Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 9, pp 1699–1713 | Cite as

Autophagy and cell reprogramming

Review

Abstract

Autophagy is an evolutionarily conserved process that degrades cytoplasmic components, thus contributing to cell survival and tissue homeostasis. Recent studies have demonstrated that autophagy maintains stem cells in relatively undifferentiated states (stemness) and also contributes to differentiation processes. Autophagy likewise plays a crucial role in somatic cell reprogramming, a finely regulated process that resets differentiated cells to a pluripotent state and that requires comprehensive alterations in transcriptional activities and epigenetic signatures. Autophagy assists in manifesting the functional consequences that arise from these alterations by modifying cellular protein expression profiles. The role of autophagy appears to be particularly relevant for early phases of cell reprogramming during the generation of induced pluripotent stems cells (iPSCs). In this review, we provide an overview of the core molecular machinery that constitutes the autophagic degradation system, describe the roles of autophagy in maintenance, self-renewal, and differentiation of stem cells, and discuss the autophagic process and its regulation during cell reprogramming.

Keywords

Autophagy Stem cells Self-renewal Differentiation Cell reprogramming 

Abbreviations

Ambra1

Activating molecule in Beclin1-regulated autophagy 1

AMPK

AMP-activated protein kinase

Atg

Autophagy-related proteins

Beclin 1

Coiled-coil, myosin-like BCL2-interacting protein

BafA1

Bafilomycin A1

CSC

Cancer stem cell

CHD

Chromodomain, helicase, DNA binding

EMT

Epithelial–mesenchymal transition

ESC

Embryonic stem cell

FGF

Fibroblast growth factor

GBM

Glioblastoma

GAP

GTPase-activating protein

HSC

Hematopoietic stem cell

iPSC

Induced pluripotent stem cell

LC3

Microtubule-associated protein light chain 3

LIF

Leukemia inhibitory factor

MBD3

Methyl-CpG binding domain protein 3

mTOR

Mammalian target of rapamycin

NuRD

Nucleosome remodeling and deacetylase

NSC

Neural stem cell

PE

Phosphatidylethanolamine

Rheb

Ras homologue enriched in brain

ROS

Reactive oxygen species

Sox2

SRY (sex determining region Y)-box 2

SVZ

Subventricular zone

TSC1/2

Tuberous sclerosis1/2

ULK

Unc-51-like kinase

WASH

Wiskott–Aldrich syndrome protein and SCAR homologue

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31300645, 81330047), 973 Program of the MOST of China (2010CB911902), and the Strategic Priority Research Programs of the Chinese Academy of Sciences (XDA01010407). MR and ZF are supported by the Science Foundation Ireland International Strategic Collaboration Programme: China (ISCP China).

References

  1. 1.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40PubMedCrossRefGoogle Scholar
  2. 2.
    Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632PubMedCrossRefGoogle Scholar
  3. 3.
    Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455PubMedCrossRefGoogle Scholar
  4. 4.
    Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741PubMedCrossRefGoogle Scholar
  6. 6.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Xia P, Wang S, Du Y, Zhao Z, Shi L et al (2013) WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J 32:2685–2696PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang RC, Wei Y, An Z, Zou Z, Xiao G et al (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737PubMedCrossRefGoogle Scholar
  11. 11.
    Wang S, Xia P, Ye B, Huang G, Liu J et al (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625PubMedCrossRefGoogle Scholar
  12. 12.
    Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A et al (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120PubMedCrossRefGoogle Scholar
  13. 13.
    Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89PubMedCrossRefGoogle Scholar
  16. 16.
    Abollo-Jimenez F, Jimenez R, Cobaleda C (2010) Physiological cellular reprogramming and cancer. Semin Cancer Biol 20:98–106PubMedCrossRefGoogle Scholar
  17. 17.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  18. 18.
    Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684PubMedCrossRefGoogle Scholar
  19. 19.
    Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM et al (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–1632PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Koche RP, Smith ZD, Adli M, Gu H, Ku M et al (2011) Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8:96–105PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Golipour A, David L, Liu Y, Jayakumaran G, Hirsch CL et al (2012) A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11:769–782PubMedCrossRefGoogle Scholar
  22. 22.
    Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E et al (2012) Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 11:783–798PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hansson J, Rafiee MR, Reiland S, Polo JM, Gehring J et al (2012) Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep 2:1579–1592PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Deter RL, Baudhuin P, De Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35:C11–C16PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMedCrossRefGoogle Scholar
  26. 26.
    Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467PubMedCrossRefGoogle Scholar
  27. 27.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189PubMedCrossRefGoogle Scholar
  34. 34.
    Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302PubMedCrossRefGoogle Scholar
  35. 35.
    Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657PubMedCrossRefGoogle Scholar
  41. 41.
    Hardie DG (2007) AMP-activated/SNF1 protein Kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785PubMedCrossRefGoogle Scholar
  42. 42.
    Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968PubMedCrossRefGoogle Scholar
  43. 43.
    Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    van der Vos KE, Coffer PJ (2012) Glutamine metabolism links growth factor signaling to the regulation of autophagy. Autophagy 8:1862–1864PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10:3658–3677PubMedCrossRefGoogle Scholar
  46. 46.
    Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644PubMedCrossRefGoogle Scholar
  47. 47.
    Jung CH, Jun CB, Ro SH, Kim YM, Otto NM et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16:532–542PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218PubMedCrossRefGoogle Scholar
  50. 50.
    Funderburk S F, Wang Q J, Yue Z (2010) The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362CrossRefPubMedGoogle Scholar
  51. 51.
    Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT et al (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–1642PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vergne I, Deretic V (2010) The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett 584:1313–1318PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125PubMedGoogle Scholar
  55. 55.
    He S, Ni D, Ma B, Lee JH, Zhang T et al (2013) PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol 15:1206–1219PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396PubMedCrossRefGoogle Scholar
  57. 57.
    Zhong Y, Wang QJ, Li X, Yan Y, Backer JM et al (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Pattingre S, Tassa A, Qu X, Garuti R, Liang XH et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedCrossRefGoogle Scholar
  59. 59.
    Furuya T, Kim M, Lipinski M, Li J, Kim D et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Xia P, Wang S, Huang G, Du Y, Zhu P et al (2014) RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24:943–958PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946PubMedCrossRefGoogle Scholar
  62. 62.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J et al (2013) Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat Struct Mol Biol 20:433–439PubMedCrossRefGoogle Scholar
  64. 64.
    Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146:303–317PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Warr MR, Binnewies M, Flach J, Reynaud D, Garg T et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Cho YH, Han KM, Kim D, Lee J, Lee SH et al (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 32:424–435PubMedCrossRefGoogle Scholar
  68. 68.
    Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32:2261–2272 (2272e 2261–2211)PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR et al (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119:1109–1123PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Zhang J, Liu J, Liu L, McKeehan WL, Wang F (2012) The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy 8:690–691PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L et al (2013) Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 52:524–531PubMedCrossRefGoogle Scholar
  72. 72.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  73. 73.
    Haines DD, Juhasz B, Tosaki A (2013) Management of multicellular senescence and oxidative stress. J Cell Mol Med 17:936–957PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5:327–331PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632PubMedCrossRefGoogle Scholar
  77. 77.
    Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345:1250256PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21:513–520PubMedCrossRefGoogle Scholar
  79. 79.
    Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Tra T, Gong L, Kao LP, Li XL, Grandela C et al (2011) Autophagy in human embryonic stem cells. PLoS One 6:e27485PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedCrossRefGoogle Scholar
  82. 82.
    Komatsu M, Waguri S, Ueno T, Iwata J, Murata S et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268PubMedCrossRefGoogle Scholar
  85. 85.
    Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22:432–435PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M et al (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208:455–467PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107:832–837PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Oliver L, Hue E, Priault M, Vallette FM (2012) Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev 21:2779–2788PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ et al (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21:1321–1332PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P et al (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang J, Liu J, Huang Y, Chang JY, Liu L et al (2012) FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 110:e29–e39PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Song YJ, Zhang SS, Guo XL, Sun K, Han ZP et al (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339:70–81PubMedCrossRefGoogle Scholar
  93. 93.
    Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V et al (2013) Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 9:714–729PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Espina V, Mariani BD, Gallagher RI, Tran K, Banks S et al (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5:e10240PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Wei MF, Chen MW, Chen KC, Lou PJ, Lin SY et al (2014) Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10:1179–1192PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wu S, Wang X, Chen J, Chen Y (2013) Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells. Biochem Biophys Res Commun 434:898–903PubMedCrossRefGoogle Scholar
  97. 97.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F et al (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125:717–722PubMedCrossRefGoogle Scholar
  98. 98.
    Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A et al (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69:8844–8852PubMedCrossRefGoogle Scholar
  99. 99.
    Lamouille S, Derynck R (2007) Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178:437–451PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Kumar D, Shankar S, Srivastava RK (2013) Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol Cancer 12:171PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3 K/Akt/mTOR signaling pathway. Cancer Lett 343:179–189PubMedCrossRefGoogle Scholar
  102. 102.
    Liu H, He Z, von Rutte T, Yousefi S, Hunger RE et al (2013) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5:202ra123PubMedCrossRefGoogle Scholar
  103. 103.
    Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M et al (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673PubMedCrossRefGoogle Scholar
  104. 104.
    Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733PubMedCrossRefGoogle Scholar
  105. 105.
    Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedCrossRefGoogle Scholar
  107. 107.
    Chen T, Shen L, Yu J, Wan H, Guo A et al (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911PubMedCrossRefGoogle Scholar
  108. 108.
    He J, Kang L, Wu T, Zhang J, Wang H et al (2012) An elaborate regulation of Mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells Dev 21:2630–2641PubMedCrossRefGoogle Scholar
  109. 109.
    Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20:282–289PubMedCrossRefGoogle Scholar
  110. 110.
    Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850PubMedCrossRefGoogle Scholar
  111. 111.
    Fong YW, Cattoglio C, Yamaguchi T, Tjian R (2012) Transcriptional regulation by coactivators in embryonic stem cells. Trends Cell Biol 22:292–298PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Hu G, Wade PA (2012) NuRD and pluripotency: a complex balancing act. Cell Stem Cell 10:497–503PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Reynolds N, Latos P, Hynes-Allen A, Loos R, Leaford D et al (2012) NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10:583–594PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Lai AY, Wade PA (2011) Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11:588–596PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K et al (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11:1261–1267PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Dos Santos RL, Tosti L, Radzisheuskaya A, Caballero IM, Kaji K et al (2014) MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell 15:102–110PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Rais Y, Zviran A, Geula S, Gafni O, Chomsky E et al (2013) Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70PubMedCrossRefGoogle Scholar
  118. 118.
    Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316:407–408PubMedCrossRefGoogle Scholar
  119. 119.
    DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14:420–426PubMedCrossRefGoogle Scholar
  120. 120.
    Tsukamoto S, Hara T, Yamamoto A, Kito S, Minami N et al (2014) Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci Rep 4:4533PubMedCentralPubMedGoogle Scholar
  121. 121.
    Hutchison CA 3rd, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251:536–538PubMedCrossRefGoogle Scholar
  122. 122.
    Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147PubMedCrossRefGoogle Scholar
  124. 124.
    Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–1144PubMedCrossRefGoogle Scholar
  125. 125.
    Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB et al (2013) Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci USA 110:13038–13043PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Yamamoto A, Mizushima N, Tsukamoto S (2014) Fertilization-induced autophagy in mouse embryos is independent of mTORC1. Biol Reprod 91:7PubMedCrossRefGoogle Scholar
  127. 127.
    Doulatov S, Vo LT, Chou SS, Kim PG, Arora N et al (2013) Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13:459–470PubMedCrossRefGoogle Scholar
  128. 128.
    Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A et al (2014) Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157:549–564PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Pereira CF, Chang B, Qiu J, Niu X, Papatsenko D et al (2013) Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 13:205–218PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R et al (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526PubMedCrossRefGoogle Scholar
  131. 131.
    Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Chen C, Liu Y, Liu R, Ikenoue T, Guan KL et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Ito K, Hirao A, Arai F, Takubo K, Matsuoka S et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451PubMedCrossRefGoogle Scholar
  134. 134.
    Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75PubMedCentralPubMedGoogle Scholar
  135. 135.
    Ficara F, Murphy MJ, Lin M, Cleary ML (2008) Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2:484–496PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Unnisa Z, Clark JP, Roychoudhury J, Thomas E, Tessarollo L et al (2012) Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood 120:4973–4981PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S et al (2014) Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev 10:633–642PubMedCrossRefGoogle Scholar
  138. 138.
    Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI et al (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38PubMedCrossRefGoogle Scholar
  139. 139.
    Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J et al (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369PubMedCrossRefGoogle Scholar
  141. 141.
    Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC et al (2010) p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 24:1389–1402PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H et al (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157:580–594PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N et al (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282:18573–18583PubMedCrossRefGoogle Scholar
  145. 145.
    Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20PubMedCrossRefGoogle Scholar
  148. 148.
    Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y (2005) Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 65:999–1006PubMedGoogle Scholar
  149. 149.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Lock R, Roy S, Kenific CM, Su JS, Salas E et al (2011) Autophagy facilitates glycolysis during ras-mediated oncogenic transformation. Mol Biol Cell 22:165–178PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG et al (2011) Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7:1187–1198PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Shuo Wang
    • 1
  • Pengyan Xia
    • 1
  • Markus Rehm
    • 2
  • Zusen Fan
    • 1
  1. 1.CAS Key Laboratory of Infection and Immunity, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Physiology and Medical Physics, Centre for Systems MedicineRoyal College of Surgeons in IrelandDublinIreland

Personalised recommendations