Cellular and Molecular Life Sciences

, Volume 72, Issue 6, pp 1095–1113 | Cite as

Microscale imaging of cilia-driven fluid flow

  • Brendan K. Huang
  • Michael A. Choma


Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right–left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied toward quantifying ciliary flow. Here, we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow.


Microfluidic flow Mucus Velocimetry Particle tracking Digital particle image velocimetry Confocal microscopy Fluorescence microscopy Optical coherence tomography 



We thank Ute Gamm for her useful feedback. This work was supported by a March of Dimes Basil O’Connor Starter Scholar Research Award and NIH 1R01HL118419-01. BKH also was supported by NIH MSTP TG T32GM07205.


  1. 1.
    Meyer K (2002) Lung immunology and host defense. In: Bittar EE (ed) Pulmonary biology in health and disease. Springer, New York, pp 332–345. doi: 10.1007/978-0-387-22435-0_18 Google Scholar
  2. 2.
    Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352(19):1992–2001. doi: 10.1056/NEJMra043184 PubMedGoogle Scholar
  3. 3.
    Stillwell PC, Wartchow EP, Sagel SD (2011) Primary ciliary dyskinesia in children: a review for pediatricians, allergists, and pediatric pulmonologists. Pediatric allergy, immunology, and pulmonology 24(4):191–196. doi: 10.1089/ped.2011.0099 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human Fallopian tube cilia. Human reproduction update 12(4):363–372. doi: 10.1093/humupd/dml012 PubMedGoogle Scholar
  5. 5.
    Brueckner M (2007) Heterotaxia, congenital heart disease, and primary ciliary dyskinesia. Circulation 115(22):2793–2795. doi: 10.1161/CIRCULATIONAHA.107.699256 PubMedGoogle Scholar
  6. 6.
    Spassky N (2013) Motile cilia and brain function: ependymal motile cilia development, organization, function and their associated pathologies. In: Tucker KL, Caspary T (eds) Cilia and nervous system development and function. Springer, Netherlands, pp 193–207. doi: 10.1007/978-94-007-5808-7_7 Google Scholar
  7. 7.
    Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Human Mol Genet 12(Spec No 1):R27–R35Google Scholar
  8. 8.
    Haimo LT, Rosenbaum JL (1981) Cilia, flagella, and microtubules. The Journal of cell biology 91(3 Pt 2):125s–130sPubMedGoogle Scholar
  9. 9.
    Cooper GM (2000) The cytoskeleton and cell movement. In: The cell: a molecular approach, 2nd edn. ASM Press; Sinauer Associates, Washington, DC Sunderland, Mass., pp xxiv, p 689Google Scholar
  10. 10.
    Fawcett DW, Porter KR (1954) A study of the fine structure of ciliated epithelia. J Morphol 94(2):221–282. doi: 10.1002/Jmor.1050940202 Google Scholar
  11. 11.
    Bellomo D, Lander A, Harragan I, Brown NA (1996) Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent. Dev Dynam 205(4):471–485. doi: 10.1002/(Sici)1097-0177(199604)205:4<471::Aid-Aja10>3.0.Co;2-4 Google Scholar
  12. 12.
    Gibbons IR, Rowe AJ (1965) Dynein—a protein with adenosine triphosphatase activity from cilia. Science 149(3682):424–426. doi: 10.1126/Science.149.3682.424 PubMedGoogle Scholar
  13. 13.
    Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52:137–155. doi: 10.1146/ PubMedGoogle Scholar
  14. 14.
    Antunes MB, Cohen NA (2007) Mucociliary clearance—a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol 7(1):5–10. doi: 10.1097/ACI.0b013e3280114eef PubMedGoogle Scholar
  15. 15.
    Sleigh MA, Blake JR, Liron N (1988) The propulsion of mucus by cilia. Am Rev Respir Dis 137(3):726–741. doi: 10.1164/ajrccm/137.3.726 PubMedGoogle Scholar
  16. 16.
    Dalhamn T, Rylander R (1962) Frequency of ciliary beat measured with a photo-sensitive cell. Nature 196:592–593PubMedGoogle Scholar
  17. 17.
    Dalhamn T (1960) The determination in vivo of the rate of ciliary beat in the trachea. Acta Physiol Scand 49:242–250. doi: 10.1111/j.1748-1716.1960.tb01949.x PubMedGoogle Scholar
  18. 18.
    Marino MR, Aiello E (1982) Cinemicrographic analysis of beat dynamics of human respiratory cilia. Prog Clin Biol Res 80:35–39PubMedGoogle Scholar
  19. 19.
    Werner ME, Hwang P, Huisman F, Taborek P, Yu CC, Mitchell BJ (2011) Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells. J Cell Biol 195(1):19–26. doi: 10.1083/Jcb.201106110 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Werner ME, Mitchell BJ (2013) Using Xenopus skin to study cilia development and function. Method Enzymol 525:191–217. doi: 10.1016/B978-0-12-397944-5.00010-9 Google Scholar
  21. 21.
    Mitchell B, Jacobs R, Li J, Chien S, Kintner C (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447(7140):97–101. doi: 10.1038/nature05771 PubMedGoogle Scholar
  22. 22.
    Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC (1998) Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Investig 102(6):1125–1131. doi: 10.1172/JCI2687 PubMedCentralPubMedGoogle Scholar
  23. 23.
    King M (1998) Experimental models for studying mucociliary clearance. Eur Respir J 11(1):222–228PubMedGoogle Scholar
  24. 24.
    Wu DX, Lee CY, Uyekubo SN, Choi HK, Bastacky SJ, Widdicombe JH (1998) Regulation of the depth of surface liquid in bovine trachea. Am J Physiol 274(3 Pt 1):L388–L395PubMedGoogle Scholar
  25. 25.
    Berg HC (1993) Movement of self-propelled objects. In: Random walks in biology. Expanded edn. Princeton University Press, Princeton, p 152Google Scholar
  26. 26.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026. doi: 10.1103/Revmodphys.77.977 Google Scholar
  27. 27.
    Ovalle WK, Nahirney PC, Netter FH (2013) Netter’s essential histology, 2nd edn. Elsevier/Saunders, PhiladelphiaGoogle Scholar
  28. 28.
    Hunter RF (1988) Development of the fallopian tubes and their functional anatomy. The fallopian tubes. Springer, Berlin, pp 12–29. doi: 10.1007/978-3-642-73045-0_2 Google Scholar
  29. 29.
    Rutland J, Cole PJ (1981) Nasal mucociliary clearance and ciliary beat frequency in cystic fibrosis compared with sinusitis and bronchiectasis. Thorax 36(9):654–658PubMedCentralPubMedGoogle Scholar
  30. 30.
    Fernstrom I (1971) A new method for studying the motility of the Fallopian tubes. Acta Obstet Gynecol Scand 50(2):129–133PubMedGoogle Scholar
  31. 31.
    Hoegger MJ, Awadalla M, Namati E, Itani OA, Fischer AJ, Tucker AJ, Adam RJ, McLennan G, Hoffman EA, Stoltz DA, Welsh MJ (2014) Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc Natl Acad Sci USA 111(6):2355–2360. doi: 10.1073/pnas.1323633111 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, Moninger TO, Michalski AS, Hoffman EA, Zabner J, Stoltz DA, Welsh MJ (2014) Cystic fibrosis. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345(6198):818–822. doi: 10.1126/science.1255825 PubMedGoogle Scholar
  33. 33.
    Kambe T (2007) Flows. In: Elementary fluid mechanics. World Scientific, Hackensack, pp xv, p 386Google Scholar
  34. 34.
    Grant I (1997) Particle image velocimetry: a review. P I Mech Eng C-J Mec 211(1):55–76. doi: 10.1243/0954406971521665 Google Scholar
  35. 35.
    Merzkirch W (2007) Flow visualization. In: Tropea C, Yarin A, Foss J (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin, pp 857–870. doi: 10.1007/978-3-540-30299-5_11 Google Scholar
  36. 36.
    Grubb BR, Jones JH, Boucher RC (2004) Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice. Am J Physiol Lung Cell Mol Physiol 286(3):L588–L595. doi: 10.1152/ajplung.00302.2003 PubMedGoogle Scholar
  37. 37.
    McKeon B, Comte-Bellot G, Foss J, Westerweel J, Scarano F, Tropea C, Meyers J, Lee J, Cavone A, Schodl R, Koochesfahani M, Andreopoulos Y, Dahm W, Mullin J, Wallace J, Vukoslavčević P, Morris S, Pardyjak E, Cuerva A (2007) Velocity, vorticity, and mach number. In: Tropea C, Yarin A, Foss J (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin Heidelberg, pp 215–471. doi: 10.1007/978-3-540-30299-5_5 Google Scholar
  38. 38.
    Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1(1):2–21. doi: 10.1007/S10404-004-0009-4 Google Scholar
  39. 39.
    Berg HC (1993) Diffusion: microscopic theory. In: Random walks in biology. Expanded edn. Princeton University Press, Princeton, p 152Google Scholar
  40. 40.
    Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte JC, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121(4):633–644. doi: 10.1016/j.cell.2005.04.008 PubMedGoogle Scholar
  41. 41.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675PubMedGoogle Scholar
  42. 42.
    Adrian RJ (1991) Particle-imaging techniques for experimental fluid-mechanics. Annu Rev Fluid Mech 23:261–304. doi: 10.1146/Annurev.Fluid.23.1.261 Google Scholar
  43. 43.
    M Raffel CW, Kompenhans J (1998) Three-component PIV measurements on planar domains In: Particle image velocimetry: a practical guide. Springer, New YorkGoogle Scholar
  44. 44.
    Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15(1):49–60Google Scholar
  45. 45.
    Raffel M, Westerweel J, Willert C, Gharib M, Kompenhans J (1996) Analytical and experimental investigations of dual-plane particle image velocimetry. Opt Eng 35(7):2067–2074. doi: 10.1117/1.600695 Google Scholar
  46. 46.
    Dadi M, Stanislas M, Rodriguez O, Dyment A (1991) A study by holographic velocimetry of the behavior of free small particles in a flow. Exp Fluids 10(5):285–294Google Scholar
  47. 47.
    Cierpka C, Kahler CJ (2012) Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Visual-Japan 15(1):1–31. doi: 10.1007/S12650-011-0107-9 Google Scholar
  48. 48.
    M Raffel CW, Kompenhans J (1998) Physical and technical background. In: Particle image velocimetry: a practical guide. Springer, New YorkGoogle Scholar
  49. 49.
    Chhetri RK, Blackmon RL, Wu WC, Hill DB, Button B, Casbas-Hernandez P, Troester MA, Tracy JB, Oldenburg AL (2014) Probing biological nanotopology via diffusion of weakly constrained plasmonic nanorods with optical coherence tomography. Proc Natl Acad Sci USA 111(41):E4289–E4297. doi: 10.1073/pnas.1409321111 PubMedGoogle Scholar
  50. 50.
    Qian H, Sheetz MP, Elson EL (1991) Single-particle tracking—analysis of diffusion and flow in 2-dimensional systems. Biophys J 60(4):910–921PubMedCentralPubMedGoogle Scholar
  51. 51.
    Berg HC (1993) Diffusion with drift. In: Random walks in biology. Expanded edn. Princeton University Press, Princeton, p 152Google Scholar
  52. 52.
    Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10(4):181–193Google Scholar
  53. 53.
    Olsen MG, Adrian RJ (2000) Brownian motion and correlation in particle image velocimetry. Opt Laser Technol 32(7–8):621–627. doi: 10.1016/S0030-3992(00)00119-5 Google Scholar
  54. 54.
    Goodman JW (1985) Effects of partial coherence on imaging systems. In: Statistical optics. Wiley series in pure and applied optics. Wiley, New York, pp xvii, 550 pGoogle Scholar
  55. 55.
    Robinson DE, Chen F, Wilson LS (1982) Measurement of velocity of propagation from ultrasonic pulse-echo data. Ultrasound Med Biol 8(4):413–420. doi: 10.1016/S0301-5629(82)80009-4 PubMedGoogle Scholar
  56. 56.
    Trahey GE, Allison JW, Vonramm OT (1987) Angle independent ultrasonic-detection of blood-flow. IEEE T Bio-Med Eng 34(12):965–967. doi: 10.1109/Tbme.1987.325938 Google Scholar
  57. 57.
    Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics, Dover edn. Dover Publications, MineolaGoogle Scholar
  58. 58.
    Lee J, Wu W, Jiang JY, Zhu B, Boas DA (2012) Dynamic light scattering optical coherence tomography. Opt Express 20(20):22262–22277. doi: 10.1364/OE.20.022262 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Boas DA, Bizheva KK, Siegel AM (1998) Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media. Opt Lett 23(5):319–321. doi: 10.1364/Ol.23.000319 PubMedGoogle Scholar
  60. 60.
    Kalkman J, Sprik R, van Leeuwen TG (2010) Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography. Phys Rev Lett 105(19):1983. doi: 10.1103/Physrevlett.105.198302 Google Scholar
  61. 61.
    Broillet S, Sato A, Geissbuehler S, Pache C, Bouwens A, Lasser T, Leutenegger M (2014) Optical coherence correlation spectroscopy (OCCS). Opt Express 22(1):782–802. doi: 10.1364/Oe.22.000782 PubMedGoogle Scholar
  62. 62.
    Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705. doi: 10.1103/Physrevlett.29.705 Google Scholar
  63. 63.
    Kohler RH, Schwille P, Webb WW, Hanson MR (2000) Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci 113(22):3921–3930PubMedGoogle Scholar
  64. 64.
    Yguerabide J, Schmidt JA, Yguerabide EE (1982) Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J 40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Chen Z, Milner TE, Dave D, Nelson JS (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22(1):64–66PubMedGoogle Scholar
  66. 66.
    Izatt JA, Kulkami MD, Yazdanfar S, Barton JK, Welch AJ (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett 22(18):1439–1441. doi: 10.1364/Ol.22.001439 PubMedGoogle Scholar
  67. 67.
    Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19(7):071412. doi: 10.1117/1.JBO.19.7.071412 PubMedGoogle Scholar
  68. 68.
    Huang BK, Choma MA (2014) Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography. Opt Lett 39(3):521–524. doi: 10.1364/Ol.39.000521 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Blandau RJ, Boling JL, Halbert S, Verdugo P (1975) Methods for studying oviductal physiology. Gynecol Obstet Inves 6(3–4):123–145Google Scholar
  70. 70.
    Felicetti SA, Wolff RK, Muggenburg BA (1981) Comparison of tracheal mucous transport in rats, guinea pigs, rabbits, and dogs. J Appl Physiol Respir Environ Exerc Physiol 51(6):1612–1617PubMedGoogle Scholar
  71. 71.
    Tomkiewicz RP, Albers GM, De Sanctis GT, Ramirez OE, King M, Rubin BK (1995) Species differences in the physical and transport properties of airway secretions. Can J Physiol Pharmacol 73(2):165–171PubMedGoogle Scholar
  72. 72.
    Robinson M, Bye PT (2002) Mucociliary clearance in cystic fibrosis. Pediatr Pulmonol 33(4):293–306PubMedGoogle Scholar
  73. 73.
    Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36(1):1–7. doi: 10.1165/rcmb.2006-0184TR PubMedGoogle Scholar
  74. 74.
    Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ (2008) The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295(2):L240–L263. doi: 10.1152/ajplung.90203.2008 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21(1):13–24. doi: 10.1089/jamp.2007.0659 PubMedGoogle Scholar
  76. 76.
    Welsh MJ, Rogers CS, Stoltz DA, Meyerholz DK, Prather RS (2009) Development of a porcine model of cystic fibrosis. Trans Am Clin Climatol Assoc 120:149–162PubMedCentralPubMedGoogle Scholar
  77. 77.
    Werner ME, Mitchell BJ (2012) Understanding ciliated epithelia: the power of Xenopus. Genesis 50(3):176–185. doi: 10.1002/dvg.20824 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Assheton R (1896) Memoirs: notes on the ciliation of the ectoderm of the amphibian embryo. Q J Microsc Sci 2(152):465–484Google Scholar
  79. 79.
    Miskevich F (2010) Imaging fluid flow and cilia beating pattern in Xenopus brain ventricles. J Neurosci Meth 189(1):1–4. doi: 10.1016/J.Jneumeth.2010.02.015 Google Scholar
  80. 80.
    Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K (2006) Blum M (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17(1):60–66. doi: 10.1016/J.Cub.10.067 Google Scholar
  81. 81.
    Gilchrist MJ (2012) From expression cloning to gene modeling: the development of Xenopus gene sequence resources. Genesis 50(3):143–154. doi: 10.1002/dvg.22008 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Whitcutt MJ, Adler KB, Wu R (1988) A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol 24(5):420–428PubMedGoogle Scholar
  83. 83.
    Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P (1996) Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 14(1):104–112. doi: 10.1165/ajrcmb.14.1.8534481 PubMedGoogle Scholar
  84. 84.
    Thornton DJ, Sheehan JK (2004) From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc 1(1):54–61. doi: 10.1513/pats.2306016 PubMedGoogle Scholar
  85. 85.
    Wyman J (1871) Experiments with Vibrating Cilia. In: Packard AS, Putnam FW (eds) The American Naturalist, vol V. Peabody Academy of Science, Salem, Mass, pp 611–616Google Scholar
  86. 86.
    Bowditch HP (1876) Force of ciliary motion. Boston Med Surg J 95(6):159–164. doi: 10.1056/NEJM187608100950602 Google Scholar
  87. 87.
    Maxwell SS (1905) The effect of salt-solutions on ciliary activity. Am J Physiol 13(2):154–170Google Scholar
  88. 88.
    Gray J (1928) The Force exerted and the Work done by Cilia. In: Ciliary movement. Cambridge comparative physiology. Macmillan Co.; University Press, New York, p viii, p 162Google Scholar
  89. 89.
    Gray J (1922) The mechanism of ciliary movement. P R Soc Lond B-Conta 93(650):104–121. doi: 10.1098/Rspb.1922.0007 Google Scholar
  90. 90.
    Lucas AM (1933) Principles underlying ciliary activity in the respiratory tract I. A method for direct observation of cilia in situ and its application. Archiv Otolaryngol 18(4):516–524Google Scholar
  91. 91.
    Yates AL (1924) Methods of estimating the activity of the ciliary epithelium within the sinuses. J Laryngol Otol 39(10):554. doi: 10.1017/S0022215100026608 Google Scholar
  92. 92.
    Lucas AM (1932) The nasal cavity and direction of fluid by ciliary movement in Macacus rhesus (Desm). Am J Anat 50(1):141–177. doi: 10.1002/Aja.1000500107 Google Scholar
  93. 93.
    Gray J (1923) The mechanism of ciliary movement III The effect of temperature. P R Soc Lond B-Conta 95(664):6–15. doi: 10.1098/Rspb.1923.0019 Google Scholar
  94. 94.
    Twitty VC (1928) Experimental studies on the ciliary action of amphibian embryos. J Exp Zool 50(3):319–344. doi: 10.1002/Jez.1400500302 Google Scholar
  95. 95.
    Lucas AM, Douglas LC (1934) Principles underlying ciliary activity in the respiratory tract II. A comparison of nasal clearance in man, monkey and other mammals. Archiv Otolaryngol 20(4):518–541Google Scholar
  96. 96.
    Gray J (1930) The mechanism of ciliary movement—VI Photographic and stroboscopic analysis of ciliary movement. P R Soc Lond B-Conta 107(751):313–332. doi: 10.1098/Rspb.1930.0075 Google Scholar
  97. 97.
    Lierle DM, Moore PM (1934) Effects of drugs on ciliary activity of mucosa of upper respiratory tract. Archiv Otolaryngol 19(1):55–65Google Scholar
  98. 98.
    Dalhamn T (1955) A method for determination in vivo of the rate of ciliary beat and mucous flow in the trachea. Acta Physiol Scand 33(1):1–5. doi: 10.1111/j.1748-1716.1955.tb01187.x PubMedGoogle Scholar
  99. 99.
    Blair A, Woods A (1969) The effects of isoprenaline, atropine and disodium cromoglycate on ciliary motility and mucous flow measured in vivo in cat. Br J Pharmacol 35(2):P379PubMedCentralPubMedGoogle Scholar
  100. 100.
    Carson S, Goldhamer R, Carpenter R (1966) Responses of ciliated epithelium to irritants. Mucus transport in the respiratory tract. Am Rev Respir Dis 93 (3):Suppl:86-92Google Scholar
  101. 101.
    Hilding AC (1956) On cigarette smoking, bronchial carcinoma and ciliary action. II. Experimental study on the filtering action of cow’s lungs, the deposition of tar in the bronchial tree and removal by ciliary action. N Engl J Med 254(25):1155–1160. doi: 10.1056/NEJM195606212542502 PubMedGoogle Scholar
  102. 102.
    Sackner MA, Rosen MJ, Wanner A (1973) Estimation of tracheal mucous velocity by bronchofiberoscopy. J Appl Physiol 34(4):495–499PubMedGoogle Scholar
  103. 103.
    Svartengren K, Wiman LG, Thyberg P, Rigler R (1989) Laser light scattering spectroscopy: a new method to measure tracheobronchial mucociliary activity. Thorax 44(7):539–547PubMedCentralPubMedGoogle Scholar
  104. 104.
    Annis P, Landa J, Lichtiger M (1976) Effects of atropine on velocity of tracheal mucus in anesthetized patients. Anesthesiology 44(1):74–77PubMedGoogle Scholar
  105. 105.
    Wanner A, Hirsch JA, Greeneltch DE, Swenson EW, Fore T (1973) Tracheal mucous velocity in beagles after chronic exposure to cigarette smoke. Arch Environ Health 27(6):370–371PubMedGoogle Scholar
  106. 106.
    Toomes H, Vogt-Moykopf I, Heller W, Ostertag H (1981) Measurement of mucociliary clearance in smokers and nonsmokers using a bronchoscopic video-technical method. Lung 159(1):27–34PubMedGoogle Scholar
  107. 107.
    Velasquez DJ, Morrow PE (1984) Estimation of guinea pig tracheobronchial transport rates using a compartmental model. Exp Lung Res 7(3–4):163–176PubMedGoogle Scholar
  108. 108.
    Bermbach S, Weinhold K, Roeder T, Petersen F, Kugler C, Goldmann T, Rupp J, Konig P (2014) Mechanisms of cilia-driven transport in the airways in the absence of mucus. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2012-0530OC PubMedGoogle Scholar
  109. 109.
    Spungin B, Silberberg A (1984) Stimulation of mucus secretion, ciliary activity, and transport in frog palate epithelium. Am J Physiol 247(5 Pt 1):C299–C308PubMedGoogle Scholar
  110. 110.
    Gatto LA (1993) Cholinergic and adrenergic stimulation of mucociliary transport in the rat trachea. Respir Physiol 92(2):209–217PubMedGoogle Scholar
  111. 111.
    Konig P, Krain B, Krasteva G, Kummer W (2009) Serotonin increases cilia-driven particle transport via an acetylcholine-independent pathway in the mouse trachea. Plos One 4(3):e4938. doi: 10.1371/journal.pone.0004938 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Klein MK, Haberberger RV, Hartmann P, Faulhammer P, Lips KS, Krain B, Wess J, Kummer W, Konig P (2009) Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development. Eur Respir J 33(5):1113–1121. doi: 10.1183/09031936.00015108 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Fliegauf M, Sonnen AF, Kremer B, Henneke P (2013) Mucociliary clearance defects in a murine in vitro model of pneumococcal airway infection. PLoS One 8(3):e59925. doi: 10.1371/journal.pone.0059925 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Ryser M, Burn A, Wessel T, Frenz M, Ricka J (2007) Functional imaging of mucociliary phenomena. Eur Biophys J Biophy 37(1):35–54. doi: 10.1007/S00249-007-0153-3 Google Scholar
  115. 115.
    Jonas S, Zhou E, Deniz E, Huang B, Chandrasekera K, Bhattacharya D, Wu Y, Fan R, Deserno TM, Khokha MK, Choma MA (2013) A novel approach to quantifying ciliary physiology: microfluidic mixing driven by a ciliated biological surface. Lab Chip 13(21):4160–4163. doi: 10.1039/C3lc50571e PubMedCentralPubMedGoogle Scholar
  116. 116.
    Boling JL, Blandau RJ (1971) Egg transport through ampullae of oviducts of rabbits under various experimental conditions. Biol Reprod 4(2):174–184PubMedGoogle Scholar
  117. 117.
    Harper MJ (1961) Mechanisms involved in movement of newly ovulated eggs through ampulla of rabbit fallopian tube. J Reprod Fertil 2(4):522Google Scholar
  118. 118.
    Avendano S, Pelaez J, Croxatto HB (1971) Transport of microspheres by human oviduct in-vitro and effect of treatment with megestrol acetate. J Reprod Fertil 27(2):261–264PubMedGoogle Scholar
  119. 119.
    Gaddum-Rosse P, Blandau RJ, Thiersch JB (1973) Ciliary activity in the human and Macaca nemestrina oviduct. Am J Anat 138(2):269–275. doi: 10.1002/aja.1001380210 PubMedGoogle Scholar
  120. 120.
    Halbert SA, Becker DR, Szal SE (1989) Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod 40(6):1131–1136PubMedGoogle Scholar
  121. 121.
    Halbert SA, Tam PY, Blandau RJ (1976) Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science 191(4231):1052–1053PubMedGoogle Scholar
  122. 122.
    Borell U, Nilsson O, Westman A (1957) Ciliary activity in the rabbit fallopian tube during oestrus and after copulation. Acta Obstet Gynecol Scand 36(1):22–28PubMedGoogle Scholar
  123. 123.
    Paton DM, Widdicombe JH, Rheaume DE, Johns A (1977) The role of the adrenergic innervation of the oviduct in the regulation of mammalian ovum transport. Pharmacol Rev 29(2):67–102PubMedGoogle Scholar
  124. 124.
    Kolle S, Dubielzig S, Reese S, Wehrend A, Konig P, Kummer W (2009) Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow. Biol Reprod 81(2):267–274. doi: 10.1095/biolreprod.108.073874 PubMedGoogle Scholar
  125. 125.
    Shi D, Komatsu K, Uemura T, Fujimori T (2011) Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct. Genes Cells 16(3):282–290. doi: 10.1111/j.1365-2443.2011.01484.x PubMedGoogle Scholar
  126. 126.
    Kolle S (2012) Live Cell Imaging of the Oviduct. Imaging and spectroscopic analysis of living cells: imaging live cells in health and disease 506:415–423. doi: 10.1016/B978-0-12-391856-7.00045-7 Google Scholar
  127. 127.
    Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left–right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3(8):1467–1472. doi: 10.1371/journal.pbio.0030268 Google Scholar
  128. 128.
    Inoué S (2006) Foundations of confocal scanned imaging in light microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, p xxviii, p 985Google Scholar
  129. 129.
    Winet H, Yates GT, Wu TY, Head J (1982) On the mechanics of mucociliary flows. II. A fluorescent tracer method for obtaining flow velocity profiles in mucus. Prog Clin Biol Res 80:29–34PubMedGoogle Scholar
  130. 130.
    Cheng P-C (2006) The contrast formation in optical microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, p xxviii, p 985Google Scholar
  131. 131.
    Winet H, Yates GT, Wu TY, Head J (1984) On the mechanics of mucociliary flows. III. Flow-velocity profiles in frog palate mucus. J Appl Physiol Respir Environ Exerc Physiol 56(3):785–794PubMedGoogle Scholar
  132. 132.
    Deblandre GA, Wettstein DA, Koyano-Nakagawa N, Kintner C (1999) A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126(21):4715–4728PubMedGoogle Scholar
  133. 133.
    Mitchell B, Stubbs JL, Huisman F, Taborek P, Yu C, Kintner C (2009) The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr Biol 19(11):924–929. doi: 10.1016/J.Cub.04.018 PubMedCentralPubMedGoogle Scholar
  134. 134.
    Zeltner TB, Sweeney TD, Skornik WA, Feldman HA, Brain JD (1991) Retention and clearance of 0.9-micron particles inhaled by hamsters during rest or exercise. J Appl Physiol 70(3):1137–1145PubMedGoogle Scholar
  135. 135.
    Francis RJ, Chatterjee B, Loges NT, Zentgraf H, Omran H, Lo CW (2009) Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway. Am J Physiol Lung Cell Mol Physiol 296(6):L1067–L1075. doi: 10.1152/ajplung.00001.2009 PubMedCentralPubMedGoogle Scholar
  136. 136.
    Tarran R, Boucher RC (2002) Thin-film measurements of airway surface liquid volume/composition and mucus transport rates in vitro. Methods Mol Med 70:479–492. doi: 10.1385/1-59259-187-6:479 PubMedGoogle Scholar
  137. 137.
    Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95(7):1005–1015PubMedGoogle Scholar
  138. 138.
    Worthington E, Tarran R (2011) Methods for ASL measurements and mucus transport rates in cell cultures. In: Amaral MD, Kunzelmann K (eds) Cystic Fibrosis, vol 742. Methods in Molecular Biology. Humana Press, pp 77–92. doi: 10.1007/978-1-61779-120-8_5
  139. 139.
    Hussong J, Lindken R, Faulhammer P, Noreikat K, Sharp KV, Kummer W, Westerweel J (2013) Cilia-driven particle and fluid transport over mucus-free mice tracheae. J Biomech 46(3):593–598. doi: 10.1016/J.Jbiomech.2012.08.020 PubMedGoogle Scholar
  140. 140.
    Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400. doi: 10.1146/annurev.physiol.69.040705.141236 PubMedGoogle Scholar
  141. 141.
    Nonaka S (2013) Visualization of mouse nodal cilia and nodal flow. Method Enzymol 525:149–157. doi: 10.1016/B978-0-12-397944-5.00008-0 Google Scholar
  142. 142.
    Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N (1999) Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J Cell Biol 145(4):825–836PubMedCentralPubMedGoogle Scholar
  143. 143.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6):829–837. doi: 10.1016/S0092-8674(00)81705-5 PubMedGoogle Scholar
  144. 144.
    Vick P, Schweickert A, Weber T, Eberhardt M, Mencl S, Shcherbakov D, Beyer T, Blum M (2009) Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. Dev Biol 331(2):281–291. doi: 10.1016/j.ydbio.2009.05.547 PubMedGoogle Scholar
  145. 145.
    Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, Nakai J, Dworniczak B, Ehrlich BE, Pennekamp P, Hamada H (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338(6104):226–231. doi: 10.1126/Science.1222538 PubMedCentralPubMedGoogle Scholar
  146. 146.
    Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132(8):1907–1921. doi: 10.1242/dev.01772 PubMedGoogle Scholar
  147. 147.
    Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost J (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132(6):1247–1260. doi: 10.1242/Dev.01663 PubMedGoogle Scholar
  148. 148.
    Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418(6893):96–99. doi: 10.1038/Nature00849 PubMedGoogle Scholar
  149. 149.
    Yamadori T, Nara K (1979) The directions of ciliary beat on the wall of the lateral ventricle and the currents of the cerebrospinal fluid in the brain ventricles. Scan Electron Microsc 3:335–340PubMedGoogle Scholar
  150. 150.
    Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14(1):1–13. doi: 10.1002/glia.440140102 PubMedGoogle Scholar
  151. 151.
    Cifuentes M, Rodriguez S, Perez J, Grondona JM, Rodriguez EM, Fernandezllebrez P (1994) Decreased cerebrospinal-fluid flow-through the central canal of the spinal-cord of rats immunologically deprived of reissners fiber. Exp Brain Res 98(3):431–440PubMedGoogle Scholar
  152. 152.
    Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12(3):589–599PubMedCentralPubMedGoogle Scholar
  153. 153.
    Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss IJ (2002) Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 22(17):6298–6305PubMedCentralPubMedGoogle Scholar
  154. 154.
    Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, North A, Heintz N, Omran H (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13(18):2133–2141. doi: 10.1093/hmg/ddh219 PubMedGoogle Scholar
  155. 155.
    Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132(23):5329–5339. doi: 10.1242/Dev.022153 PubMedGoogle Scholar
  156. 156.
    Hagenlocher C, Walentek P, ML C, Thumberger T, Feistel K (2013) Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2(1):12. doi: 10.1186/2046-2530-2-12 PubMedCentralPubMedGoogle Scholar
  157. 157.
    Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, Hirota Y, Desoeuvre A, Boutin C, Han YG, Mirzadeh Z, Cremer H, Montcouquiol M, Sawamoto K, Spassky N (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12(4):341–350. doi: 10.1038/ncb2040 PubMedGoogle Scholar
  158. 158.
    Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59(3):427–471. doi: 10.1088/0034-4885/59/3/003 Google Scholar
  159. 159.
    Jayaraman S, Song Y, Vetrivel L, Shankar L, Verkman AS (2001) Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J Clin Investig 107(3):317–324. doi: 10.1172/JCI11154 PubMedCentralPubMedGoogle Scholar
  160. 160.
    Tarran R, Grubb BR, Gatzy JT, Davis CW, Boucher RC (2001) The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118(2):223–236PubMedCentralPubMedGoogle Scholar
  161. 161.
    Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127(5):591–604. doi: 10.1085/Jgp.200509468 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Song Y, Namkung W, Nielson DW, Lee JW, Finkbeiner WE, Verkman AS (2009) Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl channel function. Am J Physiol Lung Cell Mol Physiol 297(6):L1131–L1140. doi: 10.1152/ajplung.00085.2009 PubMedCentralPubMedGoogle Scholar
  163. 163.
    Button B, Okada SF, Frederick CB, Thelin WR, Boucher RC (2013) Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signal 6(279):ra46. doi: 10.1126/scisignal.2003755 PubMedCentralPubMedGoogle Scholar
  164. 164.
    Voynow JA, Rubin BK (2009) Mucins, mucus, and sputum. Chest 135(2):505–512. doi: 10.1378/chest.08-0412 PubMedGoogle Scholar
  165. 165.
    Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, Boucher RC, Rubinstein M (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337(6097):937–941. doi: 10.1126/science.1223012 PubMedCentralPubMedGoogle Scholar
  166. 166.
    Kiyota K, Ueno H, Numayama-Tsuruta K, Haga T, Imai Y, Yamaguchi T, Ishikawa T (2014) Fluctuation of cilia-generated flow on the surface of the tracheal lumen. Am J Physiol Lung Cell Mol Physiol 306(2):L144–L151. doi: 10.1152/ajplung.00117.2013 PubMedGoogle Scholar
  167. 167.
    Druart X, Cognie J, Baril G, Clement F, Dacheux JL, Gatti JL (2009) In vivo imaging of in situ motility of fresh and liquid stored ram spermatozoa in the ewe genital tract. Reproduction 138(1):45–53. doi: 10.1530/REP-09-0108 PubMedGoogle Scholar
  168. 168.
    Kolle S, Reese S, Kummer W (2010) New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology 73(6):786–795. doi: 10.1016/j.theriogenology.2009.11.002 PubMedGoogle Scholar
  169. 169.
    Supatto W, Fraser SE, Vermot J (2008) An all-optical approach for probing microscopic flows in living embryos. Biophys J 95(4):L29–L31. doi: 10.1529/Biophysj.108.137786 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Hadjantonakis AK, Pisano E, Papaioannou VE (2008) Tbx6 Regulates Left/Right Patterning in Mouse Embryos through Effects on Nodal Cilia and Perinodal Signaling. Plos One 3(6):e2511. doi: 10.1371/journal.pone.0002511 PubMedCentralPubMedGoogle Scholar
  171. 171.
    Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83(4):2300–2317PubMedCentralPubMedGoogle Scholar
  172. 172.
    Derichs N, Jin BJ, Song Y, Finkbeiner WE, Verkman AS (2011) Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching. FASEB J 25(7):2325–2332. doi: 10.1096/fj.10-179549 PubMedCentralPubMedGoogle Scholar
  173. 173.
    Boukari H, Brichacek B, Stratton P, Mahoney SF, Lifson JD, Margolis L, Nossal R (2009) Movements of HIV-virions in human cervical mucus. Biomacromolecules 10(9):2482–2488. doi: 10.1021/bm900344q PubMedCentralPubMedGoogle Scholar
  174. 174.
    Stelzer EHK (1995) The Intermediate Optical System of Laser-Scanning Confocal Microscopes. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, pp xxiii, 632 p., p 634 of platesGoogle Scholar
  175. 175.
    Callamaras N, Parker I (1999) Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal line scan imaging. J Gen Physiol 113(2):199–213. doi: 10.1085/Jgp.113.2.199 PubMedCentralPubMedGoogle Scholar
  176. 176.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical Coherence Tomography. Science 254(5035):1178–1181. doi: 10.1126/Science.1957169 PubMedGoogle Scholar
  177. 177.
    Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66(2):239–303. doi: 10.1088/0034-4885/66/2/204 (Pii S0034-4885(03)18703-9)Google Scholar
  178. 178.
    Wojtkowski M (2010) High-speed optical coherence tomography: basics and applications. Appl Optics 49(16):D30–D61. doi: 10.1364/Ao.49.000d30 Google Scholar
  179. 179.
    Jonas S, Bhattacharya D, Khokha MK, Choma MA (2011) Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry. Biomed Optics Express 2(7):2022–2034. doi: 10.1364/BOE.2.002022 Google Scholar
  180. 180.
    Oldenburg AL, Chhetri RK, Hill DB, Button B (2012) Monitoring airway mucus flow and ciliary activity with optical coherence tomography. Biomed Optics Express 3(9):1978–1992. doi: 10.1364/BOE.3.001978 Google Scholar
  181. 181.
    Leitgeb RA, Villiger M, Bachmann AH, Steinmann L, Lasser T (2006) Extended focus depth for Fourier domain optical coherence microscopy. Opt Lett 31(16):2450–2452. doi: 10.1364/Ol.31.002450 PubMedGoogle Scholar
  182. 182.
    Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, Tearney GJ (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 17(8):1010–1014. doi: 10.1038/nm.2409 PubMedCentralPubMedGoogle Scholar
  183. 183.
    Liu LB, Chu KK, Houser GH, Diephuis BJ, Li Y, Wilsterman EJ, Shastry S, Dierksen G, Birket SE, Mazur M, Byan-Parker S, Grizzle WE, Sorscher EJ, Rowe SM, Tearney GJ (2013) Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. Plos One 8(1):e54473. doi: 10.1371/journal.pone.0054473 PubMedCentralPubMedGoogle Scholar
  184. 184.
    Liu L, Shastry S, Byan-Parker S, Houser G, Chu K, Birket SE, Fernandez CM, Gardecki JA, Grizzle W, Wilsterman EJ, Sorscher EJ, Rowe SM, Tearney GJ (2014) An autoregulatory mechanism governing mucociliary transport is sensitive to mucus load. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2013-0499MA Google Scholar
  185. 185.
    Chhetri RK, Kozek KA, Johnston-Peck AC, Tracy JB, Oldenburg AL (2011) Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography. Phys Rev E Stat Nonlin Soft Matter Phys 83(4 Pt 1):040903PubMedCentralPubMedGoogle Scholar
  186. 186.
    Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A (2008) Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt Lett 33(10):1135–1137PubMedCentralPubMedGoogle Scholar
  187. 187.
    Weers J, Metzheiser B, Taylor G, Warren S, Meers P, Perkins WR (2009) A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv 22(2):131–138PubMedGoogle Scholar
  188. 188.
    Negus VE (1934) Action of cilia and the effect of drugs on their activity. Wellcome Library, UKGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Diagnostic RadiologyYale School of MedicineNew HavenUSA
  3. 3.Department of PediatricsYale School of MedicineNew HavenUSA
  4. 4.Department of Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations