transgenic technologies. J Endocrinol 171(1):1–14PubMedGoogle Scholar
  89. 89.
    Woltjen K, Hämäläinen R, Kibschull M, Mileikovsky M, Nagy A (2011) Transgene-free production of pluripotent stem cells using piggyBac transposons. Methods Mol Biol 767:87–103. doi: 10.1007/978-1-61779-201-4_7 PubMedGoogle Scholar
  90. 90.
    Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6(5):363–369. doi: 10.1038/nmeth.1323 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Staber J, Wheelan SJ, Joung JK, McCray PB, Bushman FD, Sinn PL, Craig NL (2013) piggyBac transposase tools for genome engineering. Proc Natl Acad Sci USA 110(25):E2279–E2287. doi: 10.1073/pnas.1305987110 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Sinzelle L, Vallin J, Coen L, Chesneau A, Du Pasquier D, Pollet N, Demeneix B, Mazabraud A (2006) Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15(6):751–760. doi: 10.1007/s11248-006-9014-6 PubMedGoogle Scholar
  93. 93.
    Yergeau DA, Johnson Hamlet MR, Kuliyev E, Zhu H, Doherty JR, Archer TD, Subhawong AP, Valentine MB, Kelley CM, Mead PE (2009) Transgenesis in Xenopus using the sleeping beauty transposon system. Dev Dyn 238(7):1727–1743. doi: 10.1002/dvdy.21994 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Kitada K, Ishishita S, Tosaka K, Takahashi R, Ueda M, Keng VW, Horie K, Takeda J (2007) Transposon-tagged mutagenesis in the rat. Nat Methods 4(2):131–133. doi: 10.1038/nmeth1002 PubMedGoogle Scholar
  95. 95.
    Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN, Fahrenkrug SC (2007) Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol 7:42. doi: 10.1186/1472-6750-7-42 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Baus J, Liu L, Heggestad AD, Sanz S, Fletcher BS (2005) Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 12(6):1148–1156. doi: 10.1016/j.ymthe.2005.06.484 PubMedGoogle Scholar
  97. 97.
    Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA (2004) Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 24(20):9239–9247. doi: 10.1128/MCB.24.20.9239-9247.2004 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Geurts AM, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther 8(1):108–117PubMedGoogle Scholar
  99. 99.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77(12):7380–7384PubMedCentralPubMedGoogle Scholar
  100. 100.
    Bondioli KR, Biery KA, Hill KG, Jones KB, De Mayo FJ (1991) Production of transgenic cattle by pronuclear injection. Biotechnology 16:265–273PubMedGoogle Scholar
  101. 101.
    Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683PubMedGoogle Scholar
  102. 102.
    Iqbal K, Barg-Kues B, Broll S, Bode J, Niemann H, Kues W (2009) Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos. Biotechniques 47(5):959–968. doi: 10.2144/000113270 PubMedGoogle Scholar
  103. 103.
    Clark KJ, Urban MD, Skuster KJ, Ekker SC (2011) Transgenic zebrafish using transposable elements. Methods Cell Biol 104:137–149. doi: 10.1016/B978-0-12-374814-0.00008-2 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Marh J, Stoytcheva Z, Urschitz J, Sugawara A, Yamashiro H, Owens JB, Stoytchev I, Pelczar P, Yanagimachi R, Moisyadi S (2012) Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis. Proc Natl Acad Sci USA 109(47):19184–19189. doi: 10.1073/pnas.1216473109 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Jang CW, Behringer RR (2007) Transposon-mediated transgenesis in rats. CSH Protoc 2007:pdb.prot4866PubMedGoogle Scholar
  106. 106.
    Li Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z (2014) Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase based pmGENIE-3 plasmids. Biol Reprod 90(5):93–102. doi: 10.1095/biolreprod.113.116905 PubMedGoogle Scholar
  107. 107.
    Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, Vajta G, Bolund L, Callesen H, Jorgensen AL, Nielsen AL, Mikkelsen JG (2011) Pig transgenesis by sleeping beauty DNA transposition. Transgenic Res 20(3):533–545. doi: 10.1007/s11248-010-9438-x PubMedGoogle Scholar
  108. 108.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedGoogle Scholar
  109. 109.
    Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66PubMedGoogle Scholar
  110. 110.
    Bosch P, Hodges CA, Stice SL (2004) Generation of transgenic livestock by somatic cell nuclear transfer. Biotecnologia Aplicada 21(3):128–136Google Scholar
  111. 111.
    Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D, Urschitz J, Moisyadi S, Li Z (2013) Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 22(6):1107–1118. doi: 10.1007/s11248-013-9729-0 PubMedGoogle Scholar
  112. 112.
    Alessio A, Fili A, Forcato D, Olmos-Nicotra F, Alustiza F, Rodriguez N, Owens J, Moisyad S, Kues WA, Bosch P (2014) Efficient piggyBac transposon-mediated transgene integration into bovine fetal fibroblast genome. Reprod Dom Anim 49(S1):8Google Scholar
  113. 113.
    Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15(1):139–145. doi: 10.1038/sj.mt.6300028 PubMedGoogle Scholar
  114. 114.
    Ikeda R, Kokubu C, Yusa K, Keng VW, Horie K, Takeda J (2007) Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol Cell Biol 27(5):1665–1676. doi: 10.1128/MCB.01500-06 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25(6):2085–2094. doi: 10.1128/MCB.25.6.2085-2094.2005 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Blakely G, Colloms S, May G, Burke M, Sherratt D (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3(8):789–798PubMedGoogle Scholar
  117. 117.
    Gellert M, Nash H (1987) Communication between segments of DNA during site-specific recombination. Nature 325(6103):401–404. doi: 10.1038/325401a0 PubMedGoogle Scholar
  118. 118.
    Sadowski P (1986) Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165(2):341–347PubMedCentralPubMedGoogle Scholar
  119. 119.
    Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89(17):7905–7909PubMedCentralPubMedGoogle Scholar
  120. 120.
    O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251(4999):1351–1355PubMedGoogle Scholar
  121. 121.
    Bestor TH (2000) Gene silencing as a threat to the success of gene therapy. J Clin Invest 105(4):409–411. doi: 10.1172/JCI9459 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Whitelaw E, Sutherland H, Kearns M, Morgan H, Weaving L, Garrick D (2001) Epigenetic effects on transgene expression. Methods Mol Biol 158:351–368. doi: 10.1385/1-59259-220-1:351 PubMedGoogle Scholar
  123. 123.
    Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605. doi: 10.1146/annurev.biochem.73.011303.073908 PubMedGoogle Scholar
  124. 124.
    Stark WM, Boocock MR, Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8(12):432–439PubMedGoogle Scholar
  125. 125.
    Dymecki SM (2000) Site-specific recombination in cells and mice. In: Joyner AL (ed) Gene targeting: a practical approach. The practical approach, 2nd edn. Oxford University Press, New York, pp 36–99Google Scholar
  126. 126.
    Wang Y, Yau YY, Perkins-Balding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30(3):267–285. doi: 10.1007/s00299-010-0938-1 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Grainge I, Jayaram M (1999) The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33(3):449–456PubMedGoogle Scholar
  128. 128.
    Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28PubMedGoogle Scholar
  129. 129.
    Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE): a rapidly-expanding toolbox for targeted genomic modifications. Gene 515(1):1–27. doi: 10.1016/j.gene.2012.11.016 PubMedGoogle Scholar
  130. 130.
    Jones JR, Shelton KD, Magnuson MA (2005) Strategies for the use of site-specific recombinases in genome engineering. Methods Mol Med 103:245–257PubMedGoogle Scholar
  131. 131.
    Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407(2):193–221. doi: 10.1016/j.jmb.2011.01.004 PubMedGoogle Scholar
  132. 132.
    Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25(4):868–872PubMedCentralPubMedGoogle Scholar
  133. 133.
    Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M, Yamamura K (1999) Exchangeable gene trap using the Cre/mutated lox system. Cell Mol Biol (Noisy-le-grand) 45(5):737–750Google Scholar
  134. 134.
    Senecoff JF, Rossmeissl PJ, Cox MM (1988) DNA recognition by the FLP recombinase of the yeast 2 mu plasmid. A mutational analysis of the FLP binding site. J Mol Biol 201(2):405–421PubMedGoogle Scholar
  135. 135.
    Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33(43):12746–12751PubMedGoogle Scholar
  136. 136.
    Kolb AF, Siddell SG (1996) Genomic targeting with an MBP-Cre fusion protein. Gene 183(1–2):53–60PubMedGoogle Scholar
  137. 137.
    Baubonis W, Sauer B (1993) Genomic targeting with purified Cre recombinase. Nucleic Acids Res 21(9):2025–2029PubMedCentralPubMedGoogle Scholar
  138. 138.
    de Wit T, Drabek D, Grosveld F (1998) Microinjection of cre recombinase RNA induces site-specific recombination of a transgene in mouse oocytes. Nucleic Acids Res 26(2):676–678PubMedCentralPubMedGoogle Scholar
  139. 139.
    Braun T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120(11):3083–3092PubMedGoogle Scholar
  140. 140.
    Fiering S, Kim CG, Epner EM, Groudine M (1993) An “in-out” strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region. Proc Natl Acad Sci USA 90(18):8469–8473PubMedCentralPubMedGoogle Scholar
  141. 141.
    Kim CG, Epner EM, Forrester WC, Groudine M (1992) Inactivation of the human beta-globin gene by targeted insertion into the beta-globin locus control region. Genes Dev 6(6):928–938PubMedGoogle Scholar
  142. 142.
    Olson EN, Arnold HH, Rigby PW, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85(1):1–4PubMedGoogle Scholar
  143. 143.
    Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ (1996) Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci USA 93(23):13090–13095PubMedCentralPubMedGoogle Scholar
  144. 144.
    Howard TH, Homan EJ, Bremel RD (2001) Transgenic livestock: regulation and science in a changing environment. J Anim Sci 79:E1–E11Google Scholar
  145. 145.
    Askew GR, Doetschman T, Lingrel JB (1993) Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol Cell Biol 13(7):4115–4124PubMedCentralPubMedGoogle Scholar
  146. 146.
    Stacey A, Schnieke A, McWhir J, Cooper J, Colman A, Melton DW (1994) Use of double-replacement gene targeting to replace the murine alpha-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol Cell Biol 14(2):1009–1016PubMedCentralPubMedGoogle Scholar
  147. 147.
    Wu H, Liu X, Jaenisch R (1994) Double replacement: strategy for efficient introduction of subtle mutations into the murine Col1a-1 gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 91(7):2819–2823PubMedCentralPubMedGoogle Scholar
  148. 148.
    Graham C, Cole S, Laible G (2009) Site-specific modification of the bovine genome using Cre recombinase-mediated gene targeting. Biotechnol J 4(1):108–118. doi: 10.1002/biot.200800200 PubMedGoogle Scholar
  149. 149.
    Yu Y, Tong Q, Li Z, Tian J, Wang Y, Su F, Liu J, Zhang Y (2014) Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells. Sci Rep 4:4240. doi: 10.1038/srep04240 PubMedCentralPubMedGoogle Scholar
  150. 150.
    Yu H, Wang X, Zhu L, He Z, Liu G, Xu X, Chen J, Cheng G (2013) Establishment of a rapid and scalable gene expression system in livestock by site-specific integration. Gene 515(2):367–371. doi: 10.1016/j.gene.2012.10.017 PubMedGoogle Scholar
  151. 151.
    Wang S, Sun X, Ding F, Zhang K, Zhao R, Li S, Li R, Tang B, Zhang L, Liu Y, Li J, Gao F, Wang H, Wang L, Dai Y, Li N (2009) Removal of selectable marker gene from fibroblast cells in transgenic cloned cattle by transient expression of Cre recombinase and subsequent effects on recloned embryo development. Theriogenology 72(4):535–541. doi: 10.1016/j.theriogenology.2009.04.009 PubMedGoogle Scholar
  152. 152.
    Xu Y, Liu S, Yu G, Chen J, Xu X, Wu Y, Zhang A, Dowdy SF, Cheng G (2008) Excision of selectable genes from transgenic goat cells by a protein transducible TAT-Cre recombinase. Gene 419(1–2):70–74. doi: 10.1016/j.gene.2008.04.020 PubMedGoogle Scholar
  153. 153.
    Zhang H, Hasty P, Bradley A (1994) Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol 14(4):2404–2410PubMedCentralPubMedGoogle Scholar
  154. 154.
    Nagy A, Moens C, Ivanyi E, Pawling J, Gertsenstein M, Hadjantonakis AK, Pirity M, Rossant J (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr Biol 8(11):661–664PubMedGoogle Scholar
  155. 155.
    Ramírez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378(6558):720–724. doi: 10.1038/378720a0 PubMedGoogle Scholar
  156. 156.
    Zou YR, Müller W, Gu H, Rajewsky K (1994) Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol 4(12):1099–1103PubMedGoogle Scholar
  157. 157.
    Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106PubMedGoogle Scholar
  158. 158.
    Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269(5229):1427–1429PubMedGoogle Scholar
  159. 159.
    Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109PubMedGoogle Scholar
  160. 160.
    Chen L, Li L, Pang D, Li Z, Wang T, Zhang M, Song N, Yan S, Lai LX, Ouyang H (2010) Construction of transgenic swine with induced expression of Cre recombinase. Animal 4(5):767–771. doi: 10.1017/S1751731109991571 PubMedGoogle Scholar
  161. 161.
    Li S, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Saur D, Kind A, Wolf E, Flisikowski K, Schnieke A (2014) Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS ONE 9(7):e102455. doi: 10.1371/journal.pone.0102455 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97(11):5995–6000. doi: 10.1073/pnas.090527097 PubMedCentralPubMedGoogle Scholar
  163. 163.
    Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21(3):321–324. doi: 10.1038/nbt787 PubMedGoogle Scholar
  164. 164.
    Smith MC, Brown WR, McEwan AR, Rowley PA (2010) Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans 38(2):388–394. doi: 10.1042/BST0380388 PubMedGoogle Scholar
  165. 165.
    Thorpe HM, Wilson SE, Smith MC (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38(2):232–241PubMedGoogle Scholar
  166. 166.
    Farruggio AP, Chavez CL, Mikell CL, Calos MP (2012) Efficient reversal of phiC31 integrase recombination in mammalian cells. Biotechnol J 7(11):1332–1336. doi: 10.1002/biot.201200283 PubMedCentralPubMedGoogle Scholar
  167. 167.
    Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21(12):3926–3934. doi: 10.1128/MCB.21.12.3926-3934.2001 PubMedCentralPubMedGoogle Scholar
  168. 168.
    Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166(4):1775–1782PubMedCentralPubMedGoogle Scholar
  169. 169.
    Yin Y, Cao G, Xue R, Gong C (2014) Construction of transformed, cultured silkworm cells and transgenic silkworm using the site-specific integrase system from phage φC31. Mol Biol Rep 41(10):6449–6456. doi: 10.1007/s11033-014-3527-5 PubMedGoogle Scholar
  170. 170.
    Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2(12):975–979. doi: 10.1038/nmeth814 PubMedCentralPubMedGoogle Scholar
  171. 171.
    Hu ZP, Chen LS, Jia CY, Zhu HZ, Wang W, Zhong J (2013) Screening of potential pseudo att sites of Streptomyces phage ΦC31 integrase in the human genome. Acta Pharmacol Sin 34(4):561–569. doi: 10.1038/aps.2012.173 PubMedCentralPubMedGoogle Scholar
  172. 172.
    Ma QW, Sheng HQ, Yan JB, Cheng S, Huang Y, Chen-Tsai Y, Ren ZR, Huang SZ, Zeng YT (2006) Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun 345(3):984–988. doi: 10.1016/j.bbrc.2006.04.145 PubMedGoogle Scholar
  173. 173.
    Qu L, Ma Q, Zhou Z, Ma H, Huang Y, Huang S, Zeng F, Zeng Y (2012) A profile of native integration sites used by φC31 integrase in the bovine genome. J Genet Genomics 39(5):217–224. doi: 10.1016/j.jgg.2012.03.004 PubMedGoogle Scholar
  174. 174.
    Ni W, Hu S, Qiao J, Wang Y, Shi H, He Z, Li G, Chen C (2012) ΦC31 integrase mediates efficient site-specific integration in sheep fibroblasts. Biosci Biotechnol Biochem 76(11):2093–2095. doi: 10.1271/bbb.120439 PubMedGoogle Scholar
  175. 175.
    Ma H, Ma Q, Lu Y, Wang J, Hu W, Gong Z, Cai L, Huang Y, Huang SZ, Zeng F (2014) PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol 33(8):484–491. doi: 10.1089/dna.2013.2124 PubMedGoogle Scholar
  176. 176.
    Bi Y, Liu X, Zhang L, Shao C, Ma Z, Hua Z, Li L, Hua W, Xiao H, Wei Q, Zheng X (2013) Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol 14:20. doi: 10.1186/1471-2199-14-20 PubMedCentralPubMedGoogle Scholar
  177. 177.
    Sadelain M, Papapetrou EP, Bushman FD (2012) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58. doi: 10.1038/nrc3179 Google Scholar
  178. 178.
    Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29(1):73–78. doi: 10.1038/nbt.1717 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Keravala A, Lee S, Thyagarajan B, Olivares EC, Gabrovsky VE, Woodard LE, Calos MP (2009) Mutational derivatives of PhiC31 integrase with increased efficiency and specificity. Mol Ther 17(1):112–120. doi: 10.1038/mt.2008.241 PubMedCentralPubMedGoogle Scholar
  180. 180.
    Sclimenti CR, Thyagarajan B, Calos MP (2001) Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res 29(24):5044–5051PubMedCentralPubMedGoogle Scholar
  181. 181.
    Xu Z, Thomas L, Davies B, Chalmers R, Smith M, Brown W (2013) Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol 13:87. doi: 10.1186/1472-6750-13-87 PubMedCentralPubMedGoogle Scholar
  182. 182.
    Olivares EC, Hollis RP, Calos MP (2001) Phage R4 integrase mediates site-specific integration in human cells. Gene 278(1–2):167–176PubMedGoogle Scholar
  183. 183.
    Stoll SM, Ginsburg DS, Calos MP (2002) Phage TP901-1 site-specific integrase functions in human cells. J Bacteriol 184(13):3657–3663PubMedCentralPubMedGoogle Scholar
  184. 184.
    Keravala A, Groth AC, Jarrahian S, Thyagarajan B, Hoyt JJ, Kirby PJ, Calos MP (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics 276(2):135–146. doi: 10.1007/s00438-006-0129-5 PubMedGoogle Scholar
  185. 185.
    Russell JP, Chang DW, Tretiakova A, Padidam M (2006) Phage Bxb1 integrase mediates highly efficient site-specific recombination in mammalian cells. Biotechniques 40(4):462Google Scholar
  186. 186.
    Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108(29):12013–12017. doi: 10.1073/pnas.1106422108 PubMedCentralPubMedGoogle Scholar
  187. 187.
    Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109(43):17382–17387. doi: 10.1073/pnas.1211446109 PubMedCentralPubMedGoogle Scholar
  188. 188.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi: 10.1534/genetics.110.120717 PubMedCentralPubMedGoogle Scholar
  189. 189.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. doi: 10.1534/genetics.111.131433 PubMedCentralPubMedGoogle Scholar
  190. 190.
    Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA with fingers and TALENs. Mol Ther Nucleic Acids 1:e3. doi: 10.1038/mtna.2011.5 PubMedCentralPubMedGoogle Scholar
  191. 191.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife (Cambridge) 2:e00471. doi: 10.7554/eLife.00471 Google Scholar
  192. 192.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi: 10.1126/science.1225829 PubMedGoogle Scholar
  193. 193.
    Sun N, Abil Z, Zhao H (2012) Recent advances in targeted genome engineering in mammalian systems. Biotechnol J 7(9):1074–1087. doi: 10.1002/biot.201200038 PubMedGoogle Scholar
  194. 194.
    Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20(3):251–255PubMedGoogle Scholar
  195. 195.
    McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405(6790):1066–1069PubMedGoogle Scholar
  196. 196.
    Yu G, Chen J, Yu H, Liu S, Xu X, Sha H, Zhang X, Wu G, Xu S, Cheng G (2006) Functional disruption of the prion protein gene in cloned goats. J Gen Virol 87(Pt 4):1019–1027. doi: 10.1099/vir.0.81384-0 PubMedGoogle Scholar
  197. 197.
    Zhu C, Li B, Yu G, Chen J, Yu H, Xu X, Wu Y, Zhang A, Cheng G (2009) Production of Prnp−/− goats by gene targeting in adult fibroblasts. Transgenic Res 18(2):163–171. doi: 10.1007/s11248-008-9220-5 PubMedGoogle Scholar
  198. 198.
    Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ (2001) Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 19(6):559–562PubMedGoogle Scholar
  199. 199.
    Zhou ZR, Zhong BS, Jia RX, Wan YJ, Zhang YL, Fan YX, Wang LZ, You JH, Wang ZY, Wang F (2013) Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 79(2):225–233. doi: 10.1016/j.theriogenology.2012.08.006 PubMedGoogle Scholar
  200. 200.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512PubMedGoogle Scholar
  201. 201.
    Porter AC, Itzhaki JE (1993) Gene targeting in human somatic cells. Complete inactivation of an interferon-inducible gene. Eur J Biochem 218(2):273–281PubMedGoogle Scholar
  202. 202.
    Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277(5327):831–834PubMedGoogle Scholar
  203. 203.
    Smith LC, Suzuki J, Goff AK, Filion F, Therrien J, Murphy BD, Kohan-Ghadr HR, Lefebvre R, Brisville AC, Buczinski S, Fecteau G, Perecin F, Meirelles FV (2012) Developmental and epigenetic anomalies in cloned cattle. Reprod Domest Anim 47(Suppl 4):107–114. doi: 10.1111/j.1439-0531.2012.02063.x PubMedGoogle Scholar
  204. 204.
    Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23(24):5012–5019PubMedCentralPubMedGoogle Scholar
  205. 205.
    Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106PubMedCentralPubMedGoogle Scholar
  206. 206.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734. doi: 10.1038/nbt.1927 PubMedCentralPubMedGoogle Scholar
  207. 207.
    Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, Neri M, Magnani Z, Cantore A, Lo Riso P, Damo M, Pello OM, Holmes MC, Gregory PD, Gritti A, Broccoli V, Bonini C, Naldini L (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8(10):861–869. doi: 10.1038/nmeth.1674 PubMedGoogle Scholar
  208. 208.
    Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105(15):5809–5814. doi: 10.1073/pnas.0800940105 PubMedCentralPubMedGoogle Scholar
  209. 209.
    Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78(1):2. doi: 10.1002/mrd.21271 PubMedGoogle Scholar
  210. 210.
    Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011) Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21(6):979–982. doi: 10.1038/cr.2011.70 PubMedCentralPubMedGoogle Scholar
  211. 211.
    Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21(11):1638–1640. doi: 10.1038/cr.2011.153 PubMedCentralPubMedGoogle Scholar
  212. 212.
    Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. doi: 10.1126/science.1204094 PubMedGoogle Scholar
  213. 213.
    Seruggia D, Montoliu L (2014) The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res 23(5):707–716. doi: 10.1007/s11248-014-9823-y PubMedGoogle Scholar
  214. 214.
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160PubMedCentralPubMedGoogle Scholar
  215. 215.
    Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785. doi: 10.1038/nbt1319 PubMedGoogle Scholar
  216. 216.
    Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793. doi: 10.1038/nbt1317 PubMedGoogle Scholar
  217. 217.
    Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 402(1):14–18. doi: 10.1016/j.bbrc.2010.09.092 PubMedGoogle Scholar
  218. 218.
    Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78(10–11):879–891. doi: 10.1002/mrd.21333 PubMedCentralPubMedGoogle Scholar
  219. 219.
    Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H, Zhang Y, Xiao L, Fu Z (2014) Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci 57(2):263–268. doi: 10.1007/s11427-013-4601-2 PubMedGoogle Scholar
  220. 220.
    Kim E, Kim S, Kim DH, Choi BS, Choi IY, Kim JS (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22(7):1327–1333. doi: 10.1101/gr.138792.112 PubMedCentralPubMedGoogle Scholar
  221. 221.
    Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, McCaffrey AP, Cathomen T, Scharenberg AM, Joung JK (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 40(12):5560–5568. doi: 10.1093/nar/gks179 PubMedCentralPubMedGoogle Scholar
  222. 222.
    Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JJ, Babiarz JE, Gregory PD, Holmes MC (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res 22(7):1316–1326. doi: 10.1101/gr.122879.111 PubMedCentralPubMedGoogle Scholar
  223. 223.
    Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565. doi: 10.1038/ncomms3565 PubMedCentralPubMedGoogle Scholar
  224. 224.
    Camenisch TD, Brilliant MH, Segal DJ (2008) Critical parameters for genome editing using zinc finger nucleases. Mini Rev Med Chem 8(7):669–676PubMedGoogle Scholar
  225. 225.
    Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335(6069):720–723. doi: 10.1126/science.1215670 PubMedCentralPubMedGoogle Scholar
  226. 226.
    Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335(6069):716–719. doi: 10.1126/science.1216211 PubMedCentralPubMedGoogle Scholar
  227. 227.
    Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696. doi: 10.1038/nbt.1940 PubMedGoogle Scholar
  228. 228.
    Mussolino C, Cathomen T (2011) On target? Tracing zinc-finger-nuclease specificity. Nat Methods 8(9):725–726. doi: 10.1038/nmeth.1680 PubMedGoogle Scholar
  229. 229.
    Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40(16):8001–8010. doi: 10.1093/nar/gks518 PubMedCentralPubMedGoogle Scholar
  230. 230.
    Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB (2012) Precision editing of large animal genomes. Adv Genet 80:37–97. doi: 10.1016/B978-0-12-404742-6.00002-8 PubMedGoogle Scholar
  231. 231.
    Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled belgian blue and piedmontese cattle. Genome Res 7(9):910–916PubMedGoogle Scholar
  232. 232.
    Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. doi: 10.1038/ng0997-71 PubMedGoogle Scholar
  233. 233.
    Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2014) Genome edited sheep and cattle. Transgenic Res. doi: 10.1007/s11248-014-9832-x PubMedCentralPubMedGoogle Scholar
  234. 234.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi: 10.1126/science.1231143 PubMedCentralPubMedGoogle Scholar
  235. 235.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. doi: 10.1038/nbt.2501 PubMedCentralPubMedGoogle Scholar
  236. 236.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7. doi: 10.1186/1745-6150-1-7 PubMedCentralPubMedGoogle Scholar
  237. 237.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. doi: 10.1126/science.1138140 PubMedGoogle Scholar
  238. 238.
    Yan Q, Zhang Q, Yang H, Zou Q, Tang C, Fan N, Lai L (2014) Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen (Lond) 3(1):12. doi: 10.1186/2045-9769-3-12 PubMedCentralGoogle Scholar
  239. 239.
    Huang J, Guo X, Fan N, Song J, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yan Q, Yi X, Schambach A, Frampton J, Esteban MA, Yang D, Yang H, Lai L (2014) RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol 193(3):1496–1503. doi: 10.4049/jimmunol.1400915 PubMedGoogle Scholar
  240. 240.
    Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193(11):5751–5757. doi: 10.4049/jimmunol.1402059 PubMedGoogle Scholar
  241. 241.
    Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, Daniel N, Richard C, Cotinot C, Ghyselinck NB, Pailhoux E (2014) FOXL2 is a female sex-determining gene in the goat. Curr Biol 24(4):404–408. doi: 10.1016/j.cub.2013.12.039 PubMedGoogle Scholar
  242. 242.
    Chen Y, Cui Y, Shen B, Niu Y, Zhao X, Wang L, Wang J, Li W, Zhou Q, Ji W, Sha J, Huang X (2014) Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Res. doi: 10.1038/cr.2014.167 Google Scholar
  243. 243.
    Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y, Xiang AP, Fang W, Ji W, Li W, Zhao X, Zhou Q (2014) One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res. doi: 10.1038/cr.2014.158 Google Scholar
  244. 244.
    Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2014) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. doi: 10.1007/s00018-014-1744-7 Google Scholar
  245. 245.
    Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ (2014) Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation. doi: 10.1111/xen.12131 Google Scholar
  246. 246.
    Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91(3):78. doi: 10.1095/biolreprod.114.121723 PubMedGoogle Scholar
  247. 247.
    Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C (2014) Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE 9(9):e106718. doi: 10.1371/journal.pone.0106718 PubMedCentralPubMedGoogle Scholar
  248. 248.
    Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3):372–375. doi: 10.1038/cr.2014.11 PubMedCentralPubMedGoogle Scholar
  249. 249.
    Ma Y, Ma J, Zhang X, Chen W, Yu L, Lu Y, Bai L, Shen B, Huang X, Zhang L (2014) Generation of eGFP and Cre knockin rats by CRISPR/Cas9. FEBS J 281(17):3779–3790. doi: 10.1111/febs.12935 PubMedGoogle Scholar
  250. 250.
    Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31(1):23–24. doi: 10.1038/nbt.2477 PubMedGoogle Scholar
  251. 251.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. doi: 10.1038/nbt.2647 PubMedCentralPubMedGoogle Scholar
  252. 252.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. doi: 10.1038/nbt.2675 PubMedGoogle Scholar
  253. 253.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. doi: 10.1038/nbt.2623 PubMedCentralPubMedGoogle Scholar
  254. 254.
    Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109(39):E2579–E2586. doi: 10.1073/pnas.1208507109 PubMedCentralPubMedGoogle Scholar
  255. 255.
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. doi: 10.1016/j.cell.2013.08.021 PubMedGoogle Scholar
  256. 256.
    Hickman AB, Dyda F (2014) CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease. Mob DNA 5:23. doi: 10.1186/1759-8753-5-23 PubMedCentralPubMedGoogle Scholar
  257. 257.
    Krupovic M, Makarova KS, Forterre P, Prangishvili D, Koonin EV (2014) Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol 12:36. doi: 10.1186/1741-7007-12-36 PubMedCentralPubMedGoogle Scholar
  258. 258.
    Katter K, Geurts AM, Hoffmann O, Mates L, Landa V, Hiripi L, Moreno C, Lazar J, Bashir S, Zidek V, Popova E, Jerchow B, Becker K, Devaraj A, Walter I, Grzybowksi M, Corbett M, Filho AR, Hodges MR, Bader M, Ivics Z, Jacob HJ, Pravenec M, Bosze Z, Rulicke T, Izsvak Z (2013) Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. Faseb J 27(3):930–941. doi: 10.1096/fj.12-205526 PubMedCentralPubMedGoogle Scholar
  259. 259.
    Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagnaes-Hansen F, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG (2012) Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS ONE 7(5):e36658. doi: 10.1371/journal.pone.0036658 PubMedCentralPubMedGoogle Scholar
  260. 260.
    Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5(166):166. doi: 10.1126/scitranslmed.3004853 Google Scholar
  261. 261.
    Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, McGrew MJ (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA 109(23):E1466–E1472. doi: 10.1073/pnas.1118715109 PubMedCentralPubMedGoogle Scholar
  262. 262.
    Park TS, Han JY (2012) piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA 109(24):9337–9341. doi: 10.1073/pnas.1203823109 PubMedCentralPubMedGoogle Scholar
  263. 263.
    Liu X, Li N, Hu X, Zhang R, Li Q, Cao D, Liu T, Zhang Y (2013) Efficient production of transgenic chickens based on piggyBac. Transgenic Res 22(2):417–423. doi: 10.1007/s11248-012-9642-y PubMedGoogle Scholar
  264. 264.
    Tyack SG, Jenkins KA, O’Neil TE, Wise TG, Morris KR, Bruce MP, McLeod S, Wade AJ, McKay J, Moore RJ, Schat KA, Lowenthal JW, Doran TJ (2013) A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Res 22(6):1257–1264. doi: 10.1007/s11248-013-9727-2 PubMedGoogle Scholar
  265. 265.
    Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6(6):e21045. doi: 10.1371/journal.pone.0021045 PubMedCentralPubMedGoogle Scholar
  266. 266.
    Li P, Estrada JL, Burlak C, Tector AJ (2013) Biallelic knockout of the alpha-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases. J Surg Res 181(1):e39–e45. doi: 10.1016/j.jss.2012.06.035 PubMedGoogle Scholar
  267. 267.
    Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20(1):27–35. doi: 10.1111/xen.12019 PubMedGoogle Scholar
  268. 268.
    Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS (2013) Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 3:1981. doi: 10.1038/srep01981 PubMedCentralPubMedGoogle Scholar
  269. 269.
    Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847. doi: 10.1038/srep02847 PubMedGoogle Scholar
  270. 270.
    Watanabe M, Nakano K, Matsunari H, Matsuda T, Maehara M, Kanai T, Kobayashi M, Matsumura Y, Sakai R, Kuramoto M, Hayashida G, Asano Y, Takayanagi S, Arai Y, Umeyama K, Nagaya M, Hanazono Y, Nagashima H (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS ONE 8(10):e76478. doi: 10.1371/journal.pone.0076478 PubMedCentralPubMedGoogle Scholar
  271. 271.
    Ji D, Zhao G, Songstad A, Cui X, Weinstein EJ (2014) Efficient creation of an APOE knockout rabbit. Transgenic Res. doi: 10.1007/s11248-014-9834-8 PubMedGoogle Scholar
  272. 272.
    Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Li X, Song J, Yang Y, Zou Q, Yan Q, Zeng Y, Lai L (2013) Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS ONE 8(12):e84250. doi: 10.1371/journal.pone.0084250 PubMedCentralPubMedGoogle Scholar
  273. 273.
    Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, Si W, Zhou J, Tan T, Li T, Ji S, Xue Z, Luo Y, Cheng L, Zhou Q, Li S, Sun YE, Ji W (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14(3):323–328. doi: 10.1016/j.stem.2014.01.018 PubMedCentralPubMedGoogle Scholar
  274. 274.
    Park TS, Lee HJ, Kim KH, Kim JS, Han JY (2014) Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci USA 111(35):12716–12721. doi: 10.1073/pnas.1410555111 PubMedCentralPubMedGoogle Scholar
  275. 275.
    Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843. doi: 10.1016/j.cell.2014.01.027 PubMedGoogle Scholar
  276. 276.
    Honda A, Hirose M, Sankai T, Yasmin L, Yuzawa K, Honsho K, Izu H, Iguchi A, Ikawa M, Ogura A (2014) Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp Anim. doi: 10.1538/expanim.14-0034 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Pablo Bosch
    • 1
  • Diego O. Forcato
    • 1
  • Fabrisio E. Alustiza
    • 1
  • Ana P. Alessio
    • 1
  • Alejandro E. Fili
    • 1
  • María F. Olmos Nicotra
    • 1
  • Ana C. Liaudat
    • 1
  • Nancy Rodríguez
    • 1
  • Thirumala R. Talluri
    • 2
  • Wilfried A. Kues
    • 2
  1. 1.Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y NaturalesUniversidad Nacional de Río CuartoRío CuartoRepublic of Argentina
  2. 2.Friedrich-Loeffler-InstituteInstitute of Farm Animal Genetics, BiotechnologyNeustadtGermany

Personalised recommendations