Cellular and Molecular Life Sciences

, Volume 72, Issue 8, pp 1499–1515 | Cite as

Interactions between host factors and the skin microbiome

Review

Abstract

The skin is colonized by an assemblage of microorganisms which, for the most part, peacefully coexist with their hosts. In some cases, these communities also provide vital functions to cutaneous health through the modulation of host factors. Recent studies have illuminated the role of anatomical skin site, gender, age, and the immune system in shaping the cutaneous ecosystem. Alterations to microbial communities have also been associated with, and likely contribute to, a number of cutaneous disorders. This review focuses on the host factors that shape and maintain skin microbial communities, and the reciprocal role of microbes in modulating skin immunity. A greater understanding of these interactions is critical to elucidating the forces that shape cutaneous populations and their contributions to skin homeostasis. This knowledge can also inform the tendency of perturbations to predispose and/or bring about certain skin disorders.

Keywords

Microbiome Cutaneous immunity Dermatology Skin Microbiota 

Abbreviations

OTU

Operational taxonomic unit

PCR

Polymerase chain reaction

qPCR

Quantitative polymerase chain reaction

LC

Langerhans cells

CLA

Cutaneous leukocyte antigen

HPV

Human papillomavirus

PID

Primary immunodeficiency

GF

Germ free

SPF

Specific pathogen free

AD

Atopic dermatitis

References

  1. 1.
    Telofski LS, Morello AP 3rd, Mack Correa MC, Stamatas GN (2012) The infant skin barrier: can we preserve, protect, and enhance the barrier? Dermatol Res Pract 2012:198789. doi:10.1155/2012/198789 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253. doi:10.1038/nrmicro2537 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Simpson CL, Patel DM, Green KJ (2011) Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12(9):565–580. doi:10.1038/nrm3175 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3(3):199–209. doi:10.1038/nrg758 PubMedGoogle Scholar
  5. 5.
    Chu DC (2012) Development and structure of skin. In: Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, Wolff K (eds) Fitzpatrick’s dermatology in general medicine, 8th edn. Mcgraw-Hill Medical, New YorkGoogle Scholar
  6. 6.
    Kirschner N, Brandner JM (2012) Barriers and more: functions of tight junction proteins in the skin. Ann NY Acad Sci 1257:158–166. doi:10.1111/j.1749-6632.2012.06554.x PubMedGoogle Scholar
  7. 7.
    Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340. doi:10.1038/nrm1619 PubMedGoogle Scholar
  8. 8.
    Zouboulis CC, Boschnakow A (2001) Chronological ageing and photoageing of the human sebaceous gland. Clin Exp Dermatol 26(7):600–607PubMedGoogle Scholar
  9. 9.
    Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42:441–464. doi:10.1146/annurev.mi.42.100188.002301 PubMedGoogle Scholar
  10. 10.
    Puhvel SM, Reisner RM, Sakamoto M (1975) Analysis of lipid composition of isolated human sebaceous gland homogenates after incubation with cutaneous bacteria. Thin-layer chromatography. J Invest Dermatol 64(6):406–411PubMedGoogle Scholar
  11. 11.
    Leyden JJ, McGinley KJ, Mills OH, Kligman AM (1975) Age-related changes in the resident bacterial flora of the human face. J Invest Dermatol 65(4):379–381PubMedGoogle Scholar
  12. 12.
    Lu C, Fuchs E (2014) Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harbor Perspect Med. doi:10.1101/cshperspect.a015222 Google Scholar
  13. 13.
    Giacomoni PU, Mammone T, Teri M (2009) Gender-linked differences in human skin. J Dermatol Sci 55(3):144–149. doi:10.1016/j.jdermsci.2009.06.001 PubMedGoogle Scholar
  14. 14.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192. doi:10.1126/science.1171700 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. doi:10.1126/science.1177486 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 104(8):2927–2932. doi:10.1073/pnas.0607077104 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Staudinger T, Pipal A, Redl B (2011) Molecular analysis of the prevalent microbiota of human male and female forehead skin compared to forearm skin and the influence of make-up. J Appl Microbiol 110(6):1381–1389. doi:10.1111/j.1365-2672.2011.04991.x PubMedGoogle Scholar
  18. 18.
    Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105(46):17994–17999. doi:10.1073/pnas.0807920105 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Ling Z, Liu X, Luo Y, Yuan L, Nelson KE, Wang Y, Xiang C, Li L (2013) Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genom 14:390. doi:10.1186/1471-2164-14-390 Google Scholar
  20. 20.
    Dekio I, Hayashi H, Sakamoto M, Kitahara M, Nishikawa T, Suematsu M, Benno Y (2005) Detection of potentially novel bacterial components of the human skin microbiota using culture-independent molecular profiling. J Med Microbiol 54(Pt 12):1231–1238. doi:10.1099/jmm.0.46075-0 PubMedGoogle Scholar
  21. 21.
    Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Kong HH, Segre JA (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498(7454):367–370. doi:10.1038/nature12171 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Sandby-Moller J, Poulsen T, Wulf HC (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Dermato-venereol 83(6):410–413. doi:10.1080/00015550310015419 Google Scholar
  23. 23.
    Shuster S, Black MM, McVitie E (1975) The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 93(6):639–643PubMedGoogle Scholar
  24. 24.
    Pochi PE, Strauss JS (1974) Endocrinologic control of the development and activity of the human sebaceous gland. J Invest Dermatol 62(3):191–201PubMedGoogle Scholar
  25. 25.
    Green JM, Bishop PA, Muir IH, Lomax RG (2000) Gender differences in sweat lactate. Eur J Appl Physiol 82(3):230–235. doi:10.1007/s004210050676 PubMedGoogle Scholar
  26. 26.
    Kim MK, Patel RA, Shinn AH, Choi SY, Byun HJ, Huh CH, Park KC, Youn SW (2006) Evaluation of gender difference in skin type and pH. J Dermatol Sci 41(2):153–156. doi:10.1016/j.jdermsci.2005.12.001 PubMedGoogle Scholar
  27. 27.
    Ehlers C, Ivens UI, Moller ML, Senderovitz T, Serup J (2001) Females have lower skin surface pH than men. A study on the surface of gender, forearm site variation, right/left difference and time of the day on the skin surface pH. Skin Res Technol 7(2):90–94PubMedGoogle Scholar
  28. 28.
    Jacobi U, Gautier J, Sterry W, Lademann J (2005) Gender-related differences in the physiology of the stratum corneum. Dermatology 211(4):312–317. doi:10.1159/000088499 PubMedGoogle Scholar
  29. 29.
    Ohman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Dermato-venereol 74(5):375–379Google Scholar
  30. 30.
    Blaser MJ, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Estrada I, Gao Z, Clemente JC, Costello EK, Knight R (2013) Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J 7(1):85–95. doi:10.1038/ismej.2012.81 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Hospodsky D, Pickering AJ, Julian TR, Miller D, Gorthala S, Boehm AB, Peccia J (2014) Hand bacterial communities vary across two different human populations. Microbiology 160(Pt 6):1144–1152. doi:10.1099/mic.0.075390-0 PubMedGoogle Scholar
  32. 32.
    Oh J, Conlan S, Polley EC, Segre JA, Kong HH (2012) Shifts in human skin and nares microbiota of healthy children and adults. Genome Med 4(10):77. doi:10.1186/gm378 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Akaza N, Akamatsu H, Sasaki Y, Takeoka S, Kishi M, Mizutani H, Sano A, Hirokawa K, Nakata S, Matsunaga K (2010) Cutaneous Malassezia microbiota of healthy subjects differ by sex, body part and season. J Dermatol 37(9):786–792. doi:10.1111/j.1346-8138.2010.00913.x PubMedGoogle Scholar
  34. 34.
    Callewaert C, Kerckhof FM, Granitsiotis MS, Van Gele M, Van de Wiele T, Boon N (2013) Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region. PLoS ONE 8(8):e70538. doi:10.1371/journal.pone.0070538 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PM, Saulnier DM, van Swam II, van Hijum SA, Kleerebezem M, Schalkwijk J, Timmerman HM (2012) Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 13(11):R101. doi:10.1186/gb-2012-13-11-r101 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Evans NJ, Rutter N (1986) Development of the epidermis in the newborn. Biol Neonate 49(2):74–80PubMedGoogle Scholar
  37. 37.
    Cartlidge P (2000) The epidermal barrier. Semin Neonatol 5(4):273–280. doi:10.1053/siny.2000.0013 PubMedGoogle Scholar
  38. 38.
    Kalia YN, Nonato LB, Lund CH, Guy RH (1998) Development of skin barrier function in premature infants. J Invest Dermatol 111(2):320–326. doi:10.1046/j.1523-1747.1998.00289.x PubMedGoogle Scholar
  39. 39.
    Nikolovski J, Stamatas GN, Kollias N, Wiegand BC (2008) Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol 128(7):1728–1736. doi:10.1038/sj.jid.5701239 PubMedGoogle Scholar
  40. 40.
    Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC (2010) Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol 27(2):125–131. doi:10.1111/j.1525-1470.2009.00973.x PubMedGoogle Scholar
  41. 41.
    Stamatas GN, Nikolovski J, Mack MC, Kollias N (2011) Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies. Int J Cosmet Sci 33(1):17–24. doi:10.1111/j.1468-2494.2010.00611.x PubMedGoogle Scholar
  42. 42.
    Giusti F, Martella A, Bertoni L, Seidenari S (2001) Skin barrier, hydration, and pH of the skin of infants under 2 years of age. Pediatr Dermatol 18(2):93–96PubMedGoogle Scholar
  43. 43.
    Capone KA, Dowd SE, Stamatas GN, Nikolovski J (2011) Diversity of the human skin microbiome early in life. J Invest Dermatol 131(10):2026–2032. doi:10.1038/jid.2011.168 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975. doi:10.1073/pnas.1002601107 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Cotterill JA, Cunliffe WJ, Williamson B, Bulusu L (1972) Age and sex variation in skin surface lipid composition and sebum excretion rate. Br J Dermatol 87(4):333–340PubMedGoogle Scholar
  46. 46.
    Nagata R, Nagano H, Ogishima D, Nakamura Y, Hiruma M, Sugita T (2012) Transmission of the major skin microbiota, Malassezia, from mother to neonate. Pediatr Int 54(3):350–355. doi:10.1111/j.1442-200X.2012.03563.x PubMedGoogle Scholar
  47. 47.
    Jimenez E, Fernandez L, Marin ML, Martin R, Odriozola JM, Nueno-Palop C, Narbad A, Olivares M, Xaus J, Rodriguez JM (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51(4):270–274. doi:10.1007/S00284-005-0020-3 PubMedGoogle Scholar
  48. 48.
    Jimenez E, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, Fernandez L, Rodriguez JM (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159(3):187–193. doi:10.1016/J.Resmic.12.007 PubMedGoogle Scholar
  49. 49.
    Steel JH, Malatos S, Kennea N, Edwards AD, Miles L, Duggan P, Reynolds PR, Feldman RG, Sullivan MHF (2005) Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 57(3):404–411. doi:10.1203/01.Pdr.0000153896.96337.90 PubMedGoogle Scholar
  50. 50.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237ra265. doi:10.1126/scitranslmed.3008599 Google Scholar
  51. 51.
    Stout MJ, Conlon B, Landeau M, Lee I, Bower C, Zhao Q, Roehl KA, Nelson DM, Macones GA, Mysorekar IU (2013) Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 208(3):226, e221–227. doi:10.1016/j.ajog.2013.01.018 Google Scholar
  52. 52.
    Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA (2008) A diversity profile of the human skin microbiota. Genome Res 18(7):1043–1050. doi:10.1101/gr.075549.107 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL (2013) The microbiome extends to subepidermal compartments of normal skin. Nat Commun 4:1431. doi:10.1038/ncomms2441 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14(10):978–985. doi:10.1038/ni.2680 PubMedGoogle Scholar
  55. 55.
    Yu N, Zhang S, Zuo F, Kang K, Guan M, Xiang L (2009) Cultured human melanocytes express functional toll-like receptors 2–4, 7 and 9. J Dermatol Sci 56(2):113–120. doi:10.1016/j.jdermsci.2009.08.003 PubMedGoogle Scholar
  56. 56.
    Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161(3):526–546PubMedGoogle Scholar
  57. 57.
    Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M (2009) External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 206(13):2937–2946. doi:10.1084/jem.20091527 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, Devilard E, Viret C, Azukizawa H, Kissenpfennig A, Malissen B (2010) CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 207(1):189–206. doi:10.1084/jem.20091964 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10(5):488–495. doi:10.1038/ni.1724 PubMedGoogle Scholar
  60. 60.
    Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC (2007) DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8(3):285–293. doi:10.1038/ni1433 PubMedGoogle Scholar
  61. 61.
    Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS (1997) Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389(6654):978–981. doi:10.1038/40166 PubMedGoogle Scholar
  62. 62.
    Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC (1999) The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400(6746):776–780. doi:10.1038/23495 PubMedGoogle Scholar
  63. 63.
    Schaerli P, Ebert L, Willimann K, Blaser A, Roos RS, Loetscher P, Moser B (2004) A skin-selective homing mechanism for human immune surveillance T cells. J Exp Med 199(9):1265–1275. doi:10.1084/jem.20032177 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10(5):524–530. doi:10.1038/ni.1718 PubMedGoogle Scholar
  65. 65.
    Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363):216–219. doi:10.1038/nature10339 PubMedGoogle Scholar
  66. 66.
    Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36(5):873–884. doi:10.1016/j.immuni.2012.03.018 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, Ryan AF, Di Nardo A, Gallo RL (2010) Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130(9):2211–2221. doi:10.1038/jid.2010.123 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Wanke I, Steffen H, Christ C, Krismer B, Gotz F, Peschel A, Schaller M, Schittek B (2011) Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol 131(2):382–390. doi:10.1038/jid.2010.328 PubMedGoogle Scholar
  69. 69.
    Percoco G, Merle C, Jaouen T, Ramdani Y, Benard M, Hillion M, Mijouin L, Lati E, Feuilloley M, Lefeuvre L, Driouich A, Follet-Gueye ML (2013) Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli. Exp Dermatol 22(12):800–806. doi:10.1111/exd.12259 PubMedGoogle Scholar
  70. 70.
    Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15(12):1377–1382. doi:10.1038/nm.2062 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Wang Z, MacLeod DT, Di Nardo A (2012) Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J Immunol 189(4):1551–1558. doi:10.4049/jimmunol.1200471 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Kuo IH, Yoshida T, De Benedetto A, Beck LA (2013) The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol 131(2):266–278. doi:10.1016/j.jaci.2012.12.1563 PubMedGoogle Scholar
  73. 73.
    Chehoud C, Rafail S, Tyldsley AS, Seykora JT, Lambris JD, Grice EA (2013) Complement modulates the cutaneous microbiome and inflammatory milieu. Proc Natl Acad Sci USA 110(37):15061–15066. doi:10.1073/pnas.1307855110 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Garcia-Garcera M, Coscolla M, Garcia-Etxebarria K, Martin-Caballero J, Gonzalez-Candelas F, Latorre A, Calafell F (2012) Staphylococcus prevails in the skin microbiota of long-term immunodeficient mice. Environ Microbiol 14(8):2087–2098. doi:10.1111/j.1462-2920.2012.02756.x PubMedGoogle Scholar
  75. 75.
    Oh J, Freeman AF, Park M, Sokolic R, Candotti F, Holland SM, Segre JA, Kong HH (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23(12):2103–2114. doi:10.1101/gr.159467.113 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337(6098):1115–1119. doi:10.1126/science.1225152 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Shen W, Li W, Hixon JA, Bouladoux N, Belkaid Y, Dzutzev A, Durum SK (2014) Adaptive immunity to murine skin commensals. Proc Natl Acad Sci USA 111(29):E2977–E2986. doi:10.1073/pnas.1401820111 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Scholz F, Badgley BD, Sadowsky MJ, Kaplan DH (2014) Immune mediated shaping of microflora community composition depends on barrier site. PLoS ONE 9(1):e84019. doi:10.1371/journal.pone.0084019 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E, Gould C, Gemmen E, Dall T (2006) The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol 55(3):490–500. doi:10.1016/j.jaad.2006.05.048 PubMedGoogle Scholar
  80. 80.
    James WD (2005) Clinical practice. Acne. N Engl J Med 352(14):1463–1472. doi:10.1056/NEJMcp033487 PubMedGoogle Scholar
  81. 81.
    Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, Chen W, Nagy I, Picardo M, Suh DH, Ganceviciene R, Schagen S, Tsatsou F, Zouboulis CC (2009) New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol 18(10):821–832. doi:10.1111/j.1600-0625.2009.00890.x PubMedGoogle Scholar
  82. 82.
    Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, Seltmann H, Patrick S, Zouboulis CC, Kemeny L (2006) Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect Inst Pasteur 8(8):2195–2205. doi:10.1016/j.micinf.2006.04.001 Google Scholar
  83. 83.
    Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, Brightbill HD, Holland D, Cunliffe WJ, Akira S, Sieling PA, Godowski PJ, Modlin RL (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169(3):1535–1541PubMedGoogle Scholar
  84. 84.
    Vowels BR, Yang S, Leyden JJ (1995) Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun 63(8):3158–3165PubMedCentralPubMedGoogle Scholar
  85. 85.
    Norris JF, Cunliffe WJ (1988) A histological and immunocytochemical study of early acne lesions. Br J Dermatol 118(5):651–659PubMedGoogle Scholar
  86. 86.
    Jeremy AH, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ (2003) Inflammatory events are involved in acne lesion initiation. J Invest Dermatol 121(1):20–27. doi:10.1046/j.1523-1747.2003.12321.x PubMedGoogle Scholar
  87. 87.
    Layton AM, Morris C, Cunliffe WJ, Ingham E (1998) Immunohistochemical investigation of evolving inflammation in lesions of acne vulgaris. Exp Dermatol 7(4):191–197PubMedGoogle Scholar
  88. 88.
    Qin M, Pirouz A, Kim MH, Krutzik SR, Garban HJ, Kim J (2014) Propionibacterium acnes induces IL-1beta secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol 134(2):381–388. doi:10.1038/jid.2013.309 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kistowska M, Gehrke S, Jankovic D, Kerl K, Fettelschoss A, Feldmeyer L, Fenini G, Kolios A, Navarini A, Ganceviciene R, Schauber J, Contassot E, French LE (2014) IL-1beta drives inflammatory responses to Propionibacterium acnes in vitro and in vivo. J Invest Dermatol 134(3):677–685. doi:10.1038/jid.2013.438 PubMedGoogle Scholar
  90. 90.
    Li ZJ, Choi DK, Sohn KC, Seo MS, Lee HE, Lee Y, Seo YJ, Lee YH, Shi G, Zouboulis CC, Kim CD, Lee JH, Im M (2014) Propionibacterium acnes Activates the NLRP3 inflammasome in human sebocytes. J Invest Dermatol. doi:10.1038/jid.2014.221 Google Scholar
  91. 91.
    Agak GW, Qin M, Nobe J, Kim MH, Krutzik SR, Tristan GR, Elashoff D, Garban HJ, Kim J (2014) Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol 134(2):366–373. doi:10.1038/jid.2013.334 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Kistowska M, Meier B, Proust T, Feldmeyer L, Cozzio A, Kuendig T, Contassot E, French LE (2014) Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. doi:10.1038/jid.2014.290 Google Scholar
  93. 93.
    Alexeyev OA, Lundskog B, Ganceviciene R, Palmer RH, McDowell A, Patrick S, Zouboulis C, Golovleva I (2012) Pattern of tissue invasion by Propionibacterium acnes in acne vulgaris. J Dermatol Sci 67(1):63–66. doi:10.1016/j.jdermsci.2012.03.004 PubMedGoogle Scholar
  94. 94.
    Jahns AC, Lundskog B, Ganceviciene R, Palmer RH, Golovleva I, Zouboulis CC, McDowell A, Patrick S, Alexeyev OA (2012) An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol 167(1):50–58. doi:10.1111/j.1365-2133.2012.10897.x PubMedGoogle Scholar
  95. 95.
    Lomholt HB, Kilian M (2010) Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS ONE 5(8):e12277. doi:10.1371/journal.pone.0012277 PubMedCentralPubMedGoogle Scholar
  96. 96.
    McDowell A, Barnard E, Nagy I, Gao A, Tomida S, Li H, Eady A, Cove J, Nord CE, Patrick S (2012) An expanded multilocus sequence typing scheme for Propionibacterium acnes: investigation of ‘pathogenic’, ‘commensal’ and antibiotic resistant strains. PLoS ONE 7(7):e41480. doi:10.1371/journal.pone.0041480 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Kwon HH, Yoon JY, Park SY, Suh DH (2013) Analysis of distribution patterns of Propionibacterium acnes phylotypes and Peptostreptococcus species from acne lesions. Br J Dermatol 169(5):1152–1155. doi:10.1111/bjd.12486 PubMedGoogle Scholar
  98. 98.
    Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, Elashoff D, Erfe MC, Loncaric A, Kim J, Modlin RL, Miller JF, Sodergren E, Craft N, Weinstock GM, Li H (2013) Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 133(9):2152–2160. doi:10.1038/jid.2013.21 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L (2005) Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124(5):931–938. doi:10.1111/j.0022-202X.2005.23705.x PubMedGoogle Scholar
  100. 100.
    Crow JM (2012) Psoriasis uncovered. Nature 492(7429):S50–S51. doi:10.1038/492S50a PubMedGoogle Scholar
  101. 101.
    Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445(7130):866–873. doi:10.1038/nature05663 PubMedGoogle Scholar
  102. 102.
    Perera GK, Di Meglio P, Nestle FO (2012) Psoriasis. Annu Rev Pathol 7:385–422. doi:10.1146/annurev-pathol-011811-132448 PubMedGoogle Scholar
  103. 103.
    Schon MP, Boehncke WH (2005) Psoriasis. N Engl J Med 352(18):1899–1912. doi:10.1056/NEJMra041320 PubMedGoogle Scholar
  104. 104.
    Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129(6):1339–1350. doi:10.1038/jid.2009.59 PubMedGoogle Scholar
  105. 105.
    Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C, Bergboer JG, Blackwell JM, Bramon E, Bumpstead SJ, Casas JP, Cork MJ, Corvin A, Deloukas P, Dilthey A, Duncanson A, Edkins S, Estivill X, Fitzgerald O, Freeman C, Giardina E, Gray E, Hofer A, Huffmeier U, Hunt SE, Irvine AD, Jankowski J, Kirby B, Langford C, Lascorz J, Leman J, Leslie S, Mallbris L, Markus HS, Mathew CG, McLean WH, McManus R, Mossner R, Moutsianas L, Naluai AT, Nestle FO, Novelli G, Onoufriadis A, Palmer CN, Perricone C, Pirinen M, Plomin R, Potter SC, Pujol RM, Rautanen A, Riveira-Munoz E, Ryan AW, Salmhofer W, Samuelsson L, Sawcer SJ, Schalkwijk J, Smith CH, Stahle M, Su Z, Tazi-Ahnini R, Traupe H, Viswanathan AC, Warren RB, Weger W, Wolk K, Wood N, Worthington J, Young HS, Zeeuwen PL, Hayday A, Burden AD, Griffiths CE, Kere J, Reis A, McVean G, Evans DM, Brown MA, Barker JN, Peltonen L, Donnelly P, Trembath RC (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42(11):985–990. doi:10.1038/ng.694 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, Zhang FR, Zhang C, Du WH, Pu XM, Li H, Xiao FL, Wang ZX, Cui Y, Hao F, Zheng J, Yang XQ, Cheng H, He CD, Liu XM, Xu LM, Zheng HF, Zhang SM, Zhang JZ, Wang HY, Cheng YL, Ji BH, Fang QY, Li YZ, Zhou FS, Han JW, Quan C, Chen B, Liu JL, Lin D, Fan L, Zhang AP, Liu SX, Yang CJ, Wang PG, Zhou WM, Lin GS, Wu WD, Fan X, Gao M, Yang BQ, Lu WS, Zhang Z, Zhu KJ, Shen SK, Li M, Zhang XY, Cao TT, Ren W, Zhang X, He J, Tang XF, Lu S, Yang JQ, Zhang L, Wang DN, Yuan F, Yin XY, Huang HJ, Wang HF, Lin XY, Liu JJ (2009) Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 41(2):205–210. doi:10.1038/ng.310 PubMedGoogle Scholar
  107. 107.
    Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RD, Frodsham A, Browne J, Barber R, Terwilliger J, Lathrop GM, Barker JN (1997) Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 6(5):813–820PubMedGoogle Scholar
  108. 108.
    Mallon E, Newson R, Bunker CB (1999) HLA-Cw6 and the genetic predisposition to psoriasis: a meta-analysis of published serologic studies. J Invest Dermatol 113(4):693–695. doi:10.1046/j.1523-1747.1999.00724.x PubMedGoogle Scholar
  109. 109.
    Norrlind R (1955) Significance of infections in origin of psoriasis. Acta Rhematol Scand 1:135–144Google Scholar
  110. 110.
    Miller RA (1982) The Koebner phenomenon. Int J Dermatol 21(4):192–197PubMedGoogle Scholar
  111. 111.
    Whyte HJ, Baughman RD (1964) Acute guttate psoriasis and streptococcal infection. Arch Dermatol 89:350–356PubMedGoogle Scholar
  112. 112.
    Telfer NR, Chalmers RJ, Whale K, Colman G (1992) The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol 128(1):39–42PubMedGoogle Scholar
  113. 113.
    Ladizinski B, Lee KC, Wilmer E, Alavi A, Mistry N, Sibbald RG (2013) A review of the clinical variants and the management of psoriasis. Adv Skin Wound Care 26(6):271–284. doi:10.1097/01.ASW.0000429778.10020.67 (quiz 285–276)PubMedGoogle Scholar
  114. 114.
    Boehncke WH (1996) Psoriasis and bacterial superantigens—formal or causal correlation? Trends Microbiol 4(12):485–489PubMedGoogle Scholar
  115. 115.
    Sigmundsdottir H, Sigurgeirsson B, Troye-Blomberg M, Good MF, Valdimarsson H, Jonsdottir I (1997) Circulating T cells of patients with active psoriasis respond to streptococcal M-peptides sharing sequences with human epidermal keratins. Scand J Immunol 45(6):688–697PubMedGoogle Scholar
  116. 116.
    Gudmundsdottir AS, Sigmundsdottir H, Sigurgeirsson B, Good MF, Valdimarsson H, Jonsdottir I (1999) Is an epitope on keratin 17 a major target for autoreactive T lymphocytes in psoriasis? Clin Exp Immunol 117(3):580–586PubMedCentralPubMedGoogle Scholar
  117. 117.
    Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3(7):e2719. doi:10.1371/journal.pone.0002719 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Fahlen A, Engstrand L, Baker BS, Powles A, Fry L (2012) Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res 304(1):15–22. doi:10.1007/s00403-011-1189-x PubMedGoogle Scholar
  119. 119.
    Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, Li K, Methe BA, Blaser MJ (2013) Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1(1):31. doi:10.1186/2049-2618-1-31 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Shaw TE, Currie GP, Koudelka CW, Simpson EL (2011) Eczema prevalence in the United States: data from the 2003 National Survey of Children’s Health. J Invest Dermatol 131(1):67–73. doi:10.1038/jid.2010.251 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Bieber T (2008) Atopic dermatitis. N Engl J Med 358(14):1483–1494. doi:10.1056/NEJMra074081 PubMedGoogle Scholar
  122. 122.
    Spergel JM (2010) From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol 105(2):99–106. doi:10.1016/j.anai.2009.10.002 (quiz 107–109, 117)PubMedGoogle Scholar
  123. 123.
    Furue M, Ogata F, Ootsuki M, Ishibashi Y (1989) Hyperresponsibility to exogeneous interleukin 4 in atopic dermatitis. J Dermatol 16(3):247–250PubMedGoogle Scholar
  124. 124.
    Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY, Lee JH, Lee ES, Yang JM (2003) Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 33(12):1717–1724PubMedGoogle Scholar
  125. 125.
    Hamid Q, Naseer T, Minshall EM, Song YL, Boguniewicz M, Leung DY (1996) In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 98(1):225–231PubMedGoogle Scholar
  126. 126.
    Lee GR, Flavell RA (2004) Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. Int Immunol 16(8):1155–1160. doi:10.1093/intimm/dxh117 PubMedGoogle Scholar
  127. 127.
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A, Smith K, Gorman D, Zurawski S, Abrams J, Menon S, McClanahan T, de Waal-Malefyt Rd R, Bazan F, Kastelein RA, Liu YJ (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3(7):673–680. doi:10.1038/ni805 PubMedGoogle Scholar
  128. 128.
    Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, Yao Z, Ying S, Huston DP, Liu YJ (2007) IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 204(8):1837–1847. doi:10.1084/jem.20070406 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G, Lehtimaki S, Karisola P, Reunala T, Wolff H, Lauerma A, Alenius H (2012) IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol 132(5):1392–1400. doi:10.1038/jid.2011.446 PubMedGoogle Scholar
  130. 130.
    Soter NA (1989) Morphology of atopic eczema. Allergy 44(Suppl 9):16–19PubMedGoogle Scholar
  131. 131.
    Kagi MK, Joller-Jemelka H, Wuthrich B (1992) Correlation of eosinophils, eosinophil cationic protein and soluble interleukin-2 receptor with the clinical activity of atopic dermatitis. Dermatology 185(2):88–92PubMedGoogle Scholar
  132. 132.
    Liu FT, Goodarzi H, Chen HY (2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 41(3):298–310. doi:10.1007/s12016-011-8252-4 PubMedGoogle Scholar
  133. 133.
    van den Oord RA, Sheikh A (2009) Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 339:b2433. doi:10.1136/bmj.b2433 PubMedCentralPubMedGoogle Scholar
  134. 134.
    McAleer MA, Irvine AD (2013) The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol 131(2):280–291. doi:10.1016/j.jaci.2012.12.668 PubMedGoogle Scholar
  135. 135.
    Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(Suppl 1):43–48PubMedGoogle Scholar
  136. 136.
    Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, Pembrey M, Mukhopadhyay S, Smith GD, Palmer CN, McLean WH, Irvine AD (2008) The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 121(4):872–877, e879. doi:10.1016/j.jaci.2008.01.026 PubMedGoogle Scholar
  137. 137.
    Kezic S, O’Regan GM, Yau N, Sandilands A, Chen H, Campbell LE, Kroboth K, Watson R, Rowland M, McLean WH, Irvine AD (2011) Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy 66(7):934–940. doi:10.1111/j.1398-9995.2010.02540.x PubMedCentralPubMedGoogle Scholar
  138. 138.
    Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY (2009) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 124(3 Suppl 2):R7–R12. doi:10.1016/j.jaci.2009.07.012 PubMedGoogle Scholar
  139. 139.
    Leyden JJ, Marples RR, Kligman AM (1974) Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol 90(5):525–530PubMedGoogle Scholar
  140. 140.
    Nilsson EJ, Henning CG, Magnusson J (1992) Topical corticosteroids and Staphylococcus aureus in atopic dermatitis. J Am Acad Dermatol 27(1):29–34PubMedGoogle Scholar
  141. 141.
    Higaki S, Morohashi M, Yamagishi T, Hasegawa Y (1999) Comparative study of staphylococci from the skin of atopic dermatitis patients and from healthy subjects. Int J Dermatol 38(4):265–269PubMedGoogle Scholar
  142. 142.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859. doi:10.1101/gr.131029.111 PubMedCentralPubMedGoogle Scholar
  143. 143.
    Gilani SJ, Gonzalez M, Hussain I, Finlay AY, Patel GK (2005) Staphylococcus aureus re-colonization in atopic dermatitis: beyond the skin. Clin Exp Dermatol 30(1):10–13. doi:10.1111/j.1365-2230.2004.01679.x PubMedGoogle Scholar
  144. 144.
    Cho SH, Strickland I, Tomkinson A, Fehringer AP, Gelfand EW, Leung DY (2001) Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol 116(5):658–663. doi:10.1046/j.0022-202x.2001.01331.x PubMedGoogle Scholar
  145. 145.
    Cho SH, Strickland I, Boguniewicz M, Leung DY (2001) Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol 108(2):269–274. doi:10.1067/mai.2001.117455 PubMedGoogle Scholar
  146. 146.
    Postlethwaite AE, Holness MA, Katai H, Raghow R (1992) Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Investig 90(4):1479–1485. doi:10.1172/JCI116015 PubMedCentralPubMedGoogle Scholar
  147. 147.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160. doi:10.1056/NEJMoa021481 PubMedGoogle Scholar
  148. 148.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171(6):3262–3269PubMedGoogle Scholar
  149. 149.
    de Jongh GJ, Zeeuwen PL, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de Kerkhof PC, Schalkwijk J (2005) High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol 125(6):1163–1173. doi:10.1111/j.0022-202X.2005.23935.x PubMedGoogle Scholar
  150. 150.
    Ballardini N, Johansson C, Lilja G, Lindh M, Linde Y, Scheynius A, Agerberth B (2009) Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eczema. Br J Dermatol 161(1):40–47. doi:10.1111/j.1365-2133.2009.09095.x PubMedGoogle Scholar
  151. 151.
    Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U, Folster-Holst R, Proksch E, Schroder JM, Schwarz T, Glaser R (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 130(5):1355–1364. doi:10.1038/jid.2009.432 PubMedGoogle Scholar
  152. 152.
    G R (1975) Atopic Dermatits. WB Saunders Co:19Google Scholar
  153. 153.
    Oh J, Byrd AL, Deming C, Conlan S, NISC Comparative Sequencing Program, Kong HH, Segre JA (2014) Biogeography and individuality shape function in the human skin metagenome. Nature 514(7520):59–64. doi:10.1038/nature13786 PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations