Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 5, pp 911–922 | Cite as

Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology

  • Lígia O. Martins
  • Paulo Durão
  • Vânia Brissos
  • Peter F. Lindley
Multi-author review

Abstract

The ubiquitous members of the multicopper oxidase family of enzymes oxidize a range of aromatic substrates such as polyphenols, methoxy-substituted phenols, amines and inorganic compounds, concomitantly with the reduction of molecular dioxygen to water. This family of enzymes can be broadly divided into two functional classes: metalloxidases and laccases. Several prokaryotic metalloxidases have been described in the last decade showing a robust activity towards metals, such as Cu(I), Fe(II) or Mn(II) and have been implicated in the metal metabolism of the corresponding microorganisms. Many laccases, with a superior efficiency for oxidation of organic compounds when compared with metals, have also been identified and characterized from prokaryotes, playing roles that more closely conform to those of intermediary metabolism. This review aims to present an update of current knowledge on prokaryotic multicopper oxidases, with a special emphasis on laccases, anticipating their enormous potential for industrial and environmental applications.

Keywords

Metalloxidases Laccases Structure-function Metal resistance Biotechnology Ligninolysis 

Notes

Acknowledgments

We thank André T. Fernandes, Zhenjia Chen, Luciana Pereira, Isabel Bento, Cláudio M. Soares, Eduardo P. Melo, Smilja Todorovic, Manuela M. Pereira, M. Paula Robalo, Ana V. Coelho and Cristina A. Viegas for the collaboration over the past 10 years. Funding is acknowledged from the project grants SOPHIED, FP6-NMP2-CT-2004-505899 (European Commission), BIORENEW, FP6-2004-NMP-NI-4/026456 (European Commission) and POCI/AMB/56039/2004, PTDC/AMB/64230/2006, PTDC/BIO/72108/2006, PTDC/AGR-CFL/103840/2008 and Pest-OE/EQB/LA0004/2011 (Fundação para a Ciência e Tecnologia, Portugal).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606. doi: 10.1021/cr950046o PubMedGoogle Scholar
  2. 2.
    Zhukhlistova NE, Zhukova YN, Lyashenko AV, Zaitsev VN, Mikhailov AM (2008) Three-dimensional organization of three-domain copper oxidases: a review. Crystallogr Rep 53:92–109. doi: 10.1134/S1063774508010124 Google Scholar
  3. 3.
    Lindley PF (2001) Multi-copper oxidases. In: Bertini I, Sigel A, Sigel H (eds) Handbook on Metalloproteins. Marcel Dekker, New York, pp 763–811Google Scholar
  4. 4.
    Kosman DJ (2010) Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 15:15–28. doi: 10.1007/s00775-009-0590-9 PubMedGoogle Scholar
  5. 5.
    Farver O, Wherland S, Koroleva O, Loginov DS, Pecht I (2011) Intramolecular electron transfer in laccases. FEBS J 278:3463–3471. doi: 10.1111/j.1742-4658.2011.08268.x PubMedGoogle Scholar
  6. 6.
    Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 7:3507–3513. doi: 10.1039/B504806k Google Scholar
  7. 7.
    Bielli P, Calabrese L (2002) Structure to function relationships in ceruloplasmin: a ‘moonlighting’ protein. Cell Mol Life Sci 59:1413–1427. doi: 10.1007/s00018-002-8519-2 PubMedGoogle Scholar
  8. 8.
    Stoj CS, Kosman DJ (2005) Copper proteins: oxidases. In: King RB (ed) Encyclopedia of Inorganic Chemistry, Wiley, Chichester, pp. 1134–1159. doi:  10.1002/0470862106.ia055
  9. 9.
    Kosman DJ (2002) Fet3p, ceruloplasmin, and the role of copper in iron metabolism. In: Valentine JS, Gralla EB (eds) Copper-containing proteins. Academica Press, San Diego, pp 221–269Google Scholar
  10. 10.
    Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere-evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210. doi: 10.1016/0378-1097(93)90586-Q Google Scholar
  11. 11.
    Solano F, Garcia E, Perez D, Sanchez-Amat A (1997) Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol 63:3499–3506PubMedCentralPubMedGoogle Scholar
  12. 12.
    Sanchez-Amat A, Lucas-Elio P, Fernandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116. doi: 10.1016/S0167-4838(01)00174-1 PubMedGoogle Scholar
  13. 13.
    Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147. doi: 10.1128/Jb.183.6.2145-2147.2001 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430. doi: 10.1128/JB.183.18.5426-5430.2001 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859. doi: 10.1074/jbc.M200827200 PubMedGoogle Scholar
  16. 16.
    Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42. doi: 10.1016/S0167-7799(99)01406-7 PubMedGoogle Scholar
  17. 17.
    Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microb 76:733–743. doi: 10.1128/Aem.01757-09 Google Scholar
  18. 18.
    Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO (2010) The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 277:3176–3189. doi: 10.1111/j.1742-4658.2010.07725.x PubMedGoogle Scholar
  19. 19.
    Brown NL, Barrett SR, Camakaris J, Lee BTO, Rouch DA (1995) Molecular-genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia-coli plasmid Prj 1004. Mol Microbiol 17:1153–1166. doi: 10.1111/j.1365-2958.1995.mmi_17061153.x PubMedGoogle Scholar
  20. 20.
    Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677. doi: 10.1074/jbc.M104122200 PubMedGoogle Scholar
  21. 21.
    Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213. doi: 10.1016/S0168-6445(03)00049-4 PubMedGoogle Scholar
  22. 22.
    Huston WM, Jennings MP, McEwan AG (2002) The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Mol Microbiol 45:1741–1750. doi: 10.1046/j.1365-2958.2002.03132.x PubMedGoogle Scholar
  23. 23.
    Mehta T, Childers SE, Glaven R, Lovley DR, Mester T (2006) A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens. Microbiol-Sgm 152:2257–2264. doi: 10.1099/mic.0.28864-0 Google Scholar
  24. 24.
    Holmes DE, Mester T, O’Neil RA, Perpetua LA, Larrahondo MJ, Glaven R, Sharma ML, Ward JE, Nevin KP, Lovley DR (2008) Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiol-Sgm 154:1422–1435. doi: 10.1099/mic.0.2007/014365-0 Google Scholar
  25. 25.
    Fernandes AT, Soares CM, Pereira MM, Huber R, Grass G, Martins LO (2007) A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J 274:2683–2694. doi: 10.1111/j.1742-4658.2007.05803.x PubMedGoogle Scholar
  26. 26.
    Sanchez-Sutil MC, Gomez-Santos N, Moraleda-Munoz A, Martins LO, Perez J, Munoz-Dorado J (2007) Differential expression of the three multicopper oxidases from Myxococcus xanthus. J Bacteriol 189:4887–4898. doi: 10.1128/JB.00309-07 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Gomez-Santos N, Perez J, Sanchez-Sutil MC, Moraleda-Munoz A, Munoz-Dorado J (2011) CorE from Myxococcus xanthus is a copper-dependent RNA polymerase sigma factor. PLoS Genet 7:e1002106. doi: 10.1371/journal.pgen.1002106 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Lee YA, Hendson M, Panopoulos NJ, Schroth MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188PubMedCentralPubMedGoogle Scholar
  29. 29.
    Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC (2011) Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. J Agr Food Chem 59:9290–9302. doi: 10.1021/Jf2024006 Google Scholar
  30. 30.
    Wiethaus J, Wildner GF, Masepohl B (2006) The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus. FEMS Microbiol Lett 256:67–74. doi: 10.1111/j.1574-6968.2005.00094.x PubMedGoogle Scholar
  31. 31.
    Rademacher C, Moser R, Lackmann JW, Klinkert B, Narberhaus F, Masepohl B (2012) Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol 194:1849–1859. doi: 10.1128/Jb.06274-11 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Classen T, Pietruszka J, Schuback SM (2013) A new multicopper oxidase from Gram-positive bacterium Rhodococcus erythropolis with activity modulating methionine rich tail. Protein Expres Purif 89:97–108. doi: 10.1016/j.pep.2013.02.003 Google Scholar
  33. 33.
    Wen Q, Liu X, Wang H, Lin J (2014) A versatile and efficient markerless gene disruption system for Acidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol. doi: 10.1111/1462-2920.12494 PubMedGoogle Scholar
  34. 34.
    Sitthisak S, Howieson K, Amezola C, Jayaswal RK (2005) Characterization of a multicopper oxidase gene from Staphylococcus aureus. Appl Environ Microbiol 71:5650–5653. doi: 10.1128/Aem.71.9.5650-5653.2005 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Hall SJ, Hitchcock A, Butler CS, Kelly DJ (2008) A multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J Bacteriol 190:8075–8085. doi: 10.1128/Jb.00821-08 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Huston WM, Naylor J, Cianciotto NP, Jennings MP, McEwan AG (2008) Functional analysis of the multi-copper oxidase from Legionella pneumophila. Microbes Infect 10:497–503. doi: 10.1016/j.micinf.2008.01.011 PubMedGoogle Scholar
  37. 37.
    Achard ME, Tree JJ, Holden JA, Simpfendorfer KR, Wijburg OL, Strugnell RA, Schembri MA, Sweet MJ, Jennings MP, McEwan AG (2010) The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 78:2312–2319. doi: 10.1128/IAI.01208-09 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Rowland JL, Niederweis M (2013) A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 195:3724–3733. doi: 10.1128/JB.00546-13 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Ausec L, Zakrzewski M, Goesmann A, Schluter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 6:e25724. doi: 10.1371/journal.pone.0025724 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Corstjens PLAM, deVrind JPM, Goosen T, deVrinddeJong EW (1997) Identification and molecular analysis of the Leptothrix-discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J 14:249. doi: 10.1080/01490459709378037 Google Scholar
  41. 41.
    Brouwers GJ, de Vrind JP, Corstjens PL, Cornelis P, Baysse C, de Vrind-de Jong EW (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768PubMedCentralPubMedGoogle Scholar
  42. 42.
    Geszvain K, McCarthy JK, Tebo BM (2013) Elimination of manganese(II, III) oxidation in Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes. Appl Environ Microbiol 79:357–366. doi: 10.1128/AEM.01850-12 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 9:944–953. doi: 10.1111/j.1462-2920.2006.01216.x PubMedGoogle Scholar
  44. 44.
    Francis CA, Casciotti KL, Tebo BM (2002) Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch Microbiol 178:450–456. doi: 10.1007/s00203-002-0472-9 PubMedGoogle Scholar
  45. 45.
    Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534. doi: 10.1128/AEM.01240-07 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Su JM, Bao P, Bai TL, Deng L, Liu F, He J (2013) CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 8:e60573. doi: 10.1371/journal.pone.0060573 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Geszvain K, Butterfield C, Davis RE, Madison AS, Lee SW, Parker DL, Soldatova A, Spiro TG, Luther GW, Tebo BM (2012) The molecular biogeochemistry of manganese(II) oxidation. Biochem Soc Trans 40:1244–1248. doi: 10.1042/BST20120229 PubMedGoogle Scholar
  48. 48.
    Butterfield CN, Soldatova AV, Lee SW, Spiro TG, Tebo BM (2013) Mn(II, III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase. Proc Natl Acad Sci USA 110:11731–11735. doi: 10.1073/pnas.1303677110 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771. doi: 10.1073/pnas.052710499 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278:31958–31963. doi: 10.1074/jbc.M302963200 PubMedGoogle Scholar
  51. 51.
    Sakuraba H, Koga K, Yoneda K, Kashima Y, Ohshima T (2011) Structure of a multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum. Acta Crystallogr F 67:753–757. doi: 10.1107/S1744309111018173 Google Scholar
  52. 52.
    Silva CS, Durao P, Fillat A, Lindley PF, Martins LO, Bento I (2012) Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Metallomics 4:37–47. doi: 10.1039/C1mt00156f PubMedGoogle Scholar
  53. 53.
    Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817. doi: 10.1128/Jb.186.22.7815-7817.2004 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Arnesano F, Banci L, Bertini I, Thompsett AR (2002) Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure 10:1337–1347. doi: 10.1016/S0969-2126(02)00858-4 PubMedGoogle Scholar
  55. 55.
    Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, Hoffman BM, O’Halloran TV (2002) Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41:10046–10055. doi: 10.1021/bi0259960 PubMedGoogle Scholar
  56. 56.
    Djoko KY, Chong LX, Wedd AG, Xiao Z (2010) Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc 132:2005–2015. doi: 10.1021/ja9091903 PubMedGoogle Scholar
  57. 57.
    Singh SK, Roberts SA, McDevitt SF, Weichsel A, Wildner GF, Grass GB, Rensing C, Montfort WR (2011) Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. J Biol Chem 286:37849–37857. doi: 10.1074/jbc.M111.293589 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T (2007) Structure and function of the engineered multicopper oxidase CueO from Escherichia coli—deletion of the methionine-rich helical region covering the substrate-binding site. J Mol Biol 373:141–152. doi: 10.1016/j.jmb.2007.07.041 PubMedGoogle Scholar
  59. 59.
    Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425. doi: 10.1007/s00792-005-0458-z PubMedGoogle Scholar
  60. 60.
    Stoj CS, Augustine AJ, Solomon EI, Kosman DJ (2007) Structure-function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae. J Biol Chem 282:7862–7868. doi: 10.1074/jbc.M609766200 PubMedGoogle Scholar
  61. 61.
    Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150. doi: 10.1007/s00203-002-0510-7 PubMedGoogle Scholar
  62. 62.
    Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microb Biot 23:823–832. doi: 10.1007/s11274-006-9305-3 Google Scholar
  63. 63.
    Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J (2011) The laccase engineering database: a classification and analysis system for laccases and related multicopper oxidases. Database 2011: bar006. doi:  10.1093/database/bar006
  64. 64.
    Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thony-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8:e65633. doi: 10.1371/journal.pone.0065633 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Santhanam N, Vivanco JM, Decker SR, Reardon KF (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29:480–489. doi: 10.1016/j.tibtech.2011.04.005 PubMedGoogle Scholar
  66. 66.
    Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component—a laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425. doi: 10.1074/jbc.M301251200 PubMedGoogle Scholar
  67. 67.
    Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) Substrate and doxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 279:23472–23476. doi: 10.1074/jbc.M314000200 PubMedGoogle Scholar
  68. 68.
    Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO (2006) Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11:514–526. doi: 10.1007/s00775-006-0102-0 PubMedGoogle Scholar
  69. 69.
    Durao P, Chen Z, Silva CS, Soares CM, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO (2008) Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Biochem J 412:339–346. doi: 10.1042/BJ20080166 PubMedGoogle Scholar
  70. 70.
    Sakasegawa S, Ishikawa H, Imamura S, Sakuraba H, Goda S, Ohshima T (2006) Bilirubin oxidase activity of Bacillus subtilis CotA. Appl Environ Microbiol 72:972–975. doi: 10.1128/AEM.72.1.972-975.2006 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Pereira L, Coelho AV, Viegas CA, dos Santos MMC, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77. doi: 10.1016/j.jbiotec.2008.09.001 PubMedGoogle Scholar
  72. 72.
    Pereira L, Coelho AV, Viegas CA, Ganachaud C, Iacazio G, Tron T, Robalo MP, Martins LO (2009) On the mechanism of biotransformation of the anthraquinonic dye acid blue 62 by laccases. Adv Synth Catal 351:1857–1865. doi: 10.1002/adsc.200900271 Google Scholar
  73. 73.
    Chen ZJ, Durao P, Silva CS, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO (2010) The role of Glu(498) in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Dalton Trans 39:2875–2882. doi: 10.1039/B922734b PubMedGoogle Scholar
  74. 74.
    Brissos V, Pereira L, Munteanu FD, Cavaco-Paulo A, Martins LO (2009) Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnol J 4:558–563. doi: 10.1002/biot.200800248 PubMedGoogle Scholar
  75. 75.
    Brissos V, Chen ZJ, Martins LO (2012) The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Dalton Trans 41:6247–6255. doi: 10.1039/C2dt12067d PubMedGoogle Scholar
  76. 76.
    Fernandes AT, Pereira MM, Silva CS, Lindley PF, Bento I, Melo EP, Martins LO (2011) The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability. J Biol Inorg Chem 16:641–651. doi: 10.1007/s00775-011-0768-9 PubMedGoogle Scholar
  77. 77.
    Fernandes AT, Lopes C, Martins LO, Melo EP (2012) Unfolding pathway of CotA-laccase and the role of copper on the prevention of refolding through aggregation of the unfolded state. Biochem Biophys Res Commun 422:442–446. doi: 10.1016/j.bbrc.2012.05.011 PubMedGoogle Scholar
  78. 78.
    Mendes S, Farinha A, Ramos CG, Leitao JH, Viegas CA, Martins LO (2011) Synergistic action of azoreductase and laccase leads to maximal decolourization and detoxification of model dye-containing wastewaters. Bioresour Technol 102:9852–9859. doi: 10.1016/j.biortech.2011.07.108 PubMedGoogle Scholar
  79. 79.
    Rosado T, Bernardo P, Koci K, Coelho AV, Robalo MP, Martins LO (2012) Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases. Bioresour Technol 124:371–378. doi: 10.1016/j.biortech.2012.08.023 PubMedGoogle Scholar
  80. 80.
    Beneyton T, Beyl Y, Guschin DA, Griffiths AD, Taly V, Schuhmann W (2011) The thermophilic CotA laccase from Bacillus subtilis: bioelectrocatalytic evaluation of O2 reduction in the direct and mediated electron transfer regime. Electroanal 23:1781–1789. doi: 10.1002/elan.201100054 Google Scholar
  81. 81.
    Mazutis L, Baret JC, Treacy P, Skhiri Y, Araghi AF, Ryckelynck M, Taly V, Griffiths AD (2009) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9:2902–2908. doi: 10.1039/b907753g PubMedGoogle Scholar
  82. 82.
    Gupta N, Farinas ET (2010) Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng Des Sel 23:679–682. doi: 10.1093/protein/gzq036 PubMedGoogle Scholar
  83. 83.
    Gupta N, Lee FS, Farinas ET (2010) Laboratory evolution of laccase for substrate specificity. J Mol Catal B-Enzym 62:230–234. doi: 10.1016/j.molcatb.2009.10.012 Google Scholar
  84. 84.
    Sousa AC, Martins LO, Robalo MP (2013) Laccase-catalysed homocoupling of primary aromatic amines towards the biosynthesis of dyes. Adv Synth Catal 355:2908–2917. doi: 10.1002/adsc.201300501 Google Scholar
  85. 85.
    Sousa AC, Oliveira MC, Martins LO, Robalo MP (2014) Towards the rational biosynthesis of substituted phenazines and phenoxazinones by laccases. Green Chem 16:4127–4136. doi: 10.1039/C4GC00901K Google Scholar
  86. 86.
    Furtado GP, Ribeiro LF, Lourenzoni MR, Ward RJ (2013) A designed bifunctional laccase/beta-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse. Protein Eng Des Sel 26:15–23. doi: 10.1093/protein/gzs057 PubMedGoogle Scholar
  87. 87.
    Ribeiro LF, Furtado GP, Lourenzoni MR, Costa-Filho AJ, Santos CR, Nogueira SC, Betini JA, Polizeli Mde L, Murakami MT, Ward RJ (2011) Engineering bifunctional laccase-xylanase chimeras for improved catalytic performance. J Biol Chem 286:43026–43038. doi: 10.1074/jbc.M111.253419 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Ruijssenaars HJ, Hartmans S (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65:177–182. doi: 10.1007/s00253-004-1571-0 PubMedGoogle Scholar
  89. 89.
    Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biot 79:217–224. doi: 10.1007/s00253-008-1417-2 Google Scholar
  90. 90.
    Koschorreck K, Schmid RD, Urlacher VB (2009) Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnol 9:12. doi: 10.1186/1472-6750-9-12 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 37:863–869. doi: 10.1007/s10295-010-0734-5 PubMedGoogle Scholar
  92. 92.
    Reiss R, Ihssen J, Thony-Meyer L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol 11:9. doi: 10.1186/1472-6750-11-9 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Zhang C, Diao HW, Lu FX, Bie XM, Wang YF, Lu ZX (2012) Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresour Technol 126:80–86. doi: 10.1016/j.biortech.2012.09.055 PubMedGoogle Scholar
  94. 94.
    Loncar N, Bozic N, Vujcic Z (2013) Cloning and characterization of a new dye degrading laccase from Bacillus amyloliquefaciens 12B1. FEBS J 280:599–600Google Scholar
  95. 95.
    Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS One 9:e96951. doi: 10.1371/journal.pone.0096951 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Claus H, Filip Z (1997) The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain. Microbiol Res 152:209–216. doi: 10.1016/S0944-5013(97)80014-6 Google Scholar
  97. 97.
    Telke AA, Ghodake GS, Kalyani DC, Dhanve RS, Govindwar SP (2011) Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp ADR. Bioresour Technol 102:1752–1756. doi: 10.1016/j.biortech.2010.08.086 PubMedGoogle Scholar
  98. 98.
    Brander S, Mikkelsen JD, Kepp KP (2014) Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One 9:e99402. doi: 10.1371/journal.pone.0099402 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microb 69:1953–1958. doi: 10.1128/Aem.69.4.1953-1958.2003 Google Scholar
  100. 100.
    Moya R, Hernandez M, Garcia-Martin AB, Ball AS, Arias ME (2010) Contributions to a better comprehension of redox-mediated decolouration and detoxification of azo dyes by a laccase produced by Streptomyces cyaneus CECT 3335. Bioresour Technol 101:2224–2229. doi: 10.1016/j.biortech.2009.11.061 PubMedGoogle Scholar
  101. 101.
    Endo K, Hosono K, Beppu T, Ueda K (2002) A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148:1767–1776PubMedGoogle Scholar
  102. 102.
    Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677. doi: 10.1093/Jb/Mvg086 PubMedGoogle Scholar
  103. 103.
    Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175. doi: 10.1271/Bbb.67.2167 PubMedGoogle Scholar
  104. 104.
    Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Prot Sci 13:2388–2397. doi: 10.1110/Ps.04759104 Google Scholar
  105. 105.
    Niladevi KN, Sheejadevi PS, Prema P (2008) Strategies for enhancing laccase yield from Streptomyces psammoticus and its role in mediator-based decolorization of azo dyes. Appl Biochem Biotechnol 151:9–19. doi: 10.1007/s12010-008-8175-6 PubMedGoogle Scholar
  106. 106.
    Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour Technol 99:4583–4589. doi: 10.1016/j.biortech.2007.06.056 PubMedGoogle Scholar
  107. 107.
    Molina-Guijarro JM, Perez J, Munoz-Dorado J, Guillen F, Moya R, Hernandez M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12:13–21. doi: 10.2436/20.1501.01.77 PubMedGoogle Scholar
  108. 108.
    Eugenio ME, Hernandez M, Moya R, Martin-Sampedro R, Villar JC, Arias ME (2011) Evaluation of a new laccase produced by Streptomyces Ipomoea on biobleaching and ageing of kraft pulps. Bioresources 6:3231–3241Google Scholar
  109. 109.
    Moya R, Saastamoinen P, Hernandez M, Suurnakki A, Arias E, Mattinen ML (2011) Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour Technol 102:10006–10012. doi: 10.1016/j.biortech.2011.08.046 PubMedGoogle Scholar
  110. 110.
    Gunne M, Urlacher VB (2012) Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLoS One 7:e52360. doi: 10.1371/journal.pone.0052360 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Gunne M, Hoppner A, Hagedoorn PL, Urlacher VB (2014) Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS J. doi: 10.1111/febs.12755 PubMedGoogle Scholar
  112. 112.
    Lu L, Zeng G, Fan C, Zhang J, Chen A, Chen M, Jiang M, Yuan Y, Wu H, Lai M, He Y (2014) Diversity of two-domain laccase-like multicopper oxidase genes in Streptomyces spp.: identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste. Appl Environ Microbiol 80:3305–3314. doi: 10.1128/AEM.00223-14 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry. doi: 10.1021/bi500285t PubMedGoogle Scholar
  114. 114.
    Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23:1229–1235. doi: 10.1016/j.bios.2007.11.004 PubMedGoogle Scholar
  115. 115.
    Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotech 79:597–603. doi: 10.1007/s00253-008-1475-5 Google Scholar
  116. 116.
    Tepper AWJW, Milikisyants S, Sottini S, Vijgenboom E, Groenen EJJ, Canters GW (2009) Identification of a radical Intermediate in the enzymatic reduction of oxygen by a small laccase. J Am Chem Soc 131:11680. doi: 10.1021/Ja900751c PubMedGoogle Scholar
  117. 117.
    Farver O, Tepper AW, Wherland S, Canters GW, Pecht I (2009) Site-site interactions enhances intramolecular electron transfer in Streptomyces coelicolor laccase. J Am Chem Soc 131:18226–18227. doi: 10.1021/ja908793d PubMedGoogle Scholar
  118. 118.
    Skalova T, Dohnalek J, Ostergaard LH, Osteryaard PR, Kolenko P, Duskova J, Stepankova A, Hasek J (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. J Mol Biol 385:1165–1178. doi: 10.1016/j.jmb.2008.11.024 PubMedGoogle Scholar
  119. 119.
    Gupta A, Nederlof I, Sottini S, Tepper AW, Groenen EJ, Thomassen EA, Canters GW (2012) Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. J Am Chem Soc 134:18213–18216. doi: 10.1021/ja3088604 PubMedGoogle Scholar
  120. 120.
    Sherif M, Waung D, Korbeci B, Mavisakalyan V, Flick R, Brown G, Abou-Zaid M, Yakunin AF, Master ER (2013) Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microb Biotechnol 6:588–597. doi: 10.1111/1751-7915.12068 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066. doi: 10.1007/s00018-004-5076-5 PubMedGoogle Scholar
  122. 122.
    Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387. doi: 10.1126/science.1085950 PubMedGoogle Scholar
  123. 123.
    Durao P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, Pereira MM, Melo EP, Martins LO (2008) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13:183–193. doi: 10.1007/s00775-007-0312-0 PubMedGoogle Scholar
  124. 124.
    Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316. doi: 10.1038/nsb0498-310 PubMedGoogle Scholar
  125. 125.
    Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J (1998) Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci USA 95:13641–13645. doi: 10.1073/pnas.95.23.13641 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Blackburn NJ, Ralle M, Hassett R, Kosman DJ (2000) Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase. Biochemistry 39:2316–2324. doi: 10.1021/Bi992334a PubMedGoogle Scholar
  127. 127.
    Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, de Jong GJ, Gitlin JD (2002) Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 277:46632–46638. doi: 10.1074/jbc.M206246200 PubMedGoogle Scholar
  128. 128.
    Palmer AE, Szilagyi RK, Cherry JR, Jones A, Xu F, Solomon EI (2003) Spectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site. Inorg Chem 42:4006–4017. doi: 10.1021/ic026099n PubMedGoogle Scholar
  129. 129.
    Ng IS, Zhang X, Zhang Y, Lu YH (2013) Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Appl Biochem Biotech 169:2223–2235. doi: 10.1007/s12010-013-0128-z Google Scholar
  130. 130.
    Toscano MD, De Maria L, Lobedanz S, Ostergaard LH (2013) Optimization of a small laccase by active-site redesign. Chem Bio Chem 14:1209–1211. doi: 10.1002/cbic.201300256 PubMedGoogle Scholar
  131. 131.
    Fang ZM, Zhou P, Chang F, Yin Q, Fang W, Yuan J, Zhang XC, Xiao YZ (2014) Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One 9:e102423. doi: 10.1371/journal.pone.0102423 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Fernandes AT, Martins LO, Melo EP (2009) The hyperthermophilic nature of the metallo-oxidase from Aquifex aeolicus. BBA-Proteins Proteom 1794:75–83. doi: 10.1016/j.bbapap.2008.09.006 Google Scholar
  133. 133.
    Bonaccorsi di Patti MCB, Musci G, Giartosio A, Dalessio S, Calabrese L (1990) The multidomain structure of ceruloplasmin from calorimetric and limited proteolysis studies. J Biol Chem 265:21016–21022PubMedGoogle Scholar
  134. 134.
    Savini I, Dalessio S, Giartosio A, Morpurgo L, Avigliano L (1990) The role of copper in the stability of ascorbate oxidase towards denaturing agents. Eur J Biochem 190:491–495. doi: 10.1111/j.1432-1033.1990.tb15600.x PubMedGoogle Scholar
  135. 135.
    Pozdnyakova I, Wittung-Stafshede P (2010) Stability and folding of copper-binding proteins. In: Gomes CM, Wittung-Stafshede P (eds) Protein folding and metal ions: mechanisms biology and disease. CRC Press, LondonGoogle Scholar
  136. 136.
    Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84. doi: 10.1093/protein/gzj004 PubMedGoogle Scholar
  137. 137.
    Kallio JP, Auer S, Janis J, Andberg M, Kruus K, Rouvinen J, Koivula A, Hakulinen N (2009) Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J Mol Biol 392:895–909. doi: 10.1016/j.jmb.2009.06.053 PubMedGoogle Scholar
  138. 138.
    d’Acunzo F, Galli C (2003) First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. Eur J Biochem 270:3634–3640. doi: 10.1046/j.1432-1033.2003.03752.x PubMedGoogle Scholar
  139. 139.
    Bortolomeazzi R, Sebastianutto N, Toniolo R, Pizzariello A (2007) Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem 100:1481–1489. doi: 10.1016/j.foodchem.2005.11.039 Google Scholar
  140. 140.
    Martorana A, Vazquez-Duhaltb R, Aguilab SA, Basosia R, Barattoa MC (2014) Spectroscopic characterization of 2,6-dimethoxyphenol radical intermediates in the Coriolopsis gallica laccase-mediator system. J Mol Catal B Enzym 107:100–105. doi: 10.1016/j.molcatb.2014.05.023 Google Scholar
  141. 141.
    Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Prot Eng Des Sel 19:77–84. doi: 10.1093/protein/gzj004 Google Scholar
  142. 142.
    Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 361:4129–4137. doi: 10.1016/j.ica.2008.03.091 Google Scholar
  143. 143.
    Palmer AE, Randall DW, Xu F, Solomon EI (1999) Spectroscopic studies and electronic structure description of the high potential type 1 copper site in fungal laccase: insight into the effect of the axial ligand. J Am Chem Soc 121:7138–7149. doi: 10.1021/ja991087v Google Scholar
  144. 144.
    Xu F, Palmer AE, Yaver DS, Berka RM, Gambetta GA, Brown SH, Solomon EI (1999) Targeted mutations in a Trametes villosa laccase—axial perturbations of the T1 copper. J Biol Chem 274:12372–12375. doi: 10.1074/jbc.274.18.12372 PubMedGoogle Scholar
  145. 145.
    Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334(Pt 1):63–70PubMedCentralPubMedGoogle Scholar
  146. 146.
    Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microb 66:3357–3362. doi: 10.1128/AEM.66.8.3357-3362.2000 Google Scholar
  147. 147.
    Camarero S, Ibarra D, Martinez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microb 71:1775–1784. doi: 10.1128/Aem.71.4.1775-1784.2005 Google Scholar
  148. 148.
    Tauber MM, Guebitz GM, Rehorek A (2005) Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microb 71:2600–2607. doi: 10.1128/AEM.71.5.2600-2607.2005 Google Scholar
  149. 149.
    Zille A, Ramalho P, Tzanov T, Millward R, Aires V, Cardoso MH, Ramalho MT, Gubitz GM, Cavaco-Paulo A (2004) Predicting dye biodegradation from redox potentials. Biotechnol Progr 20:1588–1592. doi: 10.1021/bp049963i Google Scholar
  150. 150.
    Zheng ZQ, Li HZ, Li L, Shao WL (2012) Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophilus. Biotechnol Lett 34:541–547. doi: 10.1007/s10529-011-0796-0 PubMedGoogle Scholar
  151. 151.
    Margot J, Bennati-Granier C, Maillard J, Blanquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63. doi: 10.1186/2191-0855-3-63 PubMedCentralPubMedGoogle Scholar
  152. 152.
    Zeng J, Lin XG, Zhang J, Li XZ, Wong MH (2011) Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Appl Microbiol Biotechnol 89:1841–1849. doi: 10.1007/s00253-010-3009-1 PubMedGoogle Scholar
  153. 153.
    Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, Yakimov MM, Garcia-Arellano H, Alcalde M, Fernandez VM, Elborough K, Andreu JM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281:22933–22942. doi: 10.1074/jbc.M600577200 PubMedGoogle Scholar
  154. 154.
    Ye M, Li G, Liang WQ, Liu YH (2010) Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol 87:1023–1031. doi: 10.1007/s00253-010-2507-5 PubMedGoogle Scholar
  155. 155.
    Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang XC, Peng H, Xiao YZ (2012) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41. doi: 10.1016/j.biortech.2012.01.172 PubMedGoogle Scholar
  156. 156.
    Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y (2012) Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 7:e50312. doi: 10.1371/journal.pone.0050312 PubMedCentralPubMedGoogle Scholar
  157. 157.
    Sethi A, Slack JM, Kovaleva ES, Buchman GW, Scharf ME (2013) Lignin-associated metagene expression in a lignocellulose-digesting termite. Insect Biochem Mol Biol 43:91–101. doi: 10.1016/j.ibmb.2012.10.001 PubMedGoogle Scholar
  158. 158.
    Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8:e73827. doi: 10.1371/journal.pone.0073827 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Lígia O. Martins
    • 1
  • Paulo Durão
    • 1
  • Vânia Brissos
    • 1
  • Peter F. Lindley
    • 1
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations