Cellular and Molecular Life Sciences

, Volume 72, Issue 9, pp 1631–1650 | Cite as

Nuclear bile acid signaling through the farnesoid X receptor

  • Claire Mazuy
  • Audrey Helleboid
  • Bart Staels
  • Philippe LefebvreEmail author


Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.


FXR Nuclear receptor Bile acids Homeostasis Metabolism 



CM was supported by a fellowship from Institut National de la Santé et de la Recherche Médicale (INSERM) and from Région Nord-Pas-de-Calais. This work was supported by grants from INSERM, Agence Nationale de la Recherche (ANR) (FXRen), EGID (ANR-10-LABX-46), Région Nord-Pas de Calais, Fond Européen de Développement Régional (FEDER) and Cost Action BM0602. B Staels is a member of the Institut Universitaire de France.


  1. 1.
    Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174PubMedGoogle Scholar
  2. 2.
    Russell DW, Setchell KD (1992) Bile acid biosynthesis. Biochemistry 31:4737–4749PubMedGoogle Scholar
  3. 3.
    Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall H, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235PubMedGoogle Scholar
  4. 4.
    Kwakye JB, Barnes S, Diasio RB (1993) Identification of bile acid coenzyme a synthetase in rat kidney. J Lipid Res 34:95–99PubMedGoogle Scholar
  5. 5.
    Falany CN, Johnson MR, Barnes S, Diasio RB (1994) Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem 269:19375–19379PubMedGoogle Scholar
  6. 6.
    Solaas K, Ulvestad A, Söreide O, Kase BF (2000) Subcellular organization of bile acid amidation in human liver: a key issue in regulating the biosynthesis of bile salts. J Lipid Res 41:1154–1162PubMedGoogle Scholar
  7. 7.
    Jansen PL, Mulder GJ, Burchell B, Bock KW (1992) New developments in glucuronidation research: report of a workshop on “glucuronidation, its role in health and disease”. Hepatology 15:532–544PubMedGoogle Scholar
  8. 8.
    Stiehl A (1977) Disturbances of bile acid metabolism in cholestasis. Clin Gastroenterol 6:45–67PubMedGoogle Scholar
  9. 9.
    Yousef I, Mignault D, Tuchweber B (1992) Effect of complete sulfation of bile acids on bile formation: role of conjugation and number of sulfate groups. Hepatology 15:438–445PubMedGoogle Scholar
  10. 10.
    Elferink RPJO, Ottenhoff R, Fricker G, Seward DJ, Ballatori N, Boyer J (2004) Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters. Am J Physiol Gastrointest Liver Physiol 286:G762–G768PubMedGoogle Scholar
  11. 11.
    García-Cañaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241PubMedCentralPubMedGoogle Scholar
  12. 12.
    Attili AF, Angelico M, Cantafora A, Alvaro D, Capocaccia L (1986) Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med Hypotheses 19:57–69PubMedGoogle Scholar
  13. 13.
    Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 108(Suppl 1):4523–4530PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ridlon JM, Kang D, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259PubMedGoogle Scholar
  15. 15.
    Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661PubMedGoogle Scholar
  16. 16.
    Riottot M, Sacquet E (1985) Increase in the ileal absorption rate of sodium taurocholate in germ-free or conventional rats given an amylomaize-starch diet. Br J Nutr 53:307–310PubMedGoogle Scholar
  17. 17.
    Gustafsson BE, Bergstrom S, Lindstedt S, Norman A (1957) Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C; bile acids and steroids 41. Proc Soc Exp Biol Med 94:467–471PubMedGoogle Scholar
  18. 18.
    Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4:2384PubMedGoogle Scholar
  19. 19.
    Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A (2014) Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 7:12–18PubMedGoogle Scholar
  20. 20.
    Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63:1513–1521PubMedGoogle Scholar
  21. 21.
    Vincent RP, Omar S, Ghozlan S, Taylor DR, Cross G, Sherwood RA, Fandriks L, Olbers T, Werling M, Alaghband-Zadeh J, le Roux CW (2013) Higher circulating bile acid concentrations in obese patients with type 2 diabetes. Ann Clin Biochem 50:360–364PubMedGoogle Scholar
  22. 22.
    Wewalka M, Patti M, Barbato C, Houten SM, Goldfine AB (2014) Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin. J Clin Endocrinol Metab 99:1442–1451PubMedGoogle Scholar
  23. 23.
    Steiner C, Othman A, Saely CH, Rein P, Drexel H, von Eckardstein A, Rentsch KM (2011) Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS ONE 6:e25006PubMedCentralPubMedGoogle Scholar
  24. 24.
    Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, Gahan CGM (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426PubMedCentralPubMedGoogle Scholar
  25. 25.
    Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651PubMedGoogle Scholar
  26. 26.
    Trauner M, Fickert P, Tilg H (2013) Bile acids as modulators of gut microbiota linking dietary habits and inflammatory bowel disease: a potentially dangerous liaison. Gastroenterology 144:844–846PubMedGoogle Scholar
  27. 27.
    Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30:332–338PubMedGoogle Scholar
  28. 28.
    Heathcote EJ, Cauch-Dudek K, Walker V, Bailey RJ, Blendis LM, Ghent CN, Michieletti P, Minuk GY, Pappas SC, Scully LJ et al (1994) The Canadian multicenter double-blind randomized controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 19:1149–1156PubMedGoogle Scholar
  29. 29.
    Poupon RE, Poupon R, Balkau B (1994) Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med 330:1342–1347PubMedGoogle Scholar
  30. 30.
    Combes B, Carithers RLJ, Maddrey WC, Lin D, McDonald MF, Wheeler DE, Eigenbrodt EH, Muñoz SJ, Rubin R, Garcia-Tsao G et al (1995) A randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 22:759–766PubMedGoogle Scholar
  31. 31.
    Lindor KD, Dickson ER, Jorgensen RA, Anderson ML, Wiesner RH, Gores GJ, Lange SM, Rossi SS, Hofmann AF, Baldus WP (1995) The combination of ursodeoxycholic acid and methotrexate for patients with primary biliary cirrhosis: the results of a pilot study. Hepatology 22:1158–1162PubMedGoogle Scholar
  32. 32.
    Kuiper EMM, Hansen BE, Lesterhuis W, Robijn RJ, Thijs JC, Engels LGJB, Koek GH, Aparicio MN, Kerbert-Dreteler MJ, van Buuren HR (2011) The long-term effect of ursodeoxycholic acid on laboratory liver parameters in biochemically non-advanced primary biliary cirrhosis. Clin Res Hepatol Gastroenterol 35:29–33PubMedGoogle Scholar
  33. 33.
    Glantz A, Reilly S, Benthin L, Lammert F, Mattsson L, Marschall H (2008) Intrahepatic cholestasis of pregnancy: amelioration of pruritus by UDCA is associated with decreased progesterone disulphates in urine. Hepatology 47:544–551PubMedGoogle Scholar
  34. 34.
    Jazrawi RP, de Caestecker JS, Goggin PM, Britten AJ, Joseph AE, Maxwell JD, Northfield TC (1994) Kinetics of hepatic bile acid handling in cholestatic liver disease: effect of ursodeoxycholic acid. Gastroenterology 106:134–142PubMedGoogle Scholar
  35. 35.
    Combes B, Markin RS, Wheeler DE, Rubin R, West AB, Mills AS, Eigenbrodt EH, Maddrey WC, Munoz SJ, Garcia-Tsao G, Bonner GF, Boyer JL, Luketic VA, Shiffman ML, Peters MG, White HM, Zetterman RK, Carithers RLJ (1999) The effect of ursodeoxycholic acid on the florid duct lesion of primary biliary cirrhosis. Hepatology 30:602–605PubMedCentralPubMedGoogle Scholar
  36. 36.
    Hofmann AF, Hagey LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55:1553–1595PubMedGoogle Scholar
  37. 37.
    Out C, Groen AK, Brufau G (2012) Bile acid sequestrants: more than simple resins. Curr Opin Lipidol 23:43–55PubMedGoogle Scholar
  38. 38.
    Goldberg RB, Rosenson RS, Hernandez-Triana E, Misir S, Jones MR (2013) Colesevelam improved lipoprotein particle subclasses in patients with prediabetes and primary hyperlipidaemia. Diab Vasc Dis Res 10:256–262PubMedGoogle Scholar
  39. 39.
    Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR (2008) Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 31:1479–1484PubMedCentralPubMedGoogle Scholar
  40. 40.
    Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL (2007) Results of the glucose-lowering effect of WelChol Study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 29:74–83PubMedGoogle Scholar
  41. 41.
    Goldberg RB, Fonseca VA, Truitt KE, Jones MR (2008) Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med 168:1531–1540PubMedGoogle Scholar
  42. 42.
    Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–1368PubMedGoogle Scholar
  43. 43.
    Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365PubMedGoogle Scholar
  44. 44.
    Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98:3369–3374PubMedCentralPubMedGoogle Scholar
  45. 45.
    Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316PubMedGoogle Scholar
  46. 46.
    Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440PubMedGoogle Scholar
  47. 47.
    Stepanov V, Stankov K, Mikov M (2013) The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res 33:213–223PubMedGoogle Scholar
  48. 48.
    Keitel V, Häussinger D (2012) Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 36:412–419PubMedGoogle Scholar
  49. 49.
    Zwart W, de Leeuw R, Rondaij M, Neefjes J, Mancini MA, Michalides R (2010) The hinge region of the human estrogen receptor determines functional synergy between AF-1 and AF-2 in the quantitative response to estradiol and tamoxifen. J Cell Sci 123:1253–1261PubMedGoogle Scholar
  50. 50.
    Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzlu PL, Haws TF, Kassam A, Powell F, Hollis GF, Young PR, Mukherjee R, Burn TC (2002) Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 290:35–43PubMedGoogle Scholar
  51. 51.
    Zhang Y, Kast-Woelbern HR, Edwards PA (2003) Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 278:104–110PubMedGoogle Scholar
  52. 52.
    Vaquero J, Monte MJ, Dominguez M, Muntané J, Marin JJG (2013) Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem Pharmacol 86:926–939PubMedGoogle Scholar
  53. 53.
    Popescu IR, Helleboid-Chapman A, Lucas A, Vandewalle B, Dumont J, Bouchaert E, Derudas B, Kerr-Conte J, Caron S, Pattou F, Staels B (2010) The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity. FEBS Lett 584:2845–2851PubMedGoogle Scholar
  54. 54.
    Anaya-Hernández A, Méndez-Tepepa M, Laura GH, Pacheco P, Martínez-Gómez M, Castelán F, Cuevas E (2014) Farnesoid X receptor immunolocalization in reproductive tissues of adult female rabbits. Acta Histochem 116:1068–1074PubMedGoogle Scholar
  55. 55.
    Bishop-Bailey D, Walsh DT, Warner TD (2004) Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci USA 101:3668–3673PubMedCentralPubMedGoogle Scholar
  56. 56.
    Lee FY, Kast-Woelbern HR, Chang J, Luo G, Jones SA, Fishbein MC, Edwards PA (2005) Alpha-crystallin is a target gene of the farnesoid X-activated receptor in human livers. J Biol Chem 280:31792–31800PubMedGoogle Scholar
  57. 57.
    Anisfeld AM, Kast-Woelbern HR, Meyer ME, Jones SA, Zhang Y, Williams KJ, Willson T, Edwards PA (2003) Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J Biol Chem 278:20420–20428PubMedGoogle Scholar
  58. 58.
    Anisfeld AM, Kast-Woelbern HR, Lee H, Zhang Y, Lee FY, Edwards PA (2005) Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. J Lipid Res 46:458–468PubMedGoogle Scholar
  59. 59.
    Song X, Chen Y, Valanejad L, Kaimal R, Yan B, Stoner M, Deng R (2013) Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. J Lipid Res 54:3030–3044PubMedCentralPubMedGoogle Scholar
  60. 60.
    Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744PubMedGoogle Scholar
  61. 61.
    Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A, Dorchies E, Daoudi M, Lestavel S, Gonzalez FJ, Oresic M, Cariou B, Kuipers F, Caron S, Staels B (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60:1861–1871PubMedCentralPubMedGoogle Scholar
  62. 62.
    Lambert G, Amar MJA, Guo G, Brewer HBJ, Gonzalez FJ, Sinal CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278:2563–2570PubMedGoogle Scholar
  63. 63.
    Hanniman EA, Lambert G, McCarthy TC, Sinal CJ (2005) Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein e-deficient mice. J Lipid Res 46:2595–2604PubMedGoogle Scholar
  64. 64.
    Zhang Y, Wang X, Vales C, Lee FY, Lee H, Lusis AJ, Edwards PA (2006) FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler Thromb Vasc Biol 26:2316–2321PubMedGoogle Scholar
  65. 65.
    Kong B, Luyendyk JP, Tawfik O, Guo GL (2009) Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 328:116–122PubMedCentralPubMedGoogle Scholar
  66. 66.
    Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart J, Gonzalez FJ, Kuipers F, Staels B (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281:11039–11049PubMedGoogle Scholar
  67. 67.
    Ma K, Saha PK, Chan L, Moore DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116:1102–1109PubMedCentralPubMedGoogle Scholar
  68. 68.
    Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 103:1006–1011PubMedCentralPubMedGoogle Scholar
  69. 69.
    Zhang Y, Ge X, Heemstra LA, Chen W, Xu J, Smith JL, Ma H, Kasim N, Edwards PA, Novak CM (2012) Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in Ob/Ob mice. Mol Endocrinol 26:272–280PubMedCentralPubMedGoogle Scholar
  70. 70.
    Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W (2007) Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res 67:863–867PubMedGoogle Scholar
  71. 71.
    Wolfe A, Thomas A, Edwards G, Jaseja R, Guo GL, Apte U (2011) Increased activation of the Wnt/Β-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther 338:12–21PubMedCentralPubMedGoogle Scholar
  72. 72.
    Liu N, Meng Z, Lou G, Zhou W, Wang X, Zhang Y, Zhang L, Liu X, Yen Y, Lai L, Forman BM, Xu Z, Xu R, Huang W (2012) Hepatocarcinogenesis in FXR−/− mice mimics human HCC progression that operates through HNF1α regulation of FXR expression. Mol Endocrinol 26:775–785PubMedCentralPubMedGoogle Scholar
  73. 73.
    Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, Dong B, Huang X, Moore DD (2006) Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312:233–236PubMedGoogle Scholar
  74. 74.
    Meng Z, Wang Y, Wang L, Jin W, Liu N, Pan H, Liu L, Wagman L, Forman BM, Huang W (2010) FXR regulates liver repair after CCl4-induced toxic injury. Mol Endocrinol 24:886–897PubMedCentralPubMedGoogle Scholar
  75. 75.
    Maran RRM, Thomas A, Roth M, Sheng Z, Esterly N, Pinson D, Gao X, Zhang Y, Ganapathy V, Gonzalez FJ, Guo GL (2009) Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J Pharmacol Exp Ther 328:469–477PubMedCentralPubMedGoogle Scholar
  76. 76.
    Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F (2003) Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278:41930–41937PubMedGoogle Scholar
  77. 77.
    van Dijk TH, Grefhorst A, Oosterveer MH, Bloks VW, Staels B, Reijngoud D, Kuipers F (2009) An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr−/− mice. J Biol Chem 284:10315–10323PubMedCentralPubMedGoogle Scholar
  78. 78.
    Bjursell M, Wedin M, Admyre T, Hermansson M, Böttcher G, Göransson M, Lindén D, Bamberg K, Oscarsson J, Bohlooly-Y M (2013) Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS ONE 8:e64721PubMedCentralPubMedGoogle Scholar
  79. 79.
    Li G, Thomas AM, Hart SN, Zhong X, Wu D, Guo GL (2010) Farnesoid X receptor activation mediates head-to-tail chromatin looping in the Nr0b2 gene encoding small heterodimer partner. Mol Endocrinol 24:1404–1412PubMedCentralPubMedGoogle Scholar
  80. 80.
    Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515PubMedGoogle Scholar
  81. 81.
    Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526PubMedGoogle Scholar
  82. 82.
    Sanyal S, Båvner A, Haroniti A, Nilsson L, Lundåsen T, Rehnmark S, Witt MR, Einarsson C, Talianidis I, Gustafsson J, Treuter E (2007) Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci USA 104:15665–15670PubMedCentralPubMedGoogle Scholar
  83. 83.
    Abrahamsson A, Gustafsson U, Ellis E, Nilsson L, Sahlin S, Björkhem I, Einarsson C (2005) Feedback regulation of bile acid synthesis in human liver: importance of HNF-4alpha for regulation of CYP7A1. Biochem Biophys Res Commun 330:395–399PubMedGoogle Scholar
  84. 84.
    Ellis E, Axelson M, Abrahamsson A, Eggertsen G, Thörne A, Nowak G, Ericzon B, Björkhem I, Einarsson C (2003) Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Hepatology 38:930–938PubMedGoogle Scholar
  85. 85.
    Liu J, Lu H, Lu Y, Lei X, Cui JY, Ellis E, Strom SC, Klaassen CD (2014) Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol SciGoogle Scholar
  86. 86.
    Pandak WM, Bohdan P, Franklund C, Mallonee DH, Eggertsen G, Björkhem I, Gil G, Vlahcevic ZR, Hylemon PB (2001) Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Gastroenterology 120:1801–1809PubMedGoogle Scholar
  87. 87.
    Zollner G, Wagner M, Fickert P, Geier A, Fuchsbichler A, Silbert D, Gumhold J, Zatloukal K, Kaser A, Tilg H, Denk H, Trauner M (2005) Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Gastrointest Liver Physiol 289:G798–G805PubMedGoogle Scholar
  88. 88.
    Maeda T, Miyata M, Yotsumoto T, Kobayashi D, Nozawa T, Toyama K, Gonzalez FJ, Yamazoe Y, Tamai I (2004) Regulation of drug transporters by the farnesoid X receptor in mice. Mol Pharm 1:281–289PubMedGoogle Scholar
  89. 89.
    Plass JRM, Mol O, Heegsma J, Geuken M, Faber KN, Jansen PLM, Müller M (2002) Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35:589–596PubMedGoogle Scholar
  90. 90.
    Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y, Jones SA, Osborne TF, Edwards PA (2010) Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol 24:1626–1636PubMedCentralPubMedGoogle Scholar
  91. 91.
    Song K, Li T, Owsley E, Strom S, Chiang JYL (2009) Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49:297–305PubMedCentralPubMedGoogle Scholar
  92. 92.
    Zhan L, Liu H, Fang Y, Kong B, He Y, Zhong X, Fang J, Wan YY, Guo GL (2014) Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes. PLoS ONE 9:e105930PubMedCentralPubMedGoogle Scholar
  93. 93.
    Zhou W, Feng X, Wu Y, Benge J, Zhang Z, Chen Z (2009) FGF-receptor substrate 2 functions as a molecular sensor integrating external regulatory signals into the FGF pathway. Cell Res 19:1165–1177PubMedGoogle Scholar
  94. 94.
    Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL (2012) Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56:1034–1043PubMedCentralPubMedGoogle Scholar
  95. 95.
    Modica S, Petruzzelli M, Bellafante E, Murzilli S, Salvatore L, Celli N, Di Tullio G, Palasciano G, Moustafa T, Halilbasic E, Trauner M, Moschetta A (2012) Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 142:355–365PubMedGoogle Scholar
  96. 96.
    Stroeve JHM, Brufau G, Stellaard F, Gonzalez FJ, Staels B, Kuipers F (2010) Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest 90:1457–1467PubMedGoogle Scholar
  97. 97.
    Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225PubMedGoogle Scholar
  98. 98.
    Li S, Hsu DDF, Li B, Luo X, Alderson N, Qiao L, Ma L, Zhu HH, He Z, Suino-Powell K, Ji K, Li J, Shao J, Xu HE, Li T, Feng G (2014) Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab 20:320–332PubMedGoogle Scholar
  99. 99.
    Kir S, Zhang Y, Gerard RD, Kliewer SA, Mangelsdorf DJ (2012) Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J Biol Chem 287:41334–41341PubMedCentralPubMedGoogle Scholar
  100. 100.
    Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 278:19909–19916PubMedGoogle Scholar
  101. 101.
    Hwang ST, Urizar NL, Moore DD, Henning SJ (2002) Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology 122:1483–1492PubMedGoogle Scholar
  102. 102.
    Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai S, Moustafa T, Zollner G, Lee JY, Ballatori N (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290:G1124–G1130PubMedGoogle Scholar
  103. 103.
    Cui YJ, Aleksunes LM, Tanaka Y, Goedken MJ, Klaassen CD (2009) Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci 110:47–60PubMedCentralPubMedGoogle Scholar
  104. 104.
    Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, Sabatino G, Russo G, Castellani D, Willson TM, Pruzanski M, Pellicciari R, Morelli A (2005) Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 313:604–612PubMedGoogle Scholar
  105. 105.
    Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 112:1678–1687PubMedCentralPubMedGoogle Scholar
  106. 106.
    Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pellicciari R, Morelli A (2004) The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127:1497–1512PubMedGoogle Scholar
  107. 107.
    Stedman C, Liddle C, Coulter S, Sonoda J, Alvarez JG, Evans RM, Downes M (2006) Benefit of farnesoid X receptor inhibition in obstructive cholestasis. Proc Natl Acad Sci USA 103:11323–11328PubMedCentralPubMedGoogle Scholar
  108. 108.
    Marschall H, Wagner M, Bodin K, Zollner G, Fickert P, Gumhold J, Silbert D, Fuchsbichler A, Sjövall J, Trauner M (2006) Fxr(−/−) mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids. J Lipid Res 47:582–592PubMedGoogle Scholar
  109. 109.
    Wagner M, Fickert P, Zollner G, Fuchsbichler A, Silbert D, Tsybrovskyy O, Zatloukal K, Guo GL, Schuetz JD, Gonzalez FJ, Marschall H, Denk H, Trauner M (2003) Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 125:825–838PubMedGoogle Scholar
  110. 110.
    Kazgan N, Metukuri MR, Purushotham A, Lu J, Rao A, Lee S, Pratt-Hyatt M, Lickteig A, Csanaky IL, Zhao Y, Dawson PA, Li X (2014) Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 146:1006–1016PubMedCentralPubMedGoogle Scholar
  111. 111.
    Lefebvre P, Staels B (2014) DCo(H2)Ding the Metabolic Functions of SIRT1 in the Intestine. Gastroenterology 146:893–896PubMedGoogle Scholar
  112. 112.
    Alvarez L, Jara P, Sánchez-Sabaté E, Hierro L, Larrauri J, Díaz MC, Camarena C, De la Vega A, Frauca E, López-Collazo E, Lapunzina P (2004) Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet 13:2451–2460PubMedGoogle Scholar
  113. 113.
    Chen F, Ananthanarayanan M, Emre S, Neimark E, Bull LN, Knisely AS, Strautnieks SS, Thompson RJ, Magid MS, Gordon R, Balasubramanian N, Suchy FJ, Shneider BL (2004) Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 126:756–764PubMedGoogle Scholar
  114. 114.
    Zimmer V, Müllenbach R, Simon E, Bartz C, Matern S, Lammert F (2009) Combined functional variants of hepatobiliary transporters and FXR aggravate intrahepatic cholestasis of pregnancy. Liver Int 29:1286–1288PubMedGoogle Scholar
  115. 115.
    Langhi C, Le May C, Kourimate S, Caron S, Staels B, Krempf M, Costet P, Cariou B (2008) Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett 582:949–955PubMedGoogle Scholar
  116. 116.
    Wang Y, Jones PJH, Woollett LA, Buckley DD, Yao L, Granholm NA, Tolley EA, Heubi JE (2006) Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans. Transl Res 148:37–45PubMedGoogle Scholar
  117. 117.
    Pérez-Aguilar F, Bretó M, Alegre B, Berenguer J (1985) Increase in serum total cholesterol and low-density lipoprotein cholesterol by high-dose chenodeoxycholic acid in patients with radiolucent gallstones significantly reversed during preventive low dose after gallstone dissolution. Digestion 31:225–233PubMedGoogle Scholar
  118. 118.
    Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall H, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:574–582PubMedGoogle Scholar
  119. 119.
    Gautier T, de Haan W, Grober J, Ye D, Bahr MJ, Claudel T, Nijstad N, Van Berkel TJC, Havekes LM, Manns MP, Willems SM, Hogendoorn PCW, Lagrost L, Kuipers F, Van Eck M, Rensen PCN, Tietge UJF (2013) Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice. J Lipid Res 54:2195–2205PubMedCentralPubMedGoogle Scholar
  120. 120.
    Urizar NL, Dowhan DH, Moore DD (2000) The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem 275:39313–39317PubMedGoogle Scholar
  121. 121.
    Sirvent A, Verhoeven AJM, Jansen H, Kosykh V, Darteil RJ, Hum DW, Fruchart J, Staels B (2004) Farnesoid X receptor represses hepatic lipase gene expression. J Lipid Res 45:2110–2115PubMedGoogle Scholar
  122. 122.
    Leiss O, von Bergmann K (1982) Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand J Gastroenterol 17:587–592PubMedGoogle Scholar
  123. 123.
    Hambruch E, Miyazaki-Anzai S, Hahn U, Matysik S, Boettcher A, Perović-Ottstadt S, Schlüter T, Kinzel O, Krol HD, Deuschle U, Burnet M, Levi M, Schmitz G, Miyazaki M, Kremoser C (2012) Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (−/−) mice. J Pharmacol Exp Ther 343:556–567PubMedGoogle Scholar
  124. 124.
    Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418PubMedCentralPubMedGoogle Scholar
  125. 125.
    Hirokane H, Nakahara M, Tachibana S, Shimizu M, Sato R (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279:45685–45692PubMedGoogle Scholar
  126. 126.
    Cipriani S, Mencarelli A, Palladino G, Fiorucci S (2010) FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in zucker (Fa/Fa) obese rats. J Lipid Res 51:771–784PubMedCentralPubMedGoogle Scholar
  127. 127.
    Schmitt J, Kong B, Stieger B, Tschopp O, Schultze SM, Rau M, Weber A, Müllhaupt B, Guo GL,Geier A (2014) Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver IntGoogle Scholar
  128. 128.
    Zhang S, Wang J, Liu Q, Harnish DC (2009) Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol 51:380–388PubMedGoogle Scholar
  129. 129.
    Porez G, Gross B, Prawitt J, Gheeraert C, Berrabah W, Alexandre J, Staels B, Lefebvre P (2013) The hepatic orosomucoid/Α1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR. Endocrinology 154:3690–3701PubMedGoogle Scholar
  130. 130.
    Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart J, Kuipers F, Staels B (2004) Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 53:890–898PubMedGoogle Scholar
  131. 131.
    Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T, Arita E, Mataki C, Sato H, Tanigawara Y, Schoonjans K, Itoh H, Auwerx J (2011) Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem 286:26913–26920PubMedCentralPubMedGoogle Scholar
  132. 132.
    Duran-Sandoval D, Cariou B, Percevault F, Hennuyer N, Grefhorst A, van Dijk TH, Gonzalez FJ, Fruchart J, Kuipers F, Staels B (2005) The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem 280:29971–29979PubMedGoogle Scholar
  133. 133.
    Caron S, Huaman Samanez C, Dehondt H, Ploton M, Briand O, Lien F, Dorchies E, Dumont J, Postic C, Cariou B, Lefebvre P, Staels B (2013) Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol 33:2202–2211PubMedCentralPubMedGoogle Scholar
  134. 134.
    Renga B, Mencarelli A, D’Amore C, Cipriani S, Baldelli F, Zampella A, Distrutti E, Fiorucci S (2012) Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB J 26:3021–3031PubMedGoogle Scholar
  135. 135.
    Seyer P, Vallois D, Poitry-Yamate C, Schütz F, Metref S, Tarussio D, Maechler P, Staels B, Lanz B, Grueter R, Decaris J, Turner S, da Costa A, Preitner F, Minehira K, Foretz M, Thorens B (2013) Hepatic glucose sensing is required to preserve β cell glucose competence. J Clin Invest 123:1662–1676PubMedCentralPubMedGoogle Scholar
  136. 136.
    Düfer M, Hörth K, Wagner R, Schittenhelm B, Prowald S, Wagner TFJ, Oberwinkler J, Lukowski R, Gonzalez FJ, Krippeit-Drews P, Drews G (2012) Bile acids acutely stimulate insulin secretion of mouse Β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61:1479–1489PubMedCentralPubMedGoogle Scholar
  137. 137.
    Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S (2010) The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta 1802:363–372PubMedGoogle Scholar
  138. 138.
    Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ (2007) Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28:940–946PubMedCentralPubMedGoogle Scholar
  139. 139.
    Li G, Kong B, Zhu Y, Zhan L, Williams JA, Tawfik O, Kassel KM, Luyendyk JP, Wang L, Guo GL (2013) Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol Appl Pharmacol 272:299–305PubMedCentralPubMedGoogle Scholar
  140. 140.
    Li G, Zhu Y, Tawfik O, Kong B, Williams JA, Zhan L, Kassel KM, Luyendyk JP, Wang L, Guo GL (2013) Mechanisms of STAT3 activation in the liver of FXR knockout mice. Am J Physiol Gastrointest Liver Physiol 305:G829–G837PubMedCentralPubMedGoogle Scholar
  141. 141.
    Xu Z, Huang G, Gong W, Zhou P, Zhao Y, Zhang Y, Zeng Y, Gao M, Pan Z, He F (2012) FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal 24:1658–1664PubMedGoogle Scholar
  142. 142.
    Deuschle U, Schüler J, Schulz A, Schlüter T, Kinzel O, Abel U, Kremoser C (2012) FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS ONE 7:e43044PubMedCentralPubMedGoogle Scholar
  143. 143.
    Ohno T, Shirakami Y, Shimizu M, Kubota M, Sakai H, Yasuda Y, Kochi T, Tsurumi H, Moriwaki H (2012) Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand. Cancer Lett 323:215–222PubMedGoogle Scholar
  144. 144.
    Su H, Ma C, Liu J, Li N, Gao M, Huang A, Wang X, Huang W, Huang X (2012) Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 303:G1245–G1253PubMedCentralPubMedGoogle Scholar
  145. 145.
    Vaquero J, Briz O, Herraez E, Muntané J, Marin JJG (2013) Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim Biophys Acta 1833:2212–2219PubMedGoogle Scholar
  146. 146.
    Herraez E, Gonzalez-Sanchez E, Vaquero J, Romero MR, Serrano MA, Marin JJG, Briz O (2012) Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol Pharm 9:2565–2576PubMedGoogle Scholar
  147. 147.
    Degirolamo C, Modica S, Vacca M, Di Tullio G, Morgano A, D’Orazio A, Kannisto K, Parini P,Moschetta A (2014) Prevention of spontaneous hepatocarcinogenesis in FXR null mice by intestinal specific FXR re-activation. HepatologyGoogle Scholar
  148. 148.
    Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu J, Yang H, Humphrey M, Ding X, Arora T, Learned RM, DePaoli AM, Tian H, Ling L (2014) Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74:3306–3316PubMedGoogle Scholar
  149. 149.
    Luo J, Ko B, Elliott M, Zhou M, Lindhout DA, Phung V, To C, Learned RM, Tian H, DePaoli AM, Ling L (2014) A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med 6:247ra100PubMedGoogle Scholar
  150. 150.
    De Gottardi A, Touri F, Maurer CA, Perez A, Maurhofer O, Ventre G, Bentzen CL, Niesor EJ, Dufour J (2004) The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. Dig Dis Sci 49:982–989PubMedGoogle Scholar
  151. 151.
    Lax S, Schauer G, Prein K, Kapitan M, Silbert D, Berghold A, Berger A, Trauner M (2012) Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer 130:2232–2239PubMedGoogle Scholar
  152. 152.
    Stojancevic M, Stankov K, Mikov M (2012) The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. Can J Gastroenterol 26:631–637PubMedCentralPubMedGoogle Scholar
  153. 153.
    Inagaki T, Moschetta A, Lee Y, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA (2006) Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA 103:3920–3925PubMedCentralPubMedGoogle Scholar
  154. 154.
    Modica S, Murzilli S, Salvatore L, Schmidt DR, Moschetta A (2008) Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res 68:9589–9594PubMedGoogle Scholar
  155. 155.
    Xu Y, Watanabe T, Tanigawa T, Machida H, Okazaki H, Yamagami H, Watanabe K, Tominaga K, Fujiwara Y, Oshitani N, Arakawa T (2010) Bile acids induce Cdx2 expression through the farnesoid X receptor in gastric epithelial cells. J Clin Biochem Nutr 46:81–86PubMedCentralPubMedGoogle Scholar
  156. 156.
    Chen W, Wang Y, Zhang L, Shiah S, Wang M, Yang F, Yu D, Forman BM, Huang W (2010) Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating Forkhead box M1b transcription. Hepatology 51:953–962PubMedCentralPubMedGoogle Scholar
  157. 157.
    García-Rodríguez JL, Barbier-Torres L, Fernández-Álvarez S, Gutiérrez-de Juan V, Monte MJ, Halilbasic E, Herranz D, Álvarez L, Aspichueta P, Marín JJG, Trauner M, Mato JM, Serrano M, Beraza N, Martínez-Chantar ML (2014) SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology 59:1972–1983PubMedGoogle Scholar
  158. 158.
    Zhang L, Wang Y, Chen W, Wang X, Lou G, Liu N, Lin M, Forman BM, Huang W (2012) Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology 56:2336–2343PubMedCentralPubMedGoogle Scholar
  159. 159.
    Seol W, Choi HS, Moore DD (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol 9:72–85PubMedGoogle Scholar
  160. 160.
    Chong HK, Infante AM, Seo Y, Jeon T, Zhang Y, Edwards PA, Xie X, Osborne TF (2010) Genome-wide interrogation of hepatic FXR reveals an asymmetric IR-1 motif and synergy with LRH-1. Nucleic Acids Res 38:6007–6017PubMedCentralPubMedGoogle Scholar
  161. 161.
    Thomas AM, Hart SN, Kong B, Fang J, Zhong X, Guo GL (2010) Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology 51:1410–1419PubMedGoogle Scholar
  162. 162.
    Berrabah W, Aumercier P, Gheeraert C, Dehondt H, Bouchaert E, Alexandre J, Ploton M, Mazuy C, Caron S, Tailleux A, Eeckhoute J, Lefebvre T, Staels B, Lefebvre P (2014) Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology 59:2022–2033PubMedGoogle Scholar
  163. 163.
    Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, Chatterjee B (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276:42549–42556PubMedGoogle Scholar
  164. 164.
    Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–2915PubMedGoogle Scholar
  165. 165.
    Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA (2000) Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 275:10638–10647PubMedGoogle Scholar
  166. 166.
    Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart J, Gonzalez FJ, Staels B (2003) Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125:544–555PubMedGoogle Scholar
  167. 167.
    Mi L, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, Khorasanizadeh S, Rastinejad F (2003) Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell 11:1093–1100PubMedGoogle Scholar
  168. 168.
    Kullak-Ublick GA, Beuers U, Paumgartner G (1996) Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology 23:1053–1060PubMedGoogle Scholar
  169. 169.
    Porez G, Prawitt J, Gross B, Staels B (2012) Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 53:1723–1737PubMedCentralPubMedGoogle Scholar
  170. 170.
    Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer J, Anisfeld AM, Edwards PA, Rosenfeld JM, Alvarez JGA, Noel JP, Nicolaou KC, Evans RM (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11:1079–1092PubMedGoogle Scholar
  171. 171.
    Dwivedi SKD, Singh N, Kumari R, Mishra JS, Tripathi S, Banerjee P, Shah P, Kukshal V, Tyagi AM, Gaikwad AN, Chaturvedi RK, Mishra DP, Trivedi AK, Sanyal S, Chattopadhyay N, Ramachandran R, Siddiqi MI, Bandyopadhyay A, Arora A, Lundåsen T, Anakk SP, Moore DD, Sanyal S (2011) Bile acid receptor agonist GW4064 regulates PPARγ coactivator-1α expression through estrogen receptor-related receptor Α. Mol Endocrinol 25:922–932PubMedGoogle Scholar
  172. 172.
    Cui J, Huang L, Zhao A, Lew J, Yu J, Sahoo S, Meinke PT, Royo I, Pelaez F, Wright SD (2003) Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 278:10214–10220PubMedGoogle Scholar
  173. 173.
    Modica S, Gadaleta RM, Moschetta A (2010) Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal 8:e005PubMedCentralPubMedGoogle Scholar
  174. 174.
    Liu P, Xu X, Chen L, Ma L, Shen X, Hu L (2014) Discovery and SAR study of hydroxyacetophenone derivatives as potent, non-steroidal farnesoid X receptor (FXR) antagonists. Bioorg Med Chem 22:1596–1607PubMedGoogle Scholar
  175. 175.
    Xu X, Lu Y, Chen L, Chen J, Luo X, Shen X (2013) Identification of 15d-PGJ2 as an antagonist of farnesoid X receptor: molecular modeling with biological evaluation. Steroids 78:813–822PubMedGoogle Scholar
  176. 176.
    Yu DD, Lin W, Chen T, Forman BM (2013) Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery. Bioorg Med Chem 21:4266–4278PubMedCentralPubMedGoogle Scholar
  177. 177.
    Di Leva FS, Festa C, D’Amore C, De Marino S, Renga B, D’Auria MV, Novellino E, Limongelli V, Zampella A, Fiorucci S (2013) Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands. J Med Chem 56:4701–4717PubMedGoogle Scholar
  178. 178.
    Newton R, Holden NS (2007) Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 72:799–809PubMedGoogle Scholar
  179. 179.
    Stoecklin E, Wissler M, Schaetzle D, Pfitzner E, Groner B (1999) Interactions in the transcriptional regulation exerted by Stat5 and by members of the steroid hormone receptor family. J Steroid Biochem Mol Biol 69:195–204PubMedGoogle Scholar
  180. 180.
    De Martino MU, Alesci S, Chrousos GP, Kino T (2004) Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism. Ann N Y Acad Sci 1024:72–85PubMedGoogle Scholar
  181. 181.
    Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, Kosykh V, Fruchart J, Staels B (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124:1926–1940PubMedGoogle Scholar
  182. 182.
    Shen H, Zhang Y, Ding H, Wang X, Chen L, Jiang H, Shen X (2008) Farnesoid X receptor induces GLUT4 expression through FXR response element in the GLUT4 promoter. Cell Physiol Biochem 22:1–14PubMedGoogle Scholar
  183. 183.
    Chong HK, Biesinger J, Seo Y, Xie X, Osborne TF (2012) Genome-wide analysis of hepatic LRH-1 reveals a promoter binding preference and suggests a role in regulating genes of lipid metabolism in concert with FXR. BMC Genom 13:51Google Scholar
  184. 184.
    Thomas AM, Hart SN, Li G, Lu H, Fang Y, Fang J, Zhong X, Guo GL (2013) Hepatocyte nuclear factor 4 alpha and farnesoid X receptor co-regulates gene transcription in mouse livers on a genome-wide scale. Pharm Res 30:2188–2198PubMedCentralPubMedGoogle Scholar
  185. 185.
    Fujino T, Sato Y, Une M, Kanayasu-Toyoda T, Yamaguchi T, Shudo K, Inoue K, Nishimaki-Mogami T (2003) In vitro farnesoid X receptor ligand sensor assay using surface plasmon resonance and based on ligand-induced coactivator association. J Steroid Biochem Mol Biol 87:247–252PubMedGoogle Scholar
  186. 186.
    Kassam A, Miao B, Young PR, Mukherjee R (2003) Retinoid X receptor (RXR) agonist-induced antagonism of farnesoid X receptor (FXR) activity due to absence of coactivator recruitment and decreased DNA binding. J Biol Chem 278:10028–10032PubMedGoogle Scholar
  187. 187.
    Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA (2004) Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 18:157–169PubMedCentralPubMedGoogle Scholar
  188. 188.
    Unno A, Takada I, Takezawa S, Oishi H, Baba A, Shimizu T, Tokita A, Yanagisawa J, Kato S (2005) TRRAP as a hepatic coactivator of LXR and FXR function. Biochem Biophys Res Commun 327:933–938PubMedGoogle Scholar
  189. 189.
    Balasubramaniyan N, Ananthanarayanan M, Suchy FJ (2012) Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am J Physiol Gastrointest Liver Physiol 302:G937–G947PubMedCentralPubMedGoogle Scholar
  190. 190.
    Rizzo G, Renga B, Antonelli E, Passeri D, Pellicciari R, Fiorucci S (2005) The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. Mol Pharmacol 68:551–558PubMedGoogle Scholar
  191. 191.
    Ananthanarayanan M, Li S, Balasubramaniyan N, Suchy FJ, Walsh MJ (2004) Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1. J Biol Chem 279:54348–54357PubMedGoogle Scholar
  192. 192.
    Ananthanarayanan M, Li Y, Surapureddi S, Balasubramaniyan N, Ahn J, Goldstein JA, Suchy FJ (2011) Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol 300:G771–G781PubMedCentralPubMedGoogle Scholar
  193. 193.
    Kim D, Lee J, Lee B, Lee JW (2009) ASCOM controls farnesoid X receptor transactivation through its associated histone H3 lysine 4 methyltransferase activity. Mol Endocrinol 23:1556–1562PubMedCentralPubMedGoogle Scholar
  194. 194.
    Fang S, Tsang S, Jones R, Ponugoti B, Yoon H, Wu S, Chiang C, Willson TM, Kemper JK (2008) The P300 acetylase is critical for ligand-activated farnesoid X receptor (FXR) induction of SHP. J Biol Chem 283:35086–35095PubMedCentralPubMedGoogle Scholar
  195. 195.
    Miao J, Fang S, Lee J, Comstock C, Knudsen KE, Kemper JK (2009) Functional specificities of Brm and Brg-1 Swi/Snf ATPases in the feedback regulation of hepatic bile acid biosynthesis. Mol Cell Biol 29:6170–6181PubMedCentralPubMedGoogle Scholar
  196. 196.
    Kainuma M, Makishima M, Hashimoto Y, Miyachi H (2007) Design, synthesis, and evaluation of non-steroidal farnesoid X receptor (FXR) antagonist. Bioorg Med Chem 15:2587–2600PubMedGoogle Scholar
  197. 197.
    Ohno M, Kunimoto M, Nishizuka M, Osada S, Imagawa M (2009) Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression. Biochem Biophys Res Commun 390:738–742PubMedGoogle Scholar
  198. 198.
    Li J, Lu Y, Liu R, Xiong X, Zhang Z, Zhang X, Ning G, Li X (2011) DAX1 suppresses FXR transactivity as a novel co-repressor. Biochem Biophys Res Commun 412:660–666PubMedGoogle Scholar
  199. 199.
    Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu S, Chiang C, Veenstra TD (2009) FXR acetylation is normally dynamically regulated by P300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10:392–404PubMedCentralPubMedGoogle Scholar
  200. 200.
    Lien F, Berthier A, Bouchaert E, Gheeraert C, Alexandre J, Porez G, Prawitt J, Dehondt H, Ploton M, Colin S, Lucas A, Patrice A, Pattou F, Diemer H, Van Dorsselaer A, Rachez C, Kamilic J, Groen AK, Staels B, Lefebvre P (2014) Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest 124:1037–1051PubMedCentralPubMedGoogle Scholar
  201. 201.
    Renga B, D’Amore C, Cipriani S, Mencarelli A, Carino A, Sepe V, Zampella A, Distrutti E, Fiorucci S (2013) FXR mediates a chromatin looping in the GR promoter thus promoting the resolution of colitis in rodents. Pharmacol Res 77:1–10PubMedGoogle Scholar
  202. 202.
    Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim H, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–520PubMedCentralPubMedGoogle Scholar
  203. 203.
    Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart J, Dallongeville J, Hum DW, Kuipers F, Staels B (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein a-i transcription via a negative FXR response element. J Clin Invest 109:961–971PubMedCentralPubMedGoogle Scholar
  204. 204.
    Gardès C, Blum D, Bleicher K, Chaput E, Ebeling M, Hartman P, Handschin C, Richter H, Benson GM (2011) Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-i expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor. J Lipid Res 52:1188–1199PubMedCentralPubMedGoogle Scholar
  205. 205.
    Chennamsetty I, Claudel T, Kostner KM, Baghdasaryan A, Kratky D, Levak-Frank S, Frank S, Gonzalez FJ, Trauner M, Kostner GM (2011) Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest 121:3724–3734PubMedCentralPubMedGoogle Scholar
  206. 206.
    Lu Y, Heydel J, Li X, Bratton S, Lindblom T, Radominska-Pandya A (2005) Lithocholic acid decreases expression of UGT2B7 in Caco-2 Cells: a potential role for a negative farnesoid X receptor response element. Drug Metab Dispos 33:937–946PubMedCentralPubMedGoogle Scholar
  207. 207.
    Miyata M, Matsuda Y, Tsuchiya H, Kitada H, Akase T, Shimada M, Nagata K, Gonzalez FJ, Yamazoe Y (2006) Chenodeoxycholic acid-mediated activation of the farnesoid X receptor negatively regulates hydroxysteroid sulfotransferase. Drug Metab Pharmacokinet 21:315–323PubMedGoogle Scholar
  208. 208.
    Seok S, Fu T, Choi S, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B,Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. NatureGoogle Scholar
  209. 209.
    Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD (2014) Nutrient-sensing nuclear receptors coordinate autophagy. NatureGoogle Scholar
  210. 210.
    Wang Y, Chen W, Wang M, Yu D, Forman BM, Huang W (2008) Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48:1632–1643PubMedCentralPubMedGoogle Scholar
  211. 211.
    Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S (2009) The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183:6251–6261PubMedGoogle Scholar
  212. 212.
    Gadaleta RM, Oldenburg B, Willemsen ECL, Spit M, Murzilli S, Salvatore L, Klomp LWJ, Siersema PD, van Erpecum KJ, van Mil SWC (2011) Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κb signaling in the intestine. Biochim Biophys Acta 1812:851–858PubMedGoogle Scholar
  213. 213.
    Pawlak M, Baugé E, Bourguet W, De Bosscher K, Lalloyer F, Tailleux A, Lebherz C, Lefebvre P, Staels B (2014) The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60:1593–1606PubMedGoogle Scholar
  214. 214.
    Houten SM, Volle DH, Cummins CL, Mangelsdorf DJ, Auwerx J (2007) In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue. Mol Endocrinol 21:1312–1323PubMedGoogle Scholar
  215. 215.
    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JAJ, Ellisman MH, Panda S (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860PubMedCentralPubMedGoogle Scholar
  216. 216.
    Zhang YJ, Guo GL, Klaassen CD (2011) Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS ONE 6:e16683PubMedCentralPubMedGoogle Scholar
  217. 217.
    Pan X, Zhang Y, Wang L, Hussain MM (2010) Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab 12:174–186PubMedCentralPubMedGoogle Scholar
  218. 218.
    Lee J, Seok S, Yu P, Kim K, Smith Z, Rivas-Astroza M, Zhong S, Kemper JK (2012) Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology 56:108–117PubMedCentralPubMedGoogle Scholar
  219. 219.
    Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262PubMedGoogle Scholar
  220. 220.
    Purushotham A, Xu Q, Lu J, Foley JF, Yan X, Kim D, Kemper JK, Li X (2012) Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol 32:1226–1236PubMedCentralPubMedGoogle Scholar
  221. 221.
    Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, Hum DW, Fruchart J, Staels B (2008) Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol 22:2433–2447PubMedGoogle Scholar
  222. 222.
    Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun A, Balasubramaniyan N, Arias I, Setchell KDR, Suchy FJ, Shneider BL (2008) The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 48:1896–1905PubMedCentralPubMedGoogle Scholar
  223. 223.
    Balasubramaniyan N, Luo Y, Sun A, Suchy FJ (2013) SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 288:13850–13862PubMedCentralPubMedGoogle Scholar
  224. 224.
    Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Pérez HE, Sandoval DA, Kohli R, Bäckhed F, Seeley RJ (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509:183–188PubMedCentralPubMedGoogle Scholar
  225. 225.
    Kuipers F, Groen AK (2014) FXR: the key to benefits in bariatric surgery? Nat Med 20:337–338PubMedGoogle Scholar
  226. 226.
    Adorini L, Pruzanski M, Shapiro D (2012) Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 17:988–997PubMedGoogle Scholar
  227. 227.
    Kemper JK (2011) Regulation of FXR transcriptional activity in health and disease: emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta 1812:842–850PubMedCentralPubMedGoogle Scholar
  228. 228.
    Lew J, Zhao A, Yu J, Huang L, De Pedro N, Peláez F, Wright SD, Cui J (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279:8856–8861PubMedGoogle Scholar
  229. 229.
    Bramlett KS, Yao S, Burris TP (2000) Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids. Mol Genet Metab 71:609–615PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Claire Mazuy
    • 1
    • 2
    • 3
    • 4
  • Audrey Helleboid
    • 1
    • 2
    • 3
    • 4
  • Bart Staels
    • 1
    • 2
    • 3
    • 4
  • Philippe Lefebvre
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.European Genomic Institute for Diabetes (EGID)LilleFrance
  2. 2.INSERM UMR1011-Bâtiment J&KLilleFrance
  3. 3.University Lille 2LilleFrance
  4. 4.Institut Pasteur de LilleLilleFrance

Personalised recommendations