Cellular and Molecular Life Sciences

, Volume 72, Issue 6, pp 1161–1173 | Cite as

Protective role of hemeoxygenase-1 in gastrointestinal diseases

  • Marisol Chang
  • Jing Xue
  • Vishal Sharma
  • Aida Habtezion


Disorders and diseases of the gastrointestinal system encompass a wide array of pathogenic mechanisms as a result of genetic, infectious, neoplastic, and inflammatory conditions. Inflammatory diseases in general are rising in incidence and are emerging clinical problems in gastroenterology and hepatology. Hemeoxygenase-1 (HO-1) is a stress-inducible enzyme that has been shown to confer protection in various organ-system models. Its downstream effectors, carbon monoxide and biliverdin have also been shown to offer these beneficial effects. Many studies suggest that induction of HO-1 expression in gastrointestinal tissues and cells plays a critical role in cytoprotection and resolving inflammation as well as tissue injury. In this review, we examine the protective role of HO-1 and its downstream effectors in modulating inflammatory diseases of the upper (esophagus and stomach) and lower (small and large intestine) gastrointestinal tract, the liver, and the pancreas. Cytoprotective, anti-inflammatory, anti-proliferative, antioxidant, and anti-apoptotic activities of HO-1 make it a promising if not ideal therapeutic target for inflammatory diseases of the gastrointestinal system.


Hemeoxygenase-1 Carbon monoxide Biliverdin 



This work was supported in part by the Robert Wood Johnson Foundation grant (to A.H.), the National Institutes of Health Grant DK092421 (to A.H.) and Digestive Disease Center grant DK56339 (to Stanford University).


  1. 1.
    Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61(2):748PubMedCentralPubMedGoogle Scholar
  2. 2.
    Kapitulnik J, Maines MD (2009) Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol Sci 30(3):129–137PubMedGoogle Scholar
  3. 3.
    Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37(1):517–554PubMedGoogle Scholar
  4. 4.
    Mccoubrey WK, Huang T, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247(2):725–732PubMedGoogle Scholar
  5. 5.
    Elbirt KK, Bonkovsky HL (1998) Heme oxygenase: recent advances in understanding its regulation and role. Proc Assoc Am Phys 111(5):438–447Google Scholar
  6. 6.
    Trakshel G, Kutty R, Maines M (1986) Purification and characterization of the major constitutive form of testicular heme oxygenase. The noninducible isoform. J Biol Chem 261(24):11131–11137PubMedGoogle Scholar
  7. 7.
    Maines MD (1992) Heme oxygenase: clinical applications and functions. CRC PressGoogle Scholar
  8. 8.
    Maines MD, Snyder R (1984) New developments in the regulation of heme metabolism and their implications. CRC Crit Rev Toxicol 12(3):241–314Google Scholar
  9. 9.
    Tsuji T, Kato A, Yasuda H, Miyaji T, Luo J, Sakao Y, Ito H, Fujigaki Y, Hishida A (2009) The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol Appl Pharmacol 234(2):202–208PubMedGoogle Scholar
  10. 10.
    Umeda K, Takahashi T, Inoue K, Shimizu H, Maeda S, Morimatsu H, Omori E, Akagi R, Katayama H, Morita K (2009) Prevention of hemorrhagic shock-induced intestinal tissue injury by glutamine via heme oxygenase-1 induction. Shock 31(1):40–49PubMedGoogle Scholar
  11. 11.
    Cooper KL, Liu KJ, Hudson LG (2009) Enhanced ROS production and redox signaling with combined arsenite and UVA exposure: contribution of NADPH oxidase. Free Radic Biol Med 47(4):381–388PubMedCentralPubMedGoogle Scholar
  12. 12.
    Chang AY, Chan JY, Cheng H-L, Tsai C-Y, Chan SH (2009) Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death. Shock 32(6):651–658PubMedGoogle Scholar
  13. 13.
    Terry CM, Clikeman JA, Hoidal JR, Callahan KS (1998) Effect of tumor necrosis factor-α and interleukin-1α on heme oxygenase-1 expression in human endothelial cells. Am J Physiol Heart Circ Physiol 274(3):H883–H891Google Scholar
  14. 14.
    Niess AM, Passek F, Lorenz I, Schneider EM, Dickhuth H-H, Northoff H, Fehrenbach E (1999) Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes: acute and adaptational responses to endurance exercise. Free Radic Biol Med 26(1):184–192PubMedGoogle Scholar
  15. 15.
    Nath KA, Balla G, Vercellotti GM, Balla J, Jacob HS, Levitt M, Rosenberg ME (1992) Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Investig 90(1):267PubMedCentralPubMedGoogle Scholar
  16. 16.
    Keyse SM, Applegate L, Tromvoukis Y, Tyrrell R (1990) Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol Cell Biol 10(9):4967–4969PubMedCentralPubMedGoogle Scholar
  17. 17.
    Applegate LA, Luscher P, Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51(3):974–978PubMedGoogle Scholar
  18. 18.
    Abraham NG, Rezzani R, Rodella L, Kruger A, Taller D, Volti GL, Goodman AI, Kappas A (2004) Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes. Am J Physiol Heart Circ Physiol 287(6):H2468–H2477PubMedGoogle Scholar
  19. 19.
    Otterbein LE, Bach FH, Alam J, Soares M, Lu HT, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428PubMedGoogle Scholar
  20. 20.
    Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AM (2000) Heme oxygenase-1 inhibits TNF-α-induced apoptosis in cultured fibroblasts. Am J Physiol-Lung Cell Mol Physiol 278(2):L312–L319PubMedGoogle Scholar
  21. 21.
    Lee T-S, Chau L-Y (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8(3):240–246PubMedGoogle Scholar
  22. 22.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235(4792):1043–1046PubMedGoogle Scholar
  23. 23.
    Barañano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci 99(25):16093–16098PubMedCentralPubMedGoogle Scholar
  24. 24.
    Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113(6):1776–1782PubMedGoogle Scholar
  25. 25.
    Nakao A, Otterbein LE, Overhaus M, Sarady JK, Tsung A, Kimizuka K, Nalesnik MA, Kaizu T, Uchiyama T, Liu F (2004) Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 127(2):595–606PubMedGoogle Scholar
  26. 26.
    Xue J, Nguyen DT, Habtezion A (2012) Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology 143(6):1670–1680. doi: 10.1053/j.gastro.2012.08.051 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton J, Vercellotti G (1992) Ferritin: a cytoprotective antioxidant stratagem of endothelium. J Biol Chem 267(25):18148–18153PubMedGoogle Scholar
  28. 28.
    Juckett MB, Balla J, Balla G, Jessurun J, Jacob HS, Vercellotti GM (1995) Ferritin protects endothelial cells from oxidized low density lipoprotein in vitro. Am J Pathol 147(3):782PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, Atkinson MA, Agarwal A (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165(3):1045–1053PubMedCentralPubMedGoogle Scholar
  30. 30.
    Poss KD, Tonegawa S (1997) Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci 94(20):10925–10930PubMedCentralPubMedGoogle Scholar
  31. 31.
    Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G (2009) Myeloid heme oxygenase–1 regulates innate immunity and autoimmunity by modulating IFN-β production. J Exp Med 206(5):1167–1179PubMedCentralPubMedGoogle Scholar
  32. 32.
    True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N, Xu X, Lynn EG, Sack MN, Munson PJ (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res 101(9):893–901PubMedGoogle Scholar
  33. 33.
    Vachharajani TJ, Work J, Issekutz AC, Granger DN (2000) Heme oxygenase modulates selectin expression in different regional vascular beds. Am J Physiol Heart Circ Physiol 278(5):H1613–H1617PubMedGoogle Scholar
  34. 34.
    Burnett AL, Johns DG, Kriegsfeld LJ, Klein SL, Calvin DC, Demas GE, Schramm LP, Tonegawa S, Nelson RJ, Snyder SH (1998) Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase-2. Nat Med 4(1):84–87PubMedGoogle Scholar
  35. 35.
    Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Investig 103(1):129–135PubMedCentralPubMedGoogle Scholar
  36. 36.
    Radhakrishnan N, Yadav SP, Sachdeva A, Pruthi PK, Sawhney S, Piplani T, Wada T, Yachie A (2011) Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia. J Pediatr Hematol Oncol 33(1):74–78PubMedGoogle Scholar
  37. 37.
    Igarashi K, Sun J (2006) The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 8(1–2):107–118PubMedGoogle Scholar
  38. 38.
    Jang JS, Piao S, Cha Y-N, Kim C (2009) Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr 45(1):37Google Scholar
  39. 39.
    De Backer O, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA (2009) Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut 58(3):347–356PubMedGoogle Scholar
  40. 40.
    Salinas M, Wang J, Rosa de Sagarra M, Martín D, Rojo AI, Martin-Perez J, Ortiz de Montellano PR, Cuadrado A (2004) Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett 578(1):90–94PubMedGoogle Scholar
  41. 41.
    Exner M, Minar E, Wagner O, Schillinger M (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37(8):1097–1104PubMedGoogle Scholar
  42. 42.
    Ono K, Mannami T, Iwai N (2003) Association of a promoter variant of the haeme oxygenase-1 gene with hypertension in women. J Hypertens 21(8):1497–1503PubMedGoogle Scholar
  43. 43.
    Ono K, Goto Y, Takagi S, Baba S, Tago N, Nonogi H, Iwai N (2004) A promoter variant of the heme oxygenase-1 gene may reduce the incidence of ischemic heart disease in Japanese. Atherosclerosis 173(2):313–317Google Scholar
  44. 44.
    Gulla A, Evans BJ, Navenot JM, Pundzius J, Barauskas G, Gulbinas A, Dambrauskas Z, Arafat H, Wang Z-X (2014) Heme Oxygenase-1 Gene Promoter Polymorphism Is Associated With the Development of Necrotizing Acute Pancreatitis. Pancreas 43(8):1271–1276PubMedGoogle Scholar
  45. 45.
    Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, Sasaki H (2000) Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Human Genet 66(1):187–195Google Scholar
  46. 46.
    Rueda B, Oliver J, Robledo G, López-Nevot MA, Balsa A, Pascual-Salcedo D, González-Gay MA, González-Escribano MF, Martín J (2007) HO-1 promoter polymorphism associated with rheumatoid arthritis. Arthritis Rheum 56(12):3953–3958PubMedGoogle Scholar
  47. 47.
    Schillinger M, Exner M, Minar E, Mlekusch W, Müllner M, Mannhalter C, Bach FH, Wagner O (2004) Heme oxygenase-1 genotype and restenosis after balloon angioplasty: a novel vascular protective factor. J Am Coll Cardiol 43(6):950–957PubMedGoogle Scholar
  48. 48.
    Chen Y-H, Lin S-J, Lin M-W, Tsai H-L, Kuo S-S, Chen J-W, Charng M-J, Wu T-C, Chen L-C, Ding P (2002) Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Hum Genet 111(1):1–8PubMedGoogle Scholar
  49. 49.
    Immenschuh S, Tan M, Ramadori G (1999) Nitric oxide mediates the lipopolysaccharide dependent upregulation of the heme oxygenase-1 gene expression in cultured rat Kupffer cells. J Hepatol 30(1):61–69PubMedGoogle Scholar
  50. 50.
    Bissell DM, Hammaker L, Schmid R (1972) Liver sinusoidal cells Identification of a subpopulation for erythrocyte catabolism. J Cell Biol 54(1):107–119PubMedCentralPubMedGoogle Scholar
  51. 51.
    Chauveau C, Rémy S, Royer PJ, Hill M, Tanguy-Royer S, Hubert F-X, Tesson L, Brion R, Beriou G, Gregoire M (2005) Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 106(5):1694–1702PubMedGoogle Scholar
  52. 52.
    Wijayanti N, Huber S, Samoylenko A, Kietzmann T, Immenschuh S (2004) Role of NF-kB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression. Antioxid Redox Signal 6(5):802–810PubMedGoogle Scholar
  53. 53.
    Lin H-Y, Juan S-H, Shen S-C, Hsu F-L, Chen Y-C (2003) Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264. 7 macrophages involves heme oxygenase-1. Biochem Pharmacol 66(9):1821–1832PubMedGoogle Scholar
  54. 54.
    Rémy S, Blancou P, Tesson L, Tardif V, Brion R, Royer PJ, Motterlini R, Foresti R, Painchaut M, Pogu S (2009) Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. J Immunol 182(4):1877–1884PubMedGoogle Scholar
  55. 55.
    George JF, Braun A, Brusko TM, Joseph R, Bolisetty S, Wasserfall CH, Atkinson MA, Agarwal A, Kapturczak MH (2008) Suppression by CD4+ CD25+ regulatory t cells is dependent on expression of heme oxygenase-1 in antigen-presenting cells. Am J Pathol 173(1):154–160PubMedCentralPubMedGoogle Scholar
  56. 56.
    Moreau A, Hill M, Thebault P, Deschamps J, Chiffoleau E, Chauveau C, Moullier P, Anegon I, Alliot-Licht B, Cuturi M (2009) Tolerogenic dendritic cells actively inhibit T cells through heme oxygenase-1 in rodents and in nonhuman primates. FASEB J 23(9):3070–3077PubMedGoogle Scholar
  57. 57.
    Nakamichi I, Habtezion A, Zhong B, Contag CH, Butcher EC, Omary MB (2005) Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. J Clin Investig 115(11):3007–3014PubMedCentralPubMedGoogle Scholar
  58. 58.
    Wegiel B, Hedblom A, Li M, Gallo D, Csizmadia E, Harris C, Nemeth Z, Zuckerbraun B, Soares M, Persson JL (2014) Heme oxygenase-1 derived carbon monoxide permits maturation of myeloid cells. Cell Death Dis 5(3):e1139PubMedCentralPubMedGoogle Scholar
  59. 59.
    Choi KM, Kashyap PC, Dutta N, Stoltz GJ, Ordog T, Shea Donohue T, Bauer AJ, Linden DR, Szurszewski JH, Gibbons SJ (2010) CD206-positive M2 macrophages that express heme oxygenase-1 protect against diabetic gastroparesis in mice. Gastroenterology 138(7):2399–2409 (e2391)PubMedCentralPubMedGoogle Scholar
  60. 60.
    Coëffier M, Le Pessot F, Leplingard A, Marion R, Lerebours E, Ducrotté P, Déchelotte P (2002) Acute enteral glutamine infusion enhances heme oxygenase-1 expression in human duodenal mucosa. J Nutr 132(9):2570–2573PubMedGoogle Scholar
  61. 61.
    Barton S, Rampton D, Winrow V, Domizio P, Feakins R (2003) Expression of heat shock protein 32 (hemoxygenase-1) in the normal and inflamed human stomach and colon: an immunohistochemical study. Cell Stress Chaperones 8(4):329PubMedCentralPubMedGoogle Scholar
  62. 62.
    Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, Tamatani T, Suematsu M (1998) Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J Clin Investig 101(3):604PubMedCentralPubMedGoogle Scholar
  63. 63.
    Guo J, Cho C, Wang J, Koo M (2002) Expression and immunolocalization of heat shock proteins in the healing of gastric ulcers in rats. Scand J Gastroenterol 37(1):17–22PubMedGoogle Scholar
  64. 64.
    Giriş M, Erbil Y, Doğru-Abbasoğlu S, Yanık BT, Alış H, Olgaç V, Toker GA (2007) The effect of heme oxygenase-1 induction by glutamine on TNBS-induced colitis. Int J Colorectal Dis 22(6):591–599PubMedGoogle Scholar
  65. 65.
    Paul G, Bataille F, Obermeier F, Bock J, Klebl F, Strauch U, Lochbaum D, Rümmele P, Farkas S, Schölmerich J (2005) Analysis of intestinal haem-oxygenase-1 (HO-1) in clinical and experimental colitis. Clin Exp Immunol 140(3):547–555PubMedCentralPubMedGoogle Scholar
  66. 66.
    Wang W, Guo X, Koo M, Wong B, Lam S, Ye Y, Cho C (2001) Protective role of heme oxygenase-1 on trinitrobenzene sulfonic acid-induced colitis in rats. American Journal of Physiology-Gastrointestinal and Liver. Physiology 281(2):G586–G594Google Scholar
  67. 67.
    Takagi T, Naito Y, Mizushima K, Nukigi Y, Okada H, Suzuki T, Hirata I, Omatsu T, Okayama T, Handa O (2008) Increased intestinal expression of heme oxygenase-1 and its localization in patients with ulcerative colitis. J Gastroenterol Hepatol 23:S229–S233PubMedGoogle Scholar
  68. 68.
    Tsui TY, Lau CK, Ma J, Wu X, Wang YQ, Farkas S, Xu R, Schlitt HJ, Fan ST (2005) rAAV-mediated stable expression of heme oxygenase-1 in stellate cells: a new approach to attenuate liver fibrosis in rats. Hepatology 42(2):335–342PubMedGoogle Scholar
  69. 69.
    Werkström V, Ny L, Persson K, Andersson KE (1997) Carbon monoxide-induced relaxation and distribution of haem oxygenase isoenzymes in the pig urethra and lower oesophagogastric junction. Br J Pharmacol 120(2):312–318PubMedCentralPubMedGoogle Scholar
  70. 70.
    Ny L, Alm P, Ekström P, Larsson B, Grundemar L, Andersson KE (1996) Localization and activity of haem oxygenase and functional effects of carbon monoxide in the feline lower oesophageal sphincter. Br J Pharmacol 118(2):392–399PubMedCentralPubMedGoogle Scholar
  71. 71.
    Lillemoe K, Johnson L, Harmon J (1982) Role of the components of the gastroduodenal contents in experimental acid esophagitis. Surgery 92(2):276–284PubMedGoogle Scholar
  72. 72.
    Kruel CRP, Pinto LFR, Blanco TCM, Barja-Fidalgo TC, Melo LL, Kruel CDP (2010) Evaluation of the heme oxygenase-1 expression in esophagitis and esophageal cancer induced by different reflux experimental models and diethylnitrosamine. Acta Cirurgica Brasileira 25(3):304–310PubMedGoogle Scholar
  73. 73.
    Bjorkman D (1998) Nonsteroidal anti-inflammatory drug-associated toxicity of the liver, lower gastrointestinal tract, and esophagus. Am J Med 105(5):17S–21SPubMedGoogle Scholar
  74. 74.
    Uc A, Zhu X, Wagner BA, Buettner GR, Berg DJ (2012) Heme oxygenase-1 is protective against nonsteroidal anti-inflammatory drug–induced gastric ulcers. J Pediatr Gastroenterol Nutr 54(4):471–476PubMedGoogle Scholar
  75. 75.
    Aburaya M, Tanaka K-I, Hoshino T, Tsutsumi S, Suzuki K, Makise M, Akagi R, Mizushima T (2006) Heme oxygenase-1 protects gastric mucosal cells against non-steroidal anti-inflammatory drugs. J Biol Chem 281(44):33422–33432PubMedGoogle Scholar
  76. 76.
    Cheng Y-T, Wu C-H, Ho C-Y, Yen G-C (2013) Catechin protects against ketoprofen-induced oxidative damage of the gastric mucosa by up-regulating Nrf2 in vitro and in vivo. J Nutr Biochem 24(2):475–483PubMedGoogle Scholar
  77. 77.
    Ueda K, Ueyama T, Oka M, Ito T, Tsuruo Y, Ichinose M (2009) Polaprezinc (Zinc L-carnosine) is a potent inducer of anti-oxidative stress enzyme, heme oxygenase (HO)-1-a new mechanism of gastric mucosal protection. J Pharmacol Sci 110(3):285–294PubMedGoogle Scholar
  78. 78.
    Choi E-J, Oh H-M, Na B-R, Ramesh T, Lee H-J, Choi C-S, Choi S-C, Oh T-Y, Choi S-J, Chae J-R (2008) Eupatilin protects gastric epithelial cells from oxidative damage and down-regulates genes responsible for the cellular oxidative stress. Pharm Res 25(6):1355–1364PubMedGoogle Scholar
  79. 79.
    Takagi T, Naito Y, Okada H, Ishii T, Mizushima K, Akagiri S, Adachi S, Handa O, Kokura S, Ichikawa H (2009) Lansoprazole, a proton pump inhibitor, mediates anti-inflammatory effect in gastric mucosal cells through the induction of heme oxygenase-1 via activation of NF-E2-related factor 2 and oxidation of kelch-like ECH-associating protein 1. J Pharmacol Exp Ther 331(1):255–264PubMedGoogle Scholar
  80. 80.
    Song HJ, Shin CY, Oh TY, Min YS, Park ES, Sohn UD (2009) Eupatilin with heme oxygenase-1-inducing ability protects cultured feline esophageal epithelial cells from cell damage caused by indomethacin. Biol Pharm Bull 32(4):589–596PubMedGoogle Scholar
  81. 81.
    Kadinov B, Itzev D, Gagov H, Christova T, Bolton T, Duridanova D (2002) Induction of heme oxygenase in guinea-pig stomach: roles in contraction and in single muscle cell ionic currents. Acta Physiol Scand 175(4):297–313PubMedGoogle Scholar
  82. 82.
    Choi KM, Gibbons SJ, Nguyen TV, Stoltz GJ, Lurken MS, Ordog T, Szurszewski JH, Farrugia G (2008) Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 135(6):2055–2064 (e2052)PubMedCentralPubMedGoogle Scholar
  83. 83.
    Takagi T, Naito Y, Mizushima K, Nukigi Y, Okada H, Suzuki T, Hirata I, Omatsu T, Okayama T, Handa O (2008) Increased intestinal expression of heme oxygenase-1 and its localization in patients with ulcerative colitis. J Gastroenterol Hepatol 23(s2):S229–S233PubMedGoogle Scholar
  84. 84.
    Higuchi K, Yoda Y, Amagase K, Kato S, Tokioka S, Murano M, Takeuchi K, Umegaki E (2009) Prevention of NSAID-induced small intestinal mucosal injury: prophylactic potential of lansoprazole. J Clin Biochem Nutr 45(2):125PubMedCentralPubMedGoogle Scholar
  85. 85.
    Yoda Y, Amagase K, Kato S, Tokioka S, Murano M, Kakimoto K, Nishio H, Umegaki E, Takeuchi K, Higuchi K (2010) Prevention by lansoprazole, a proton pump inhibitor, of indomethacin-induced small intestinal ulceration in rats through induction of heme oxygenase-1. J Physiol Pharmacol 61(3):287PubMedGoogle Scholar
  86. 86.
    Yeh CT, Chiu HF, Yen GC (2009) Protective effect of sulforaphane on indomethacin-induced cytotoxicity via heme oxygenase-1 expression in human intestinal Int 407 cells. Mol Nutr Food Res 53(9):1166–1176PubMedGoogle Scholar
  87. 87.
    Chung SW, Liu X, Macias AA, Baron RM, Perrella MA (2008) Heme oxygenase-1–derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Investig 118(1):239–247PubMedCentralPubMedGoogle Scholar
  88. 88.
    Tamion F, Richard V, Lacoume Y, Thuillez C (2002) Intestinal preconditioning prevents systemic inflammatory response in hemorrhagic shock. Role of HO-1. Am J Physiol-Gastrointest Liver Physiol 283(2):G408–G414PubMedGoogle Scholar
  89. 89.
    Attuwaybi B, Kozar R, Moore-Olufemi S, Sato N, Hassoun H, Weisbrodt N, Moore F (2004) Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury. J Surg Res 118(1):53–57PubMedGoogle Scholar
  90. 90.
    Mallick IH, Winslet MC, Seifalian AM (2010) Ischemic preconditioning of small bowel mitigates the late phase of reperfusion injury: heme oxygenase mediates cytoprotection. Am J Surg 199(2):223–231PubMedGoogle Scholar
  91. 91.
    Wasserberg N, Pileggi A, Salgar SK, Ruiz P, Ricordi C, Inverardi L, Tzakis AG (2007) Heme oxygenase-1 upregulation protects against intestinal ischemia/reperfusion injury: a laboratory based study. Int J Surg 5(4):216–224PubMedGoogle Scholar
  92. 92.
    Tamaki T, Konoeda Y, Yasuhara M, Tanaka M, Yokota N, Hayashi T, Katori M, Uchida Y, Kawamura A (1999) Glutamine-induced heme oxygenase-1 protects intestines and hearts from warm ischemic injury. In: Transplantation proceedings, vol 1. Elsevier, pp 1018–1019Google Scholar
  93. 93.
    Mallick IH, Yang W-X, Winslet MC, Seifalian AM (2005) Pyrrolidine dithiocarbamate reduces ischemia-reperfusion injury of the small intestine. World J Gastroenterol 11(46):7308PubMedGoogle Scholar
  94. 94.
    Yoshida T, Maulik N, Ho Y-S, Alam J, Das DK (2001) Hmox-1 constitutes an adaptive response to effect antioxidant cardio protection a study with transgenic mice heterozygous for targeted disruption of the heme oxygenase-1 gene. Circulation 103(12):1695–1701PubMedGoogle Scholar
  95. 95.
    Liu X, Wei J, Peng DH, Layne MD, Yet S-F (2005) Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes 54(3):778–784PubMedGoogle Scholar
  96. 96.
    Yano Y, Ozono R, Oishi Y, Kambe M, Yoshizumi M, Ishida T, Omura S, Oshima T, Igarashi K (2006) Genetic ablation of the transcription repressor Bach1 leads to myocardial protection against ischemia/reperfusion in mice. Genes Cells 11(7):791–803PubMedGoogle Scholar
  97. 97.
    Scott JR, Cukiernik MA, Ott MC, Bihari A, Badhwar A, Gray DK, Harris KA, Parry NG, Potter RF (2009) Low-dose inhaled carbon monoxide attenuates the remote intestinal inflammatory response elicited by hindlimb ischemia–reperfusion. Am J Physiol-Gastrointest Liver Physiol 296(1):G9–G14PubMedGoogle Scholar
  98. 98.
    Nakao A, Kaczorowski DJ, Sugimoto R, Billiar TR, McCurry KR (2008) Application of heme oxygenase-1, carbon monoxide and biliverdin for the prevention of intestinal ischemia/reperfusion injury. J Clin Biochem Nutr 42(2):78PubMedCentralPubMedGoogle Scholar
  99. 99.
    Nakao A, Kimizuka K, Stolz DB, Neto JS, Kaizu T, Choi AM, Uchiyama T, Zuckerbraun BS, Nalesnik MA, Otterbein LE (2003) Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol 163(4):1587–1598PubMedCentralPubMedGoogle Scholar
  100. 100.
    Fondevila C, Shen XD, Tsuchiyashi S, Yamashita K, Csizmadia E, Lassman C, Busuttil RW, Kupiec-Weglinski JW, Bach FH (2004) Biliverdin therapy protects rat livers from ischemia and reperfusion injury. Hepatology 40(6):1333–1341PubMedGoogle Scholar
  101. 101.
    Yun KJ, Choi SC, Oh JM (2005) Expression of heme oxygenase-1 in ischemic colitis. Korean J Gastroenterol (Taehan Sohwagi Hakhoe chi) 45(5):335–339Google Scholar
  102. 102.
    Gasche C, Scholmerich J, Brynskov J, D’Haens G, Hanauer SB, Irvine EJ, Jewell DP, Rachmilewitz D, Sachar DB, Sandborn WJ (2000) A simple classification of Crohn’s disease: report of the working party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm Bowel Dis 6(1):8–15PubMedGoogle Scholar
  103. 103.
    Naito Y, Takagi T, Yoshikawa T (2004) Heme oxygenase-1: a new therapeutic target for inflammatory bowel disease. Aliment Pharmacol Ther 20:177–184PubMedGoogle Scholar
  104. 104.
    Zhong W, Xia Z, Hinrichs D, Rosenbaum JT, Wegmann KW, Meyrowitz J, Zhang Z (2010) Hemin Exerts Multiple Protective Mechanisms and Attenuates Dextran Sulfate Sodium–induced Colitis. J Pediatr Gastroenterol Nutr 50(2):132–139PubMedGoogle Scholar
  105. 105.
    Varga C, Laszlo F, Fritz P, Cavicchi M, Lamarque D, Horvath K, Posa A, Berko A, Whittle BJ (2007) Modulation by heme and zinc protoporphyrin of colonic heme oxygenase-1 and experimental inflammatory bowel disease in the rat. Eur J Pharmacol 561(1):164–171PubMedGoogle Scholar
  106. 106.
    Berberat PO, Yamashita K, Warny MM, Csizmadia E, Robson SC, Bach FH (2005) Heme oxygenase-1-generated biliverdin ameliorates experimental murine colitis. Inflamm Bowel Dis 11(4):350–359PubMedGoogle Scholar
  107. 107.
    Khor TO, Huang M-T, Kwon KH, Chan JY, Reddy BS, Kong A-N (2006) Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium–induced colitis. Cancer Res 66(24):11580–11584PubMedGoogle Scholar
  108. 108.
    Harusato A, Naito Y, Takagi T, Uchiyama K, Mizushima K, Hirai Y, Higashimura Y, Katada K, Handa O, Ishikawa T (2013) BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1. Inflamm Bowel Dis 19(4):740–753PubMedGoogle Scholar
  109. 109.
    Hegazi RA, Rao KN, Mayle A, Sepulveda AR, Otterbein LE, Plevy SE (2005) Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1–dependent pathway. J Exp Med 202(12):1703–1713PubMedCentralPubMedGoogle Scholar
  110. 110.
    Sheikh SZ, Hegazi RA, Kobayashi T, Onyiah JC, Russo SM, Matsuoka K, Sepulveda AR, Li F, Otterbein LE, Plevy SE (2011) An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J Immunol 186(9):5506PubMedCentralPubMedGoogle Scholar
  111. 111.
    Horváth K, Varga C, Berkó A, Pósa A, László F, Whittle BJ (2008) The involvement of heme oxygenase-1 activity in the therapeutic actions of 5-aminosalicylic acid in rat colitis. Eur J Pharmacol 581(3):315–323PubMedGoogle Scholar
  112. 112.
    Schulz S, Wong RJ, Jang KY, Kalish F, Chisholm KM, Zhao H, Vreman HJ, Sylvester KG, Stevenson DK (2013) Heme oxygenase-1 deficiency promotes the development of necrotizing enterocolitis-like intestinal injury in a newborn mouse model. Am J Physiol-Gastrointest Liver Physiol 304(11):G991–G1001PubMedCentralPubMedGoogle Scholar
  113. 113.
    Santulli TV, Schullinger JN, Heird WC, Gongaware RD, Wigger J, Barlow B, Blanc WA, Berdon WE (1975) Acute necrotizing enterocolitis in infancy: a review of 64 cases. Pediatrics 55(3):376–387PubMedGoogle Scholar
  114. 114.
    Yeoh E, Horowitz M (1987) Radiation enteritis. Surg Gynecol Obstet 165(4):373–379PubMedGoogle Scholar
  115. 115.
    Giriş M, Erbil Y, Öztezcan S, Olgaç V, Barbaros U, Deveci U, Kirgiz B, Uysal M, Toker GA (2006) The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oxygenase-1 on radiation enteritis. Am J Surg 191(4):503–509PubMedGoogle Scholar
  116. 116.
    Wang J, Zheng H, Sung C-C, Hauer-Jensen M (1999) The synthetic somatostatin analogue, octreotide, ameliorates acute and delayed intestinal radiation injury. Int J Radiat Oncol Biol Phys 45(5):1289–1296PubMedGoogle Scholar
  117. 117.
    Abbasoğlu SD, Erbil Y, Eren T, Giriş M, Barbaros U, Yücel R, Olgaç V, Uysal M, Toker G (2006) The effect of heme oxygenase-1 induction by octreotide on radiation enteritis. Peptides 27(6):1570–1576PubMedGoogle Scholar
  118. 118.
    Xue J, Sharma V, Habtezion A (2014) Immune cells and immune-based therapy in pancreatitis. Immunol Res 58(2–3):378–386. doi: 10.1007/s12026-014-8504-5 PubMedGoogle Scholar
  119. 119.
    Yadav D, Lowenfels AB (2013) The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144(6):1252–1261. doi: 10.1053/j.gastro.2013.01.068 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Sarles H (1986) Etiopathogenesis and definition of chronic pancreatitis. Dig Dis Sci 31(9 Suppl):91S–107SPubMedGoogle Scholar
  121. 121.
    Zheng L, Xue J, Jaffee EM, Habtezion A (2013) Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 144(6):1230–1240. doi: 10.1053/j.gastro.2012.12.042 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Nuhn P, Mitkus T, Ceyhan GO, Kunzli BM, Bergmann F, Fischer L, Giese N, Friess H, Berberat PO (2013) Heme oxygenase 1-generated carbon monoxide and biliverdin attenuate the course of experimental necrotizing pancreatitis. Pancreas 42(2):265–271. doi: 10.1097/MPA.0b013e318264cc8b PubMedGoogle Scholar
  123. 123.
    Xue J, Habtezion A (2014) Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest 124(1):437–447. doi: 10.1172/JCI71362 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Sato H, Siow RC, Bartlett S, Taketani S, Ishii T, Bannai S, Mann GE (1997) Expression of stress proteins heme oxygenase-1 and -2 in acute pancreatitis and pancreatic islet betaTC3 and acinar AR42J cells. FEBS Lett 405(2):219–223PubMedGoogle Scholar
  125. 125.
    Habtezion A, Kwan R, Yang AL, Morgan ME, Akhtar E, Wanaski SP, Collins SD, Butcher EC, Kamal A, Omary MB (2011) Heme oxygenase-1 is induced in peripheral blood mononuclear cells of patients with acute pancreatitis: a potential therapeutic target. Am J Physiol Gastrointest Liver Physiol 300(1):G12–G20. doi: 10.1152/ajpgi.00231.2010 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Nakamichi I, Habtezion A, Zhong B, Contag CH, Butcher EC, Omary MB (2005) Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. J Clin Invest 115(11):3007–3014. doi: 10.1172/JCI24912 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Habtezion A, Kwan R, Akhtar E, Wanaski SP, Collins SD, Wong RJ, Stevenson DK, Butcher EC, Omary MB (2011) Panhematin provides a therapeutic benefit in experimental pancreatitis. Gut 60(5):671–679. doi: 10.1136/gut.2010.217208 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Zhang F, Fei J, Zhao B, Chen E, Mao E (2014) Protective effect of adenoviral transfer of heme oxygenase-1 gene on rats with severe acute pancreatitis. Am J Med Sci. doi: 10.1097/MAJ.0000000000000225 Google Scholar
  129. 129.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. doi: 10.1038/nri978 PubMedGoogle Scholar
  130. 130.
    Chen P, Sun B, Chen H, Wang G, Pan S, Kong R, Bai X, Wang S (2010) Effects of carbon monoxide releasing molecule-liberated CO on severe acute pancreatitis in rats. Cytokine 49(1):15–23. doi: 10.1016/j.cyto.2009.09.013 PubMedGoogle Scholar
  131. 131.
    Omary MB, Lugea A, Lowe AW, Pandol SJ (2007) The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 117(1):50–59. doi: 10.1172/JCI30082 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Schwer CI, Guerrero AM, Humar M, Roesslein M, Goebel U, Stoll P, Geiger KK, Pannen BH, Hoetzel A, Schmidt R (2008) Heme oxygenase-1 inhibits the proliferation of pancreatic stellate cells by repression of the extracellular signal-regulated kinase1/2 pathway. J Pharmacol Exp Ther 327(3):863–871. doi: 10.1124/jpet.108.136549 PubMedGoogle Scholar
  133. 133.
    Schwer CI, Mutschler M, Stoll P, Goebel U, Humar M, Hoetzel A, Schmidt R (2010) Carbon monoxide releasing molecule-2 inhibits pancreatic stellate cell proliferation by activating p38 mitogen-activated protein kinase/heme oxygenase-1 signaling. Mol Pharmacol 77(4):660–669. doi: 10.1124/mol.109.059519 PubMedGoogle Scholar
  134. 134.
    Amersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen X-D, Zhao D, Zaky J, Melinek J, Lassman CR (1999) Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J Clin Investig 104(11):1631–1639PubMedCentralPubMedGoogle Scholar
  135. 135.
    Ben-Ari Z, Issan Y, Katz Y, Sultan M, Safran M, Michal L-S, Nader GA, Kornowski R, Grief F, Pappo O (2013) Induction of heme oxygenase-1 protects mouse liver from apoptotic ischemia/reperfusion injury. Apoptosis 18(5):547–555PubMedGoogle Scholar
  136. 136.
    Wang Y, Shen J, Xiong X, Xu Y, Zhang H, Huang C, Tian Y, Jiao C, Wang X, Li X (2014) Remote Ischemic Preconditioning Protects against Liver Ischemia-Reperfusion Injury via Heme Oxygenase-1-Induced Autophagy. PLoS ONE 9(6):e98834PubMedCentralPubMedGoogle Scholar
  137. 137.
    Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS (2011) Heme oxygenase-1–mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53(6):2053–2062PubMedGoogle Scholar
  138. 138.
    Starzl TE, Demetris AJ (1990) Liver transplantation: a 31-year perspective part III. Curr Probl Surg 27(4):187–240Google Scholar
  139. 139.
    Sass G, Seyfried S, Parreira Soares M, Yamashita K, Kaczmarek E, Neuhuber WL, Tiegs G (2004) Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-mediated liver injury. Hepatology 40(5):1128–1135PubMedGoogle Scholar
  140. 140.
    Ke B, Buelow R, Shen X-D, Melinek J, Amersi F, Gao F, Ritter T, Volk H-D, Busuttil RW, Kupiec-Weglinski JW (2002) Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway. Hum Gene Ther 13(10):1189–1199PubMedGoogle Scholar
  141. 141.
    Geuken E, Buis CI, Visser DS, Blokzijl H, Moshage H, Nemes B, Leuvenink HG, De Jong KP, Peeters PM, Slooff MJ (2005) Expression of Heme Oxygenase-1 in Human Livers Before Transplantation Correlates with Graft Injury and Function After Transplantation. Am J Transplant 5(8):1875–1885PubMedGoogle Scholar
  142. 142.
    Buis CI, van der Steege G, Visser DS, Nolte IM, Hepkema BG, Nijsten M, Slooff MJ, Porte RJ (2008) Heme Oxygenase-1 Genotype of the Donor Is Associated With Graft Survival After Liver Transplantation. Am J Transplant 8(2):377–385PubMedGoogle Scholar
  143. 143.
    Flier JS, Underhill LH, Friedman SL (1993) The Cellular Basis of Hepatic Fibrosis-Mechanisms and Treatment Strategies. N Engl J Med 328(25):1828–1835Google Scholar
  144. 144.
    Sass G, Soares MCP, Yamashita K, Seyfried S, Zimmermann WH, Eschenhagen T, Kaczmarek E, Ritter T, Volk HD, Tiegs G (2003) Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology 38(4):909–918PubMedGoogle Scholar
  145. 145.
    Wendela A ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-aGoogle Scholar
  146. 146.
    Dey A, Cederbaum AI (2006) Alcohol and oxidative liver injury. Hepatology 43(S1):S63–S74PubMedGoogle Scholar
  147. 147.
    Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N (2007) Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 47(2):253–261PubMedGoogle Scholar
  148. 148.
    Yao P, Hao L, Nussler N, Lehmann A, Song F, Zhao J, Neuhaus P, Liu L, Nussler A (2009) The protective role of HO-1 and its generated products (CO, bilirubin, and Fe) in ethanol-induced human hepatocyte damage. Am J Physiol-Gastrointest Liver Physiol 296(6):G1318–G1323PubMedGoogle Scholar
  149. 149.
    Schulz S, Wong RJ, Vreman HJ, Stevenson DK (2012) Metalloporphyrins—an update. Front Pharmacol 3Google Scholar
  150. 150.
    Bharucha AE, Kulkarni A, Choi KM, Camilleri M, Lempke M, Brunn GJ, Gibbons SJ, Zinsmeister AR, Farrugia G (2009) First-in-human study demonstrating pharmacological activation of heme oxygenase-1 in humans. Clin Pharmacol Ther 87(2):187–190PubMedCentralPubMedGoogle Scholar
  151. 151.
    Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60(1):79–127PubMedGoogle Scholar
  152. 152.
    Kappas A (2004) A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics 113(1):119–123PubMedGoogle Scholar
  153. 153.
    Nielsen VG, Pretorius E (2014) Carbon monoxide: anticoagulant or procoagulant? Thromb Res 133(3):315–321PubMedGoogle Scholar
  154. 154.
    Bargen JA, Barker NW (1936) Extensive arterial and venous thrombosis complicating chronic ulcerative colitis. Arch Intern Med 58(1):17–31Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Marisol Chang
    • 1
  • Jing Xue
    • 1
  • Vishal Sharma
    • 1
  • Aida Habtezion
    • 1
  1. 1.Division of Gastroenterology and Hepatology, Department of MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations