Advertisement

Cellular and Molecular Life Sciences

, Volume 72, Issue 2, pp 217–236 | Cite as

Taste receptors in innate immunity

  • Robert J. Lee
  • Noam A. Cohen
Review

Abstract

Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein–coupled receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions.

Keywords

Airway physiology Chronic rhinosinusitis Epithelial biology Host-pathogen interactions Respiratory infection Interkingdom signaling 

Abbreviations

ACh

Acetylcholine

AHL

Acyl-homoserine lactone

AMP

Antimicrobial peptide

ASL

Airway surface liquid

ATP

Adenosine trisphophate

C4HSL

N-butyryl-L-homoserine lactone

C12HSL

N-3-oxo-dodecanoyl-L-homoserine lactone

CALHM1

Calcium homeostasis modulator isoform 1

cAMP

Cyclic adenosine monophosphate

CGRP

Calcitonin gene-related peptide

COPD

Chronic obstructive pulmonary disease

CRS

Chronic rhinosinusitis

CSF

Cerebrospinal fluid

ENaC

Epithelial sodium channel

ER

Endoplasmic reticulum

GPCR

G-protein–coupled receptor

IP3

Inositol 1,4,5-trisphosphate

IP3R3

Inositol trisphosphate receptor isoform 3

NO

Nitric oxide

NOS

Nitric oxide synthase

PDE

Phosphodiesterase

PKA

cAMP-dependent protein kinase A

PKG

cGMP-dependent protein kinase G

PLCβ2

Phospholipase C isoform β2

PROP

Propylthiouracil

PTC

Phenylthiocarbamide, also known as phenylthiourea

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SCC

Solitary chemosensory cell

T1R

Taste receptor family 1 protein isoform

T2R

Taste receptor family 2 protein isoform

TAS1R

Taste receptor family 1 gene

TAS2R

Taste receptor family 2 gene

TLR

Toll-like receptor

TRPM5

Transient receptor potential cation channel subfamily M isoform

Notes

Acknowledgments

Some of the research described in this review was supported by a grant from the Flight Attendants Medical Research Institute (082478) and a philanthropic contribution from the RLG Foundation Inc., both to N.A.C.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Blalock JE (2005) The immune system as the sixth sense. J Intern Med 257(2):126–138. doi: 10.1111/j.1365-2796.2004.01441.x PubMedGoogle Scholar
  2. 2.
    Blalock JE, Smith EM (2007) Conceptual development of the immune system as a sixth sense. Brain Behav Immun 21(1):23–33. doi: 10.1016/j.bbi.2006.09.004 PubMedGoogle Scholar
  3. 3.
    Bedford FL (2011) The missing sense modality: the immune system. Perception 40(10):1265–1267PubMedGoogle Scholar
  4. 4.
    Deckmann K, Filipski K, Krasteva-Christ G, Fronius M, Althaus M, Rafiq A, Papadakis T, Renno L, Jurastow I, Wessels L, Wolff M, Schutz B, Weihe E, Chubanov V, Gudermann T, Klein J, Bschleipfer T, Kummer W (2014) Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc Natl Acad Sci USA 111(22):8287–8292. doi: 10.1073/pnas.1402436111 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Margolskee RF (2005) Teaching resources. Sensory systems: taste perception. Sci STKE 290:tr20. doi: 10.1126/stke.2902005tr20 Google Scholar
  6. 6.
    Margolskee RF (1993) The molecular biology of taste transduction. BioEssays 15(10):645–650. doi: 10.1002/bies.950151003 PubMedGoogle Scholar
  7. 7.
    Beauchamp GK, Mennella JA (2011) Flavor perception in human infants: development and functional significance. Digestion 83(Suppl 1):1–6. doi: 10.1159/000323397 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Wise PM, Wolf M, Thom SR, Bryant B (2013) The influence of bubbles on the perception carbonation bite. PLoS One 8(8):e71488. doi: 10.1371/journal.pone.0071488 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Viana F (2011) Chemosensory properties of the trigeminal system. ACS Chem Neurosci 2(1):38–50. doi: 10.1021/cn100102c PubMedCentralPubMedGoogle Scholar
  10. 10.
    Breslin PA, Huang L (2006) Human taste: peripheral anatomy, taste transduction, and coding. Adv Otorhinolaryngol 63:152–190. doi: 10.1159/000093760 PubMedGoogle Scholar
  11. 11.
    Kinnamon SC (2012) Taste receptor signalling—from tongues to lungs. Acta Physiol (Oxf) 204(2):158–168. doi: 10.1111/j.1748-1716.2011.02308.x Google Scholar
  12. 12.
    Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12(35):4591–4600PubMedGoogle Scholar
  13. 13.
    Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28(1):58–63. doi: 10.1038/88270 PubMedGoogle Scholar
  14. 14.
    Ozeck M, Brust P, Xu H, Servant G (2004) Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. Eur J Pharmacol 489(3):139–149. doi: 10.1016/j.ejphar.2004.03.004 PubMedGoogle Scholar
  15. 15.
    Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277(1):1–4. doi: 10.1074/jbc.R100054200 PubMedGoogle Scholar
  16. 16.
    Lin W, Finger TE, Rossier BC, Kinnamon SC (1999) Epithelial Na + channel subunits in rat taste cells: localization and regulation by aldosterone. J Comp Neurol 405(3):406–420PubMedGoogle Scholar
  17. 17.
    Kretz O, Barbry P, Bock R, Lindemann B (1999) Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J Histochem Cytochem 47(1):51–64PubMedGoogle Scholar
  18. 18.
    Eylam S, Spector AC (2003) Oral amiloride treatment decreases taste sensitivity to sodium salts in C57BL/6 J and DBA/2 J mice. Chem Senses 28(5):447–458PubMedGoogle Scholar
  19. 19.
    Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ (2003) Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39(1):133–146PubMedGoogle Scholar
  20. 20.
    Ben-Shahar Y (2011) Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Adv Genet 76:1–26. doi: 10.1016/B978-0-12-386481-9.00001-8 PubMedCentralPubMedGoogle Scholar
  21. 21.
    He W, Yasumatsu K, Varadarajan V, Yamada A, Lem J, Ninomiya Y, Margolskee RF, Damak S (2004) Umami taste responses are mediated by alpha-transducin and alpha-gustducin. J Neurosci 24(35):7674–7680. doi: 10.1523/JNEUROSCI.2441-04.2004 PubMedGoogle Scholar
  22. 22.
    Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99(7):4692–4696. doi: 10.1073/pnas.072090199 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Rong M, He W, Yasumatsu K, Kokrashvili Z, Perez CA, Mosinger B, Ninomiya Y, Margolskee RF, Damak S (2005) Signal transduction of umami taste: insights from knockout mice. Chem Senses 30(Suppl 1):i33–i34. doi: 10.1093/chemse/bjh099 PubMedGoogle Scholar
  24. 24.
    Beauchamp GK (2009) Sensory and receptor responses to umami: an overview of pioneering work. Am J Clin Nutr 90(3):723S–727S. doi: 10.3945/ajcn.2009.27462E PubMedGoogle Scholar
  25. 25.
    Benarroch EE (2014) Acid-sensing cation channels: structure, function, and pathophysiologic implications. Neurology 82(7):628–635. doi: 10.1212/WNL.0000000000000134 PubMedGoogle Scholar
  26. 26.
    Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194:283–332. doi: 10.1007/978-3-540-79090-7_9 PubMedGoogle Scholar
  27. 27.
    Shimada S, Ueda T, Ishida Y, Yamamoto T, Ugawa S (2006) Acid-sensing ion channels in taste buds. Arch Histol Cytol 69(4):227–231PubMedGoogle Scholar
  28. 28.
    Kinnamon SC, Margolskee RF (1996) Mechanisms of taste transduction. Curr Opin Neurobiol 6(4):506–513PubMedGoogle Scholar
  29. 29.
    Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381(6585):796–800. doi: 10.1038/381796a0 PubMedGoogle Scholar
  30. 30.
    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100(6):693–702PubMedGoogle Scholar
  31. 31.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100(6):703–711PubMedGoogle Scholar
  32. 32.
    Scott K (2004) The sweet and the bitter of mammalian taste. Curr Opin Neurobiol 14(4):423–427. doi: 10.1016/j.conb.2004.06.003 PubMedGoogle Scholar
  33. 33.
    Iwata S, Yoshida R, Ninomiya Y (2014) Taste transductions in taste receptor cells: basic tastes and moreover. Curr Pharm Des 20(16):2684–2692PubMedGoogle Scholar
  34. 34.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112(3):293–301PubMedGoogle Scholar
  35. 35.
    Kojima I, Nakagawa Y, Ohtsu Y, Medina A, Nagasawa M (2014) Sweet taste-sensing receptors expressed in pancreatic beta-cells: sweet molecules act as biased agonists. Endocrinol Metab (Seoul) 29(1):12–19. doi: 10.3803/EnM.2014.29.1.12 Google Scholar
  36. 36.
    Nakagawa Y, Nagasawa M, Mogami H, Lohse M, Ninomiya Y, Kojima I (2013) Multimodal function of the sweet taste receptor expressed in pancreatic beta-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr J 60(10):1191–1206PubMedGoogle Scholar
  37. 37.
    Medina A, Nakagawa Y, Ma J, Li L, Hamano K, Akimoto T, Ninomiya Y, Kojima I (2014) Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states. Endocr J 61(8):797–805PubMedGoogle Scholar
  38. 38.
    Nakagawa Y, Ohtsu Y, Nagasawa M, Shibata H, Kojima I (2014) Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3. Endocr J 61(2):119–131PubMedGoogle Scholar
  39. 39.
    Masubuchi Y, Nakagawa Y, Ma J, Sasaki T, Kitamura T, Yamamoto Y, Kurose H, Kojima I, Shibata H (2013) A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS One 8(1):e54500. doi: 10.1371/journal.pone.0054500 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390PubMedGoogle Scholar
  41. 41.
    Tordoff MG, Shao H, Alarcon LK, Margolskee RF, Mosinger B, Bachmanov AA, Reed DR, McCaughey S (2008) Involvement of T1R3 in calcium-magnesium taste. Physiol Genomics 34(3):338–348. doi: 10.1152/physiolgenomics.90200.2008 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Kuhn C, Bufe B, Batram C, Meyerhof W (2010) Oligomerization of TAS2R bitter taste receptors. Chem Senses 35(5):395–406. doi: 10.1093/chemse/bjq027 PubMedGoogle Scholar
  43. 43.
    Kuhn C, Meyerhof W (2013) Oligomerization of sweet and bitter taste receptors. Methods Cell Biol 117:229–242. doi: 10.1016/B978-0-12-408143-7.00013-X PubMedGoogle Scholar
  44. 44.
    Behrens M, Born S, Redel U, Voigt N, Schuh V, Raguse JD, Meyerhof W (2012) Immunohistochemical detection of TAS2R38 protein in human taste cells. PLoS One 7(7):e40304. doi: 10.1371/journal.pone.0040304 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Li F (2013) Taste perception: from the tongue to the testis. Mol Hum Reprod 19(6):349–360. doi: 10.1093/molehr/gat009 PubMedGoogle Scholar
  46. 46.
    Taruno A, Matsumoto I, Ma Z, Marambaud P, Foskett JK (2013) How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. BioEssays 35(12):1111–1118. doi: 10.1002/bies.201300077 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495(7440):223–226. doi: 10.1038/nature11906 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Liman ER, Zhang YV, Montell C (2014) Peripheral coding of taste. Neuron 81(5):984–1000. doi: 10.1016/j.neuron.2014.02.022 PubMedGoogle Scholar
  49. 49.
    Roper SD (2013) Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol 24(1):71–79. doi: 10.1016/j.semcdb.2012.12.002 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Tomchik SM, Berg S, Kim JW, Chaudhari N, Roper SD (2007) Breadth of tuning and taste coding in mammalian taste buds. J Neurosci 27(40):10840–10848. doi: 10.1523/JNEUROSCI.1863-07.2007 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Yoshida R, Shigemura N, Sanematsu K, Yasumatsu K, Ishizuka S, Ninomiya Y (2006) Taste responsiveness of fungiform taste cells with action potentials. J Neurophysiol 96(6):3088–3095. doi: 10.1152/jn.00409.2006 PubMedGoogle Scholar
  52. 52.
    Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30(25):8376–8382. doi: 10.1523/JNEUROSCI.0496-10.2010 PubMedGoogle Scholar
  53. 53.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698. doi: 10.1016/j.cell.2010.07.041 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, Besnard P, Abumrad NA, Khan NA (2014) CD36- and GPR120-mediated Ca(2)(+) signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146(4):995–1005. doi: 10.1053/j.gastro.2014.01.006 PubMedGoogle Scholar
  55. 55.
    Sclafani A, Zukerman S, Ackroff K (2013) GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. Am J Physiol Regul Integr Comp Physiol 305(12):R1490–R1497. doi: 10.1152/ajpregu.00440.2013 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Martin C, Passilly-Degrace P, Gaillard D, Merlin JF, Chevrot M, Besnard P (2011) The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS One 6(8):e24014. doi: 10.1371/journal.pone.0024014 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Godinot N, Yasumatsu K, Barcos ME, Pineau N, Ledda M, Viton F, Ninomiya Y, le Coutre J, Damak S (2013) Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice. Neuroscience 250:20–30. doi: 10.1016/j.neuroscience.2013.06.043 PubMedGoogle Scholar
  58. 58.
    Gilbertson TA, Khan NA (2014) Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog Lipid Res 53:82–92. doi: 10.1016/j.plipres.2013.11.001 PubMedGoogle Scholar
  59. 59.
    Dramane G, Akpona S, Simonin AM, Besnard P, Khan NA (2011) Cell signaling mechanisms of gustatory perception of lipids: can the taste cells be the target of anti-obesity agents? Curr Med Chem 18(22):3417–3422 BSP/CMC/E-Pub/2011/251 [pii]PubMedGoogle Scholar
  60. 60.
    Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115(11):3177–3184. doi: 10.1172/JCI25299 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Khan NA, Besnard P (2009) Oro-sensory perception of dietary lipids: new insights into the fat taste transduction. Biochim Biophys Acta 1791(3):149–155. doi: 10.1016/j.bbalip.2009.01.001 PubMedGoogle Scholar
  62. 62.
    Abdoul-Azize S, Selvakumar S, Sadou H, Besnard P, Khan NA (2014) Ca2 + signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120. Biochimie 96:8–13. doi: 10.1016/j.biochi.2013.06.005 PubMedGoogle Scholar
  63. 63.
    Laffitte A, Neiers F, Briand L (2014) Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care. doi: 10.1097/MCO.0000000000000058 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Clark AA, Liggett SB, Munger SD (2012) Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J 26(12):4827–4831. doi: 10.1096/fj.12-215087 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Depoortere I (2014) Taste receptors of the gut: emerging roles in health and disease. Gut 63(1):179–190. doi: 10.1136/gutjnl-2013-305112 PubMedGoogle Scholar
  66. 66.
    Yamamoto K, Ishimaru Y (2013) Oral and extra-oral taste perception. Semin Cell Dev Biol 24(3):240–246. doi: 10.1016/j.semcdb.2012.08.005 PubMedGoogle Scholar
  67. 67.
    Gilbertson TA, Damak S, Margolskee RF (2000) The molecular physiology of taste transduction. Curr Opin Neurobiol 10(4):519–527PubMedGoogle Scholar
  68. 68.
    Mennella JA, Spector AC, Reed DR, Coldwell SE (2013) The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 35(8):1225–1246. doi: 10.1016/j.clinthera.2013.06.007 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100(15):8981–8986. doi: 10.1073/pnas.1531172100 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Sbarbati A, Osculati F (2003) Solitary chemosensory cells in mammals? Cells Tissues Organs 175(1):51–55PubMedGoogle Scholar
  71. 71.
    Tizzano M, Merigo F, Sbarbati A (2006) Evidence of solitary chemosensory cells in a large mammal: the diffuse chemosensory system in Bos taurus airways. J Anat 209(3):333–337. doi: 10.1111/j.1469-7580.2006.00617.x PubMedCentralPubMedGoogle Scholar
  72. 72.
    Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC (2008) Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 99(6):2929–2937. doi: 10.1152/jn.00066.2008 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107(7):3210–3215. doi: 10.1073/pnas.0911934107 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Tizzano M, Cristofoletti M, Sbarbati A, Finger TE (2011) Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med 11:3. doi: 10.1186/1471-2466-11-3 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Braun T, Mack B, Kramer MF (2011) Solitary chemosensory cells in the respiratory and vomeronasal epithelium of the human nose: a pilot study. Rhinology 49(5):507–512. doi: 10.4193/Rhin PubMedGoogle Scholar
  76. 76.
    Barham HP, Cooper SE, Anderson CB, Tizzano M, Kingdom TT, Finger TE, Kinnamon SC, Ramakrishnan VR (2013) Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int Forum Allergy Rhinol 3(6):450–457. doi: 10.1002/alr.21149 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124(3):1393–1405. doi: 10.1172/JCI72094 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Saunders CJ, Christensen M, Finger TE, Tizzano M (2014) Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci USA 111(16):6075–6080. doi: 10.1073/pnas.1402251111 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92(5):1490–1494PubMedCentralPubMedGoogle Scholar
  80. 80.
    Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76(1):46–65. doi: 10.1128/MMBR.05007-11 PubMedGoogle Scholar
  81. 81.
    Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14(6):12780–12805. doi: 10.3390/ijms140612780 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias P-T, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA (2012) T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 122(11):4145–4159PubMedCentralPubMedGoogle Scholar
  83. 83.
    Lee RJ, Chen B, Redding KM, Margolskee RF, Cohen NA (2014) Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate Immun 20(6):606–617. doi: 10.1177/1753425913503386 Google Scholar
  84. 84.
    Kim U, Wooding S, Ricci D, Jorde LB, Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26(3):199–204. doi: 10.1002/humu.20203 PubMedGoogle Scholar
  85. 85.
    Li D, Zhang J (2014) Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 31(2):303–309. doi: 10.1093/molbev/mst219 PubMedGoogle Scholar
  86. 86.
    Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB (2011) Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses 36(3):311–319. doi: 10.1093/chemse/bjq132 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lanier SA, Hayes JE, Duffy VB (2005) Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates. Physiol Behav 83(5):821–831. doi: 10.1016/j.physbeh.2004.10.004 PubMedGoogle Scholar
  88. 88.
    Lionakis MS, Netea MG, Holland SM (2014) Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med 4(6):a019638. doi: 10.1101/cshperspect.a019638
  89. 89.
    Greisner WA 3rd, Settipane GA (1996) Hereditary factor for nasal polyps. Allergy Asthma Proc 17(5):283–286PubMedGoogle Scholar
  90. 90.
    Cohen NA, Widelitz JS, Chiu AG, Palmer JN, Kennedy DW (2006) Familial aggregation of sinonasal polyps correlates with severity of disease. Otolaryngol Head Neck Surg 134(4):601–604. doi: 10.1016/j.otohns.2005.11.042 PubMedGoogle Scholar
  91. 91.
    Hamilos DL (2007) Chronic rhinosinusitis patterns of illness. Clin Allergy Immunol 20:1–13PubMedGoogle Scholar
  92. 92.
    Antunes MB, Gudis DA, Cohen NA (2009) Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin North Am 29(4):631–643. doi: 10.1016/j.iac.2009.07.004 PubMedGoogle Scholar
  93. 93.
    Cohen NA (2006) Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl 196:20–26PubMedGoogle Scholar
  94. 94.
    Genoway KA, Philpott CM, Javer AR (2011) Pathogen yield and antimicrobial resistance patterns of chronic rhinosinusitis patients presenting to a tertiary rhinology centre. J Otolaryngol Head Neck Surg 40(3):232–237PubMedGoogle Scholar
  95. 95.
    Hamilos DL (2013) Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol. doi: 10.1016/j.jaci.2013.06.049 PubMedCentralGoogle Scholar
  96. 96.
    Kingdom TT, Swain RE Jr (2004) The microbiology and antimicrobial resistance patterns in chronic rhinosinusitis. Am J Otolaryngol 25(5):323–328 S0196070904000341 [pii]PubMedGoogle Scholar
  97. 97.
    Ooi EH, Wormald PJ, Tan LW (2008) Innate immunity in the paranasal sinuses: a review of nasal host defenses. Am J Rhinol 22(1):13–19. doi: 10.2500/ajr.2008.22.3127 PubMedGoogle Scholar
  98. 98.
    Ramanathan M Jr, Lane AP (2007) Innate immunity of the sinonasal cavity and its role in chronic rhinosinusitis. Otolaryngol Head Neck Surg 136(3):348–356. doi: 10.1016/j.otohns.2006.11.011 PubMedGoogle Scholar
  99. 99.
    Lee RJ, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA (2013) Vasoactive intestinal peptide regulates sinonasal mucociliary clearance and synergizes with histamine in stimulating sinonasal fluid secretion. FASEB J 27(12):5094–5103. doi: 10.1096/fj.13-234476 PubMedGoogle Scholar
  100. 100.
    Zhao KQ, Cowan AT, Lee RJ, Goldstein N, Droguett K, Chen B, Zheng C, Villalon M, Palmer JN, Kreindler JL, Cohen NA (2012) Molecular modulation of airway epithelial ciliary response to sneezing. FASEB J 26(8):3178–3187. doi: 10.1096/fj.11-202184 PubMedGoogle Scholar
  101. 101.
    Sleigh MA, Blake JR, Liron N (1988) The propulsion of mucus by cilia. Am Rev Respir Dis 137(3):726–741PubMedGoogle Scholar
  102. 102.
    Eliezer N, Sade J, Silberberg A, Nevo AC (1970) The role of mucus in transport by cilia. Am Rev Respir Dis 102(1):48–52PubMedGoogle Scholar
  103. 103.
    Gudis D, Zhao KQ, Cohen NA (2012) Acquired cilia dysfunction in chronic rhinosinusitis. Am J Rhinol Allergy 26(1):1–6. doi: 10.2500/ajra.2012.26.3716 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Gudis DA, Cohen NA (2010) Cilia dysfunction. Otolaryngol Clin North Am 43(3):461–472. doi: 10.1016/j.otc.2010.02.007 PubMedGoogle Scholar
  105. 105.
    Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109(5):571–577PubMedCentralPubMedGoogle Scholar
  106. 106.
    Parker D, Prince A (2011) Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol 45(2):189–201. doi: 10.1165/rcmb.2011-0011RT PubMedCentralPubMedGoogle Scholar
  107. 107.
    Fang FC (1997) Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99(12):2818–2825. doi: 10.1172/JCI119473 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Marcinkiewicz J (1997) Nitric oxide and antimicrobial activity of reactive oxygen intermediates. Immunopharmacology 37(1):35–41 S0162310996001683 [pii]PubMedGoogle Scholar
  109. 109.
    Deja M, Busch T, Bachmann S, Riskowski K, Campean V, Wiedmann B, Schwabe M, Hell B, Pfeilschifter J, Falke KJ, Lewandowski K (2003) Reduced nitric oxide in sinus epithelium of patients with radiologic maxillary sinusitis and sepsis. Am J Respir Crit Care Med 168(3):281–286. doi: 10.1164/rccm.200207-640OC PubMedGoogle Scholar
  110. 110.
    Degano B, Valmary S, Serrano E, Brousset P, Arnal JF (2011) Expression of nitric oxide synthases in primary ciliary dyskinesia. Hum Pathol 42(12):1855–1861. doi: 10.1016/j.humpath.2011.01.027 PubMedGoogle Scholar
  111. 111.
    Haight JS, Djupesland PG, Qjan W, Chatkin JM, Furlott H, Irish J, Witterick I, McClean P, Fenton RS, Hoffstein V, Zamel N (1999) Does nasal nitric oxide come from the sinuses? J Otolaryngol 28(4):197–204PubMedGoogle Scholar
  112. 112.
    Naraghi M, Deroee AF, Ebrahimkhani M, Kiani S, Dehpour A (2007) Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am J Otolaryngol 28(5):334–337. doi: 10.1016/j.amjoto.2006.10.014 PubMedGoogle Scholar
  113. 113.
    Phillips PS, Sacks R, Marcells GN, Cohen NA, Harvey RJ (2011) Nasal nitric oxide and sinonasal disease: a systematic review of published evidence. Otolaryngol Head Neck Surg 144(2):159–169PubMedGoogle Scholar
  114. 114.
    Ricciardolo FL (2003) Multiple roles of nitric oxide in the airways. Thorax 58(2):175–182PubMedCentralPubMedGoogle Scholar
  115. 115.
    Zhang Y, Endam LM, Filali-Mouhim A, Bosse Y, Castano R, Desrosiers M (2011) Polymorphisms in the nitric oxide synthase 1 gene are associated with severe chronic rhinosinusitis. Am J Rhinol Allergy 25(2):e49–e54. doi: 10.2500/ajra.2011.25.3588 PubMedGoogle Scholar
  116. 116.
    Gliklich RE, Metson R (1995) The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngol Head Neck Surg 113(1):104–109PubMedGoogle Scholar
  117. 117.
    Khalid AN, Quraishi SA, Kennedy DW (2004) Long-term quality of life measures after functional endoscopic sinus surgery. Am J Rhinol 18(3):131–136PubMedGoogle Scholar
  118. 118.
    Hens G, Hellings PW (2006) The nose: gatekeeper and trigger of bronchial disease. Rhinology 44(3):179–187PubMedGoogle Scholar
  119. 119.
    Bhattacharyya N, Kepnes LJ (2008) Assessment of trends in antimicrobial resistance in chronic rhinosinusitis. Ann Otol Rhinol Laryngol 117(6):448–452PubMedGoogle Scholar
  120. 120.
    Marcinkiewicz J, Strus M, Pasich E (2013) Antibiotic resistance: a “dark side” of biofilm-associated chronic infections. Pol Arch Med Wewn 123(6):309–313PubMedGoogle Scholar
  121. 121.
    Rujanavej V, Soudry E, Banaei N, Baron EJ, Hwang PH, Nayak JV (2013) Trends in incidence and susceptibility among methicillin-resistant Staphylococcus aureus isolated from intranasal cultures associated with rhinosinusitis. Am J Rhinol Allergy 27(2):134–137. doi: 10.2500/ajra.2013.27.3858 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Manes RP, Batra PS (2012) Bacteriology and antibiotic resistance in chronic rhinosinusitis. Facial Plast Surg Clin North Am 20(1):87–91. doi: 10.1016/j.fsc.2011.10.010 PubMedGoogle Scholar
  123. 123.
    Kennedy JL, Borish L (2013) Chronic rhinosinusitis and antibiotics: the good, the bad, and the ugly. Am J Rhinol Allergy 27(6):467–472. doi: 10.2500/ajra.2013.27.3960 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van Heeckeren A, Prince A (2004) Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 30(6):777–783. doi: 10.1165/rcmb.2003-0329OC PubMedGoogle Scholar
  125. 125.
    Greene CM, McElvaney NG (2005) Toll-like receptor expression and function in airway epithelial cells. Arch Immunol Ther Exp (Warsz) 53(5):418–427Google Scholar
  126. 126.
    Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134. doi: 10.1126/science.1173869 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633. doi: 10.1126/science.1124534 PubMedGoogle Scholar
  128. 128.
    Satir P, Christensen ST (2008) Structure and function of mammalian cilia. Histochem Cell Biol 129(6):687–693. doi: 10.1007/s00418-008-0416-9 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Takeda S, Narita K (2012) Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation 83(2):S4–S11. doi: 10.1016/j.diff.2011.11.002 PubMedGoogle Scholar
  130. 130.
    Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422. doi: 10.1146/annurev.physiol.69.040705.141253 PubMedGoogle Scholar
  131. 131.
    Babu D, Roy S (2013) Left-right asymmetry: cilia stir up new surprises in the node. Open Biol 3(5):130052. doi: 10.1098/rsob.130052 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Lai Y, Chen B, Shi J, Palmer JN, Kennedy DW, Cohen NA (2011) Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol 128(6):e11207–e11215. doi: 10.1016/j.jaci.2011.09.001 Google Scholar
  133. 133.
    Ramanathan M Jr, Lane AP (2007) A comparison of experimental methods in molecular chronic rhinosinusitis research. Am J Rhinol 21(3):373–377PubMedGoogle Scholar
  134. 134.
    Antunes MB, Woodworth BA, Bhargave G, Xiong G, Aguilar JL, Ratner AJ, Kreindler JL, Rubenstein RC, Cohen NA (2007) Murine nasal septa for respiratory epithelial air-liquid interface cultures. Biotechniques 43(2):195–196 198, 200 passim 000112531 [pii]PubMedGoogle Scholar
  135. 135.
    Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P (2005) The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro 19(1):107–122. doi: 10.1016/j.tiv.2004.07.003 PubMedGoogle Scholar
  136. 136.
    Woodworth BA, Antunes MB, Bhargave G, Palmer JN, Cohen NA (2007) Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study. Am J Rhinol 21(5):533–537. doi: 10.2500/ajr.2007.21.3068 PubMedGoogle Scholar
  137. 137.
    Perez CA, Margolskee RF, Kinnamon SC, Ogura T (2003) Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33(5–6):541–549PubMedGoogle Scholar
  138. 138.
    Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27(21):5777–5786. doi: 10.1523/JNEUROSCI.4973-06.2007 PubMedGoogle Scholar
  139. 139.
    Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5(11):1169–1176. doi: 10.1038/nn952 PubMedGoogle Scholar
  140. 140.
    Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S (1991) Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 181(2):852–857PubMedGoogle Scholar
  141. 141.
    Maniscalco M, Sofia M, Pelaia G (2007) Nitric oxide in upper airways inflammatory diseases. Inflamm Res 56(2):58–69. doi: 10.1007/s00011-006-6111-1 PubMedGoogle Scholar
  142. 142.
    Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–5767PubMedCentralPubMedGoogle Scholar
  143. 143.
    Li Z, Nair SK (2012) Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals? Protein Sci. doi: 10.1002/pro.2132 Google Scholar
  144. 144.
    Whitney G, Harder DB (1994) Genetics of bitter perception in mice. Physiol Behav 56(6):1141–1147PubMedGoogle Scholar
  145. 145.
    Wu SV, Chen MC, Rozengurt E (2005) Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol Genomics 22(2):139–149. doi: 10.1152/physiolgenomics.00030.2005 PubMedGoogle Scholar
  146. 146.
    Whitney G, Harder DB (1986) Phenylthiocarbamide (PTC) preference among laboratory mice: understanding of a previously “unreplicated” report. Behav Genet 16(6):605–610PubMedGoogle Scholar
  147. 147.
    St John SJ, Pour L, Boughter JD Jr (2005) Phenylthiocarbamide produces conditioned taste aversions in mice. Chem Senses 30(5):377–382 bji032 [pii] 0.1093/chemse/bji032PubMedGoogle Scholar
  148. 148.
    Nelson TM, Munger SD, Boughter JD Jr (2003) Taste sensitivities to PROP and PTC vary independently in mice. Chem Senses 28(8):695–704PubMedGoogle Scholar
  149. 149.
    Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99(4):2392–2397. doi: 10.1073/pnas.042617699 PubMedCentralPubMedGoogle Scholar
  150. 150.
    Chen MC, Wu SV, Reeve JR Jr, Rozengurt E (2006) Bitter stimuli induce Ca2 + signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2 + channels. Am J Physiol Cell Physiol 291(4):C726–C739. doi: 10.1152/ajpcell.00003.2006 PubMedGoogle Scholar
  151. 151.
    Jeon TI, Seo YK, Osborne TF (2011) Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK. Biochem J 438(1):33–37. doi: 10.1042/BJ20110009 PubMedCentralPubMedGoogle Scholar
  152. 152.
    Ruiz-Avila L, Wong GT, Damak S, Margolskee RF (2001) Dominant loss of responsiveness to sweet and bitter compounds caused by a single mutation in alpha -gustducin. Proc Natl Acad Sci USA 98(15):8868–8873. doi: 10.1073/pnas.151235798 PubMedCentralPubMedGoogle Scholar
  153. 153.
    Hoon MA, Northup JK, Margolskee RF, Ryba NJ (1995) Functional expression of the taste specific G-protein, alpha-gustducin. Biochem J 309(Pt 2):629–636PubMedCentralPubMedGoogle Scholar
  154. 154.
    McLaughlin SK, McKinnon PJ, Margolskee RF (1992) Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357(6379):563–569. doi: 10.1038/357563a0 PubMedGoogle Scholar
  155. 155.
    Caicedo A, Pereira E, Margolskee RF, Roper SD (2003) Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli. J Neurosci 23(30):9947–9952PubMedGoogle Scholar
  156. 156.
    He W, Danilova V, Zou S, Hellekant G, Max M, Margolskee RF, Damak S (2002) Partial rescue of taste responses of alpha-gustducin null mice by transgenic expression of alpha-transducin. Chem Senses 27(8):719–727PubMedGoogle Scholar
  157. 157.
    Glendinning JI, Bloom LD, Onishi M, Zheng KH, Damak S, Margolskee RF, Spector AC (2005) Contribution of alpha-gustducin to taste-guided licking responses of mice. Chem Senses 30(4):299–316. doi: 10.1093/chemse/bji025 PubMedGoogle Scholar
  158. 158.
    Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, Slack JP, Kim UK, Drayna D, Meyerhof W (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15(4):322–327. doi: 10.1016/j.cub.2005.01.047 PubMedCentralPubMedGoogle Scholar
  159. 159.
    Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM (2014) Genetics of taste receptors. Curr Pharm Des 20(16):2669–2683 CPD-E-PUB-54566 [pii]PubMedGoogle Scholar
  160. 160.
    Guo SW, Reed DR (2001) The genetics of phenylthiocarbamide perception. Ann Hum Biol 28(2):111–142PubMedCentralPubMedGoogle Scholar
  161. 161.
    Mennella JA, Pepino MY, Reed DR (2005) Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics 115(2):e216–e222. doi: 10.1542/peds.2004-1582 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Reed DR, Knaapila A (2010) Genetics of taste and smell: poisons and pleasures. Prog Mol Biol Transl Sci 94:213–240. doi: 10.1016/B978-0-12-375003-7.00008-X PubMedCentralPubMedGoogle Scholar
  163. 163.
    Tan J, Abrol R, Trzaskowski B, Goddard WA 3rd (2012) 3D Structure Prediction of TAS2R38 Bitter Receptors Bound to Agonists Phenylthiocarbamide (PTC) and 6-n-Propylthiouracil (PROP). J Chem Inf Model. doi: 10.1021/ci300133a PubMedCentralGoogle Scholar
  164. 164.
    Biarnes X, Marchiori A, Giorgetti A, Lanzara C, Gasparini P, Carloni P, Born S, Brockhoff A, Behrens M, Meyerhof W (2010) Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One 5(8):e12394. doi: 10.1371/journal.pone.0012394 PubMedCentralPubMedGoogle Scholar
  165. 165.
    Floriano WB, Hall S, Vaidehi N, Kim U, Drayna D, Goddard WA 3rd (2006) Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model 12(6):931–941. doi: 10.1007/s00894-006-0102-6 PubMedGoogle Scholar
  166. 166.
    Lipchock SV, Mennella JA, Spielman AI, Reed DR (2013) Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. Am J Clin Nutr 98(4):1136–1143. doi: 10.3945/ajcn.113.066688 PubMedCentralPubMedGoogle Scholar
  167. 167.
    Adappa ND, Howland TJ, Palmer JN, Kennedy DW, Doghramji L, Lysenko A, Reed DR, Lee RJ, Cohen NA (2013) Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. Int Forum Allergy Rhinol 3(3):184–187PubMedGoogle Scholar
  168. 168.
    Adappa ND, Zhang Z, Palmer JN, Kennedy DW, Doghramji L, Lysenko A, Reed DR, Scott T, Zhao NW, Owens D, Lee RJ, Cohen NA (2013) The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol. doi: 10.1002/alr.21253 PubMedCentralGoogle Scholar
  169. 169.
    Mfuna Endam L, Filali-Mouhim A, Boisvert P, Boulet LP, Bosse Y, Desrosiers M (2014) Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study. Int Forum Allergy Rhinol 4(3):200–206. doi: 10.1002/alr.21275 PubMedGoogle Scholar
  170. 170.
    Sbarbati A, Merigo F, Osculati F (2010) Eukaryotic vs. prokaryotic chemosensory systems. Biomed Pharmacother 64(4):233–239. doi: 10.1016/j.biopha.2009.06.015 PubMedGoogle Scholar
  171. 171.
    Gulbransen B, Silver W, Finger TE (2008) Solitary chemoreceptor cell survival is independent of intact trigeminal innervation. J Comp Neurol 508(1):62–71. doi: 10.1002/cne.21657 PubMedCentralPubMedGoogle Scholar
  172. 172.
    Osculati F, Bentivoglio M, Castellucci M, Cinti S, Zancanaro C, Sbarbati A (2007) The solitary chemosensory cells and the diffuse chemosensory system of the airway. Eur J Histochem 51(Suppl 1):65–72PubMedGoogle Scholar
  173. 173.
    Kotrschal K (2000) Taste(s) and olfaction(s) in fish: a review of specialized sub-systems and central integration. Pflugers Arch 439(3 Suppl):R178–R180PubMedGoogle Scholar
  174. 174.
    Tizzano M, Finger TE (2013) Chemosensors in the nose: guardians of the airways. Physiology (Bethesda) 28(1):51–60. doi: 10.1152/physiol.00035.2012 Google Scholar
  175. 175.
    Whitear M (1992) Solitary chemoreceptor cells. In: Hara TJ (ed) Chemoreception in Fishes. Chapman and Hall, London, pp 103–125Google Scholar
  176. 176.
    Hansen A (2007) Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis. BMC Neurosci 8:64. doi: 10.1186/1471-2202-8-64 PubMedCentralPubMedGoogle Scholar
  177. 177.
    Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99(3):1451–1460. doi: 10.1152/jn.01195.2007 PubMedGoogle Scholar
  178. 178.
    Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Muhlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H, Baal N, Weihe E, Schutz B, Kotlikoff M, Ibanez-Tallon I, Kummer W (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci USA 108(23):9478–9483. doi: 10.1073/pnas.1019418108 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Baraniuk JN, Kaliner MA (1990) Neuropeptides and nasal secretion. J Allergy Clin Immunol 86(4 Pt 2):620–627PubMedGoogle Scholar
  180. 180.
    Dinh QT, Groneberg DA, Mingomataj E, Peiser C, Heppt W, Dinh S, Arck PC, Klapp BF, Fischer A (2003) Expression of substance P and vanilloid receptor (VR1) in trigeminal sensory neurons projecting to the mouse nasal mucosa. Neuropeptides 37(4):245–250 S0143417903000659 [pii]PubMedGoogle Scholar
  181. 181.
    Fang SY, Shen CL (1997) Neuropeptidergic innervation of human nasal mucosa in various pathological conditions. Proc Natl Sci Counc Repub China B 21(1):8–12PubMedGoogle Scholar
  182. 182.
    Mendonca JC, Dolci JE (2005) Neuropeptide immunofluorescence in human nasal mucosa: assessment of the technique for vasoactive intestinal peptide (VIP). Braz J Otorhinolaryngol 71(2):123–131 S0034-72992005000200002 [pii]/S0034-72992005000200002PubMedGoogle Scholar
  183. 183.
    Mosimann BL, White MV, Hohman RJ, Goldrich MS, Kaulbach HC, Kaliner MA (1993) Substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol 92(1 Pt 1):95–104PubMedGoogle Scholar
  184. 184.
    Ianowski JP, Choi JY, Wine JJ, Hanrahan JW (2007) Mucus secretion by single tracheal submucosal glands from normal and CFTR knock-out mice. J Physiol 580:301–314PubMedCentralPubMedGoogle Scholar
  185. 185.
    Ianowski JP, Choi JY, Wine JJ, Hanrahan JW (2008) Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands. Pflugers Arch 457:529–537PubMedGoogle Scholar
  186. 186.
    Lee RJ, Foskett JK (2010) cAMP-activated Ca2 + signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 120(9):3137–3148PubMedCentralPubMedGoogle Scholar
  187. 187.
    Lee RJ, Foskett JK (2012) Why mouse airway submucosal gland serous cells do not secrete fluid in response to cAMP stimulation. J Biol Chem 287(45):38316–38326. doi: 10.1074/jbc.M112.412817 PubMedCentralPubMedGoogle Scholar
  188. 188.
    Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35(2):157–170. doi: 10.1093/chemse/bjp092 PubMedGoogle Scholar
  189. 189.
    Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37(2):156–181. doi: 10.1111/j.1574-6976.2012.00345.x PubMedGoogle Scholar
  190. 190.
    Frederix M, Downie AJ (2011) Quorum sensing: regulating the regulators. Adv Microb Physiol 58:23–80. doi: 10.1016/B978-0-12-381043-4.00002-7 PubMedGoogle Scholar
  191. 191.
    Abraham WR (2006) Controlling biofilms of gram-positive pathogenic bacteria. Curr Med Chem 13(13):1509–1524PubMedGoogle Scholar
  192. 192.
    Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M (2005) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 280(15):15238–15246. doi: 10.1074/jbc.M414287200 PubMedGoogle Scholar
  193. 193.
    Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF (2005) Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem 280(40):34296–34305. doi: 10.1074/jbc.M505255200 PubMedGoogle Scholar
  194. 194.
    Imada T, Misaka T, Fujiwara S, Okada S, Fukuda Y, Abe K (2010) Amiloride reduces the sweet taste intensity by inhibiting the human sweet taste receptor. Biochem Biophys Res Commun 397(2):220–225. doi: 10.1016/j.bbrc.2010.05.088 PubMedGoogle Scholar
  195. 195.
    Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301(5634):850–853. doi: 10.1126/science.1087155 PubMedGoogle Scholar
  196. 196.
    Lemon CH, Margolskee RF (2009) Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons. J Neurophysiol 101(5):2459–2471. doi: 10.1152/jn.90892.2008 PubMedCentralPubMedGoogle Scholar
  197. 197.
    Chiu AG, Antunes MB, Feldman M, Cohen NA (2007) An animal model for the study of topical medications in sinusitis. Am J Rhinol 21(1):5–9PubMedGoogle Scholar
  198. 198.
    Ha KR, Psaltis AJ, Tan L, Wormald PJ (2007) A sheep model for the study of biofilms in rhinosinusitis. Am J Rhinol 21(3):339–345PubMedGoogle Scholar
  199. 199.
    Wang JC, Hathorn I, Habib AR, Chang E, Javer AR (2013) Evaluation of domestic and Yucatan swine nasal sinus anatomy as models for future sinonasal research of medications delivered by standard instruments used in functional endoscopic sinus surgery. Int Forum Allergy Rhinol 3(2):150–156. doi: 10.1002/alr.21081 PubMedGoogle Scholar
  200. 200.
    Trout L, Corboz MR, Ballard ST (2001) Mechanism of substance P-induced liquid secretion across bronchial epithelium. Am J Physiol Lung Cell Mol Physiol 281(3):L639–L645PubMedGoogle Scholar
  201. 201.
    Choi JY, Khansaheb M, Joo NS, Krouse ME, Robbins RC, Weill D, Wine JJ (2009) Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process. J Clin Invest 119(5):1189–1200PubMedCentralPubMedGoogle Scholar
  202. 202.
    Schiffman SS, Booth BJ, Sattely-Miller EA, Graham BG, Gibes KM (1999) Selective inhibition of sweetness by the sodium salt of ± 2-(4-methoxyphenoxy)propanoic acid. Chem Senses 24(4):439–447PubMedGoogle Scholar
  203. 203.
    Kyriazis GA, Soundarapandian MM, Tyrberg B (2012) Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 109(8):E524–E532. doi: 10.1073/pnas.1115183109 PubMedCentralPubMedGoogle Scholar
  204. 204.
    Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104(38):15069–15074. doi: 10.1073/pnas.0706890104 PubMedCentralPubMedGoogle Scholar
  205. 205.
    Garnett JP, Baker EH, Baines DL (2012) Sweet talk: insights into the nature and importance of glucose transport in lung epithelium. Eur Respir J 40(5):1269–1276. doi: 10.1183/09031936.00052612 PubMedGoogle Scholar
  206. 206.
    Kalsi KK, Baker EH, Fraser O, Chung YL, Mace OJ, Tarelli E, Philips BJ, Baines DL (2009) Glucose homeostasis across human airway epithelial cell monolayers: role of diffusion, transport and metabolism. Pflugers Arch 457(5):1061–1070. doi: 10.1007/s00424-008-0576-4 PubMedGoogle Scholar
  207. 207.
    Pezzulo AA, Gutierrez J, Duschner KS, McConnell KS, Taft PJ, Ernst SE, Yahr TL, Rahmouni K, Klesney-Tait J, Stoltz DA, Zabner J (2011) Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLoS One 6(1):e16166. doi: 10.1371/journal.pone.0016166 PubMedCentralPubMedGoogle Scholar
  208. 208.
    Baker EH, Clark N, Brennan AL, Fisher DA, Gyi KM, Hodson ME, Philips BJ, Baines DL (1985) Wood DM (2007) Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol 102(5):1969–1975. doi: 10.1152/japplphysiol.01425.2006 Google Scholar
  209. 209.
    Rogers GA, Den Beste K, Parkos CA, Nusrat A, Delgaudio JM, Wise SK (2011) Epithelial tight junction alterations in nasal polyposis. Int Forum Allergy Rhinol 1(1):50–54. doi: 10.1002/alr.20014 PubMedGoogle Scholar
  210. 210.
    Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, Kast JI, Akdis CA (2012) Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 130(5):1087–1096, e1010. doi: 10.1016/j.jaci.2012.05.052 PubMedGoogle Scholar
  211. 211.
    Koziel H, Koziel MJ (1995) Pulmonary complications of diabetes mellitus pneumonia. Infect Dis Clin North Am 9(1):65–96PubMedGoogle Scholar
  212. 212.
    Zhang Z, Adappa ND, Lautenbach E, Chiu AG, Doghramji L, Howland TJ, Cohen NA, Palmer JN (2014) The effect of diabetes mellitus on chronic rhinosinusitis and sinus surgery outcome. Int Forum Allergy Rhinol. doi: 10.1002/alr.21269 PubMedCentralGoogle Scholar
  213. 213.
    Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D (2009) Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol 19(15):1288–1293. doi: 10.1016/j.cub.2009.06.015 PubMedCentralPubMedGoogle Scholar
  214. 214.
    Krasteva G, Canning BJ, Papadakis T, Kummer W (2012) Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci 91(21–22):992–996. doi: 10.1016/j.lfs.2012.06.014 PubMedGoogle Scholar
  215. 215.
    Saunders CJ, Reynolds SD, Finger TE (2013) Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am J Respir Cell Mol Biol 49(2):190–196. doi: 10.1165/rcmb.2012-0485OC PubMedCentralPubMedGoogle Scholar
  216. 216.
    Sbarbati A, Osculati F (2005) A new fate for old cells: brush cells and related elements. J Anat 206(4):349–358. doi: 10.1111/j.1469-7580.2005.00403.x PubMedCentralPubMedGoogle Scholar
  217. 217.
    An SS, Wang WC, Koziol-White CJ, Ahn K, Lee DY, Kurten RC, Panettieri RA Jr, Liggett SB (2012) TAS2R activation promotes airway smooth muscle relaxation despite beta(2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol 303(4):L304–L311. doi: 10.1152/ajplung.00126.2012 PubMedCentralPubMedGoogle Scholar
  218. 218.
    Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16(11):1299–1304. doi: 10.1038/nm.2237 PubMedCentralPubMedGoogle Scholar
  219. 219.
    Robinett KS, Deshpande DA, Malone MM, Liggett SB (2011) Agonist-promoted homologous desensitization of human airway smooth muscle bitter taste receptors. Am J Respir Cell Mol Biol 45(5):1069–1074. doi: 10.1165/rcmb.2011-0061OC PubMedCentralPubMedGoogle Scholar
  220. 220.
    Robinett KS, Koziol-White CJ, Akoluk A, An SS, Panettieri RA Jr, Liggett SB (2014) Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol 50(4):678–683. doi: 10.1165/rcmb.2013-0439RC PubMedGoogle Scholar
  221. 221.
    Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423. doi: 10.1038/nature09674 PubMedGoogle Scholar
  222. 222.
    Wilson SS, Wiens ME, Smith JG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425(24):4965–4980. doi: 10.1016/j.jmb.2013.09.038 PubMedGoogle Scholar
  223. 223.
    Lee RJ, Cohen NA (2013) The emerging role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Am J Rhinol Allergy 27(4):283–286. doi: 10.2500/ajra.2013.27.3911 PubMedGoogle Scholar
  224. 224.
    Cohen SP, Buckley BK, Kosloff M, Garland AL, Bosch DE, Cheng G Jr, Radhakrishna H, Brown MD, Willard FS, Arshavsky VY, Tarran R, Siderovski DP, Kimple AJ (2012) Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia. J Biol Chem 287(50):41706–41719. doi: 10.1074/jbc.M112.423806 PubMedCentralPubMedGoogle Scholar
  225. 225.
    Pulkkinen V, Manson ML, Safholm J, Adner M, Dahlen SE (2012) The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea. Am J Physiol Lung Cell Mol Physiol 303(11):L956–L966. doi: 10.1152/ajplung.00205.2012 PubMedGoogle Scholar
  226. 226.
    Grassin-Delyle S, Abrial C, Fayad-Kobeissi S, Brollo M, Faisy C, Alvarez JC, Naline E, Devillier P (2013) The expression and relaxant effect of bitter taste receptors in human bronchi. Respir Res 14:134. doi: 10.1186/1465-9921-14-134 PubMedCentralPubMedGoogle Scholar
  227. 227.
    Krasteva G, Hartmann P, Papadakis T, Bodenbenner M, Wessels L, Weihe E, Schutz B, Langheinrich AC, Chubanov V, Gudermann T, Ibanez-Tallon I, Kummer W (2012) Cholinergic chemosensory cells in the auditory tube. Histochem Cell Biol 137(4):483–497. doi: 10.1007/s00418-012-0911-x PubMedGoogle Scholar
  228. 228.
    Elliott RA, Kapoor S, Tincello DG (2011) Expression and distribution of the sweet taste receptor isoforms T1R2 and T1R3 in human and rat bladders. J Urol 186(6):2455–2462. doi: 10.1016/j.juro.2011.07.083 PubMedGoogle Scholar
  229. 229.
    Dehkordi O, Rose JE, Fatemi M, Allard JS, Balan KV, Young JK, Fatima S, Millis RM, Jayam-Trouth A (2012) Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem. Brain Res 1475:1–10. doi: 10.1016/j.brainres.2012.07.038 PubMedGoogle Scholar
  230. 230.
    Singh N, Vrontakis M, Parkinson F, Chelikani P (2011) Functional bitter taste receptors are expressed in brain cells. Biochem Biophys Res Commun 406(1):146–151. doi: 10.1016/j.bbrc.2011.02.016 PubMedGoogle Scholar
  231. 231.
    Ren X, Zhou L, Terwilliger R, Newton SS, de Araujo IE (2009) Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci 3:12. doi: 10.3389/neuro.07.012.2009 PubMedCentralPubMedGoogle Scholar
  232. 232.
    Shin YJ, Park JH, Choi JS, Chun MH, Moon YW, Lee MY (2010) Enhanced expression of the sweet taste receptors and alpha-gustducin in reactive astrocytes of the rat hippocampus following ischemic injury. Neurochem Res 35(10):1628–1634. doi: 10.1007/s11064-010-0223-2 PubMedGoogle Scholar
  233. 233.
    Singh N, Chakraborty R, Bhullar RP, Chelikani P (2014) Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells. Biochem Biophys Res Commun 446(2):499–503. doi: 10.1016/j.bbrc.2014.02.140 PubMedGoogle Scholar
  234. 234.
    Foster SR, Porrello ER, Purdue B, Chan HW, Voigt A, Frenzel S, Hannan RD, Moritz KM, Simmons DG, Molenaar P, Roura E, Boehm U, Meyerhof W, Thomas WG (2013) Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS One 8(5):e64579. doi: 10.1371/journal.pone.0064579 PubMedCentralPubMedGoogle Scholar
  235. 235.
    Hao S, Dulake M, Espero E, Sternini C, Raybould HE, Rinaman L (2009) Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands. Am J Physiol Regul Integr Comp Physiol 296(3):R528–R536. doi: 10.1152/ajpregu.90423.2008 PubMedCentralPubMedGoogle Scholar
  236. 236.
    Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM, Mitchell BD, Li X, Steinle NI, Munger SD (2008) Bitter taste receptors influence glucose homeostasis. PLoS One 3(12):e3974. doi: 10.1371/journal.pone.0003974 PubMedCentralPubMedGoogle Scholar
  237. 237.
    Bezencon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32(1):41–49. doi: 10.1093/chemse/bjl034 PubMedGoogle Scholar
  238. 238.
    Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I (2011) Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108(5):2094–2099. doi: 10.1073/pnas.1011508108 PubMedCentralPubMedGoogle Scholar
  239. 239.
    Kokrashvili Z, Mosinger B, Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90(3):822S–825S. doi: 10.3945/ajcn.2009.27462T PubMedCentralPubMedGoogle Scholar
  240. 240.
    Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33(Pt 1):302–305. doi: 10.1042/BST0330302 PubMedGoogle Scholar
  241. 241.
    Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na + -glucose cotransporter 1. Proc Natl Acad Sci USA 104(38):15075–15080. doi: 10.1073/pnas.0706678104 PubMedCentralPubMedGoogle Scholar
  242. 242.
    Sclafani A (2007) Sweet taste signaling in the gut. Proc Natl Acad Sci USA 104(38):14887–14888. doi: 10.1073/pnas.0707410104 PubMedCentralPubMedGoogle Scholar
  243. 243.
    Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA, Daly K, Ionescu C, Bravo D, Shirazi-Beechey SP (2010) Expression of Na +/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners. Br J Nutr 104(5):637–646. doi: 10.1017/S0007114510000917 PubMedGoogle Scholar
  244. 244.
    Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 30(4):524–532. doi: 10.1016/j.clnu.2011.01.007 PubMedGoogle Scholar
  245. 245.
    Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C (2011) The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab 301(2):E317–E325. doi: 10.1152/ajpendo.00077.2011 PubMedGoogle Scholar
  246. 246.
    Geraedts MC, Takahashi T, Vigues S, Markwardt ML, Nkobena A, Cockerham RE, Hajnal A, Dotson CD, Rizzo MA, Munger SD (2012) Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am J Physiol Endocrinol Metab 303(4):E464–E474. doi: 10.1152/ajpendo.00163.2012 PubMedCentralPubMedGoogle Scholar
  247. 247.
    Shirazi-Beechey SP, Daly K, Al-Rammahi M, Moran AW, Bravo D (2014) Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr 1:8. doi: 10.1017/S0007114513002286 Google Scholar
  248. 248.
    Meyer-Gerspach AC, Wolnerhanssen B, Beglinger C (2014) Gut sweet taste receptors and their role in metabolism. Front Horm Res 42:123–133. doi: 10.1159/000358321 PubMedGoogle Scholar
  249. 249.
    Malaisse WJ, Vanonderbergen A, Louchami K, Jijakli H, Malaisse-Lagae F (1998) Effects of artificial sweeteners on insulin release and cationic fluxes in rat pancreatic islets. Cell Signal 10(10):727–733PubMedGoogle Scholar
  250. 250.
    Xu J, Cao J, Iguchi N, Riethmacher D, Huang L (2013) Functional characterization of bitter-taste receptors expressed in mammalian testis. Mol Hum Reprod 19(1):17–28. doi: 10.1093/molehr/gas040 PubMedCentralPubMedGoogle Scholar
  251. 251.
    Li F, Zhou M (2012) Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol Hum Reprod 18(6):289–297. doi: 10.1093/molehr/gas005 PubMedCentralPubMedGoogle Scholar
  252. 252.
    Meyer D, Voigt A, Widmayer P, Borth H, Huebner S, Breit A, Marschall S, de Angelis MH, Boehm U, Meyerhof W, Gudermann T, Boekhoff I (2012) Expression of Tas1 taste receptors in mammalian spermatozoa: functional role of Tas1r1 in regulating basal Ca(2)(+) and cAMP concentrations in spermatozoa. PLoS One 7(2):e32354. doi: 10.1371/journal.pone.0032354 PubMedCentralPubMedGoogle Scholar
  253. 253.
    Mosinger B, Redding KM, Parker MR, Yevshayeva V, Yee KK, Dyomina K, Li Y, Margolskee RF (2013) Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. Proc Natl Acad Sci USA 110(30):12319–12324. doi: 10.1073/pnas.1302827110 PubMedCentralPubMedGoogle Scholar
  254. 254.
    Voigt A, Hubner S, Lossow K, Hermans-Borgmeyer I, Boehm U, Meyerhof W (2012) Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem Senses 37(9):897–911. doi: 10.1093/chemse/bjs082 PubMedGoogle Scholar
  255. 255.
    Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF (1999) Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2(12):1055–1062. doi: 10.1038/15981 PubMedGoogle Scholar
  256. 256.
    Giovannucci DR, Groblewski GE, Sneyd J, Yule DI (2000) Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca2 + release and shapes oscillatory Ca2 + signals. J Biol Chem 275(43):33704–33711. doi: 10.1074/jbc.M004278200 PubMedGoogle Scholar
  257. 257.
    Yule DI, Straub SV, Bruce JI (2003) Modulation of Ca2 + oscillations by phosphorylation of Ins(1,4,5)P3 receptors. Biochem Soc Trans 31(Pt 5):954–957PubMedGoogle Scholar
  258. 258.
    Clapp TR, Stone LM, Margolskee RF, Kinnamon SC (2001) Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2:6PubMedCentralPubMedGoogle Scholar
  259. 259.
    Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, Ninomiya Y, Mikoshiba K (2007) Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J Biol Chem 282(51):37225–37231. doi: 10.1074/jbc.M705641200 PubMedGoogle Scholar
  260. 260.
    Miyoshi MA, Abe K, Emori Y (2001) IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses 26(3):259–265PubMedGoogle Scholar
  261. 261.
    Gao N, Lu M, Echeverri F, Laita B, Kalabat D, Williams ME, Hevezi P, Zlotnik A, Moyer BD (2009) Voltage-gated sodium channels in taste bud cells. BMC Neurosci 10:20. doi: 10.1186/1471-2202-10-20 PubMedCentralPubMedGoogle Scholar
  262. 262.
    Waterer GW (2012) Airway defense mechanisms. Clin Chest Med 33(2):199–209. doi: 10.1016/j.ccm.2012.03.003 PubMedGoogle Scholar
  263. 263.
    Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837. doi: 10.1093/eurheartj/ehr304 837a-837dPubMedCentralPubMedGoogle Scholar
  264. 264.
    Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774. doi: 10.1146/annurev.physiol.64.081501.155952 PubMedGoogle Scholar
  265. 265.
    Stout SL, Wyatt TA, Adams JJ, Sisson JH (2007) Nitric oxide-dependent cilia regulatory enzyme localization in bovine bronchial epithelial cells. J Histochem Cytochem 55(5):433–442. doi: 10.1369/jhc.6A7089.2007 PubMedGoogle Scholar

Copyright information

© Springer Basel (outside the USA) 2014

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Philadelphia Veterans Affairs Medical Center Surgical ServicesPhiladelphiaUSA

Personalised recommendations