Cellular and Molecular Life Sciences

, Volume 71, Issue 23, pp 4545–4559 | Cite as

Replication initiation and genome instability: a crossroads for DNA and RNA synthesis

Multi-author review

Abstract

Nuclear DNA replication requires the concerted action of hundreds of proteins to efficiently unwind and duplicate the entire genome while also retaining epigenetic regulatory information. Initiation of DNA replication is tightly regulated, rapidly firing thousands of origins once the conditions to promote rapid and faithful replication are in place, and defects in replication initiation lead to proliferation defects, genome instability, and a range of developmental abnormalities. Interestingly, DNA replication in metazoans initiates in actively transcribed DNA, meaning that replication initiation occurs in DNA that is co-occupied with tens of thousands of poised and active RNA polymerase complexes. Active transcription can induce genome instability, particularly during DNA replication, as RNA polymerases can induce torsional stress, formation of secondary structures, and act as a physical barrier to other enzymes involved in DNA metabolism. Here we discuss the challenges facing mammalian DNA replication, their impact on genome instability, and the development of cancer.

Keywords

DNA replication Replication stress Transcription Origin licensing R loop 

References

  1. 1.
    Diffley JF (2004) Regulation of early events in chromosome replication. Curr Biol 14(18):R778–R786. doi:10.1016/j.cub.2004.09.019 PubMedGoogle Scholar
  2. 2.
    Bell SP (2002) The origin recognition complex: from simple origins to complex functions. Genes Dev 16(6):659–672. doi:10.1101/gad.969602 PubMedGoogle Scholar
  3. 3.
    Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in Eukarya. Cold Spring Harb Perspect Biol 5(9). doi:10.1101/cshperspect.a012930
  4. 4.
    Costa A, Hood IV, Berger JM (2013) Mechanisms for initiating cellular DNA replication. Annu Rev Biochem 82:25–54. doi:10.1146/annurev-biochem-052610-094414 PubMedGoogle Scholar
  5. 5.
    Chabes AL, Bjorklund S, Thelander L (2004) S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem 279(11):10796–10807. doi:10.1074/jbc.M312482200 PubMedGoogle Scholar
  6. 6.
    Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Bio 6(6):476–486. doi:10.1038/Nrm1663 Google Scholar
  7. 7.
    Chakraborty A, Shen Z, Prasanth SG (2011) “ORCanization” on heterochromatin: linking DNA replication initiation to chromatin organization. Epigenetics 6(6):665–670PubMedGoogle Scholar
  8. 8.
    Prasanth SG, Shen Z, Prasanth KV, Stillman B (2010) Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci USA 107(34):15093–15098. doi:10.1073/pnas.1009945107 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Thomae AW, Pich D, Brocher J, Spindler MP, Berens C, Hock R, Hammerschmidt W, Schepers A (2008) Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc Natl Acad Sci USA 105(5):1692–1697. doi:10.1073/pnas.0707260105 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Scholefield G, Veening JW, Murray H (2011) DnaA and ORC: more than DNA replication initiators. Trends Cell Biol 21(3):188–194. doi:10.1016/j.tcb.2010.10.006 PubMedGoogle Scholar
  11. 11.
    Tatsumi Y, Ezura K, Yoshida K, Yugawa T, Narisawa-Saito M, Kiyono T, Ohta S, Obuse C, Fujita M (2008) Involvement of human ORC and TRF2 in pre-replication complex assembly at telomeres. Genes Cells 13(10):1045–1059. doi:10.1111/j.1365-2443.2008.01224.x PubMedGoogle Scholar
  12. 12.
    Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35(4):403–413. doi:10.1016/j.molcel.2009.06.025 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Atanasiu C, Deng Z, Wiedmer A, Norseen J, Lieberman PM (2006) ORC binding to TRF2 stimulates OriP replication. EMBO Rep 7(7):716–721. doi:10.1038/sj.embor.7400730 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Gilbert DM (2010) Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet 11(10):673–684. doi:10.1038/nrg2830 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Mesner LD, Valsakumar V, Karnani N, Dutta A, Hamlin JL, Bekiranov S (2011) Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res 21(3):377–389. doi:10.1101/gr.111328.110 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hansen RS, Thomas S, Sandstrom R, Canfield TK, Thurman RE, Weaver M, Dorschner MO, Gartler SM, Stamatoyannopoulos JA (2010) Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107(1):139–144. doi:10.1073/pnas.0912402107 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Farkash-Amar S, Simon I (2010) Genome-wide analysis of the replication program in mammals. Chromosome Res 18(1):115–125. doi:10.1007/s10577-009-9091-5 PubMedGoogle Scholar
  18. 18.
    Pope BD, Hiratani I, Gilbert DM (2010) Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res 18(1):127–136. doi:10.1007/s10577-009-9100-8 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I (2008) Global organization of replication time zones of the mouse genome. Genome Res 18(10):1562–1570. doi:10.1101/gr.079566.108 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Pope BD, Gilbert DM (2013) The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J Mol Biol 425(23):4690–4695. doi:10.1016/j.jmb.2013.04.014 PubMedGoogle Scholar
  21. 21.
    Moindrot B, Audit B, Klous P, Baker A, Thermes C, de Laat W, Bouvet P, Mongelard F, Arneodo A (2012) 3D chromatin conformation correlates with replication timing and is conserved in resting cells. Nucleic Acids Res 40(19):9470–9481. doi:10.1093/nar/gks736 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G, Casellas R, Robbiani DF, Staudt L, Fernandez-Capetillo O, Nussenzweig A (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152(3):620–632. doi:10.1016/j.cell.2013.01.006 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Svejstrup JQ (2010) The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 35(6):333–338. doi:10.1016/j.tibs.2010.02.001 PubMedGoogle Scholar
  24. 24.
    Cui P, Lin Q, Xin C, Han L, An L, Wang Y, Hu Z, Ding F, Zhang L, Hu S, Hang H, Yu J (2010) Hydroxyurea-induced global transcriptional suppression in mouse ES cells. Carcinogenesis 31(9):1661–1668. doi:10.1093/carcin/bgq106 PubMedGoogle Scholar
  25. 25.
    Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141(6):970–981. doi:10.1016/j.cell.2010.04.038 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Knott SR, Viggiani CJ, Aparicio OM (2009) To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics 4(6):362–365PubMedGoogle Scholar
  27. 27.
    Guo ZS, DePamphilis ML (1992) Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication. Mol Cell Biol 12(6):2514–2524PubMedCentralPubMedGoogle Scholar
  28. 28.
    Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013) Organization of the mitotic chromosome. Science 342(6161):948–953. doi:10.1126/science.1236083 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173(5):673–683. doi:10.1083/jcb.200602108 PubMedCentralPubMedGoogle Scholar
  30. 30.
    Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294(5540):96–100. doi:10.1126/science.1061724 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Marechal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9). doi:10.1101/cshperspect.a012716
  32. 32.
    Zhang S, Yajima H, Huynh H, Zheng J, Callen E, Chen HT, Wong N, Bunting S, Lin YF, Li M, Lee KJ, Story M, Gapud E, Sleckman BP, Nussenzweig A, Zhang CC, Chen DJ, Chen BP (2011) Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair. J Cell Biol 193(2):295–305. doi:10.1083/jcb.201009074 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Santocanale C, Sharma K, Diffley JF (1999) Activation of dormant origins of DNA replication in budding yeast. Genes Dev 13(18):2360–2364PubMedCentralPubMedGoogle Scholar
  34. 34.
    Karnani N, Dutta A (2011) The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev 25(6):621–633. doi:10.1101/gad.2029711 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes 4(1):1–32. doi:10.3390/genes4010001 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355. doi:10.1126/science.1140735 PubMedGoogle Scholar
  37. 37.
    Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R (2013) Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 3(4):1252–1265. doi:10.1016/j.celrep.2013.03.004 PubMedGoogle Scholar
  38. 38.
    Jones RM, Mortusewicz O, Afzal I, Lorvellec M, Garcia P, Helleday T, Petermann E (2012) Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene. doi:10.1038/onc.2012.387 Google Scholar
  39. 39.
    Iizuka M, Matsui T, Takisawa H, Smith MM (2006) Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26(3):1098–1108. doi:10.1128/MCB.26.3.1098-1108.2006 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Miotto B, Struhl K (2008) HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22(19):2633–2638. doi:10.1101/gad.1674108 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Sugimoto N, Yugawa T, Iizuka M, Kiyono T, Fujita M (2011) Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J Biol Chem 286(45):39200–39210. doi:10.1074/jbc.M111.256123 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Knott SR, Viggiani CJ, Tavare S, Aparicio OM (2009) Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23(9):1077–1090. doi:10.1101/gad.1784309 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, Cheng EH, Hsieh JJ (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467(7313):343–346. doi:10.1038/nature09350 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Liu H, Cheng EH, Hsieh JJ (2007) Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev 21(19):2385–2398. doi:10.1101/gad.1574507 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Fu H, Maunakea AK, Martin MM, Huang L, Zhang Y, Ryan M, Kim R, Lin CM, Zhao K, Aladjem MI (2013) Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet 9(6):e1003542. doi:10.1371/journal.pgen.1003542 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20(2):155–169. doi:10.1101/gr.099796.109 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Nordman J, Orr-Weaver TL (2012) Regulation of DNA replication during development. Development 139(3):455–464. doi:10.1242/dev.061838 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Guan Z, Hughes CM, Kosiyatrakul S, Norio P, Sen R, Fiering S, Allis CD, Bouhassira EE, Schildkraut CL (2009) Decreased replication origin activity in temporal transition regions. J Cell Biol 187(5):623–635. doi:10.1083/jcb.200905144 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J (2014) Nonstochastic reprogramming from a privileged somatic cell state. Cell 156(4):649–662. doi:10.1016/j.cell.2014.01.020 PubMedGoogle Scholar
  50. 50.
    Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10(5):1223–1233PubMedGoogle Scholar
  51. 51.
    Goren A, Tabib A, Hecht M, Cedar H (2008) DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev 22(10):1319–1324. doi:10.1101/gad.468308 PubMedCentralPubMedGoogle Scholar
  52. 52.
    Aggarwal BD, Calvi BR (2004) Chromatin regulates origin activity in drosophila follicle cells. Nature 430(6997):372–376. doi:10.1038/nature02694 PubMedGoogle Scholar
  53. 53.
    Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, Tavare S, Aparicio OM (2012) Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148(1–2):99–111. doi:10.1016/j.cell.2011.12.012 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26(2):137–150. doi:10.1101/gad.178491.111 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, Antony C, Almouzni G, Gilbert DM, Buonomo SB (2012) Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31(18):3678–3690. doi:10.1038/emboj.2012.214 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Buonomo SB, Wu Y, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187(3):385–398. doi:10.1083/jcb.200902039 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Yamazaki S, Hayano M, Masai H (2013) Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 29(8):449–460. doi:10.1016/j.tig.2013.05.001 PubMedGoogle Scholar
  58. 58.
    Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M, Gitlin AD, Feldhahn N, Resch W, Oliveira TY, Chait BT, Nussenzweig A, Casellas R, Robbiani DF, Nussenzweig MC (2013) Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339(6120):711–715. doi:10.1126/science.1230624 PubMedGoogle Scholar
  59. 59.
    Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T (2013) 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339(6120):700–704. doi:10.1126/science.1231573 PubMedCentralPubMedGoogle Scholar
  60. 60.
    Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49(5):872–883. doi:10.1016/j.molcel.2013.01.001 PubMedGoogle Scholar
  61. 61.
    Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49(5):858–871. doi:10.1016/j.molcel.2013.01.002 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3(4):447–455PubMedGoogle Scholar
  63. 63.
    Johzuka K, Horiuchi T (2002) Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiae. Genes Cells 7(2):99–113PubMedGoogle Scholar
  64. 64.
    Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6(1):e1000810. doi:10.1371/journal.pgen.1000810 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8(1):82–95. doi:10.1021/cb300648v PubMedCentralPubMedGoogle Scholar
  66. 66.
    Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497(7450):458–462. doi:10.1038/nature12149 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Dillon LW, Pierce LC, Ng MC, Wang YH (2013) Role of DNA secondary structures in fragile site breakage along human chromosome 10. Hum Mol Genet 22(7):1443–1456. doi:10.1093/hmg/dds561 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46(2):115–124. doi:10.1016/j.molcel.2012.04.009 PubMedGoogle Scholar
  69. 69.
    Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45(6):814–825. doi:10.1016/j.molcel.2012.01.017 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805. doi:10.1016/j.molcel.2011.04.026 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Chavez S, Beilharz T, Rondon AG, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Lithgow T, Aguilera A (2000) A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 19(21):5824–5834. doi:10.1093/emboj/19.21.5824 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Dominguez-Sanchez MS, Barroso S, Gomez-Gonzalez B, Luna R, Aguilera A (2011) Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet 7(12):e1002386. doi:10.1371/journal.pgen.1002386 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Gomez-Gonzalez B, Garcia-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marin A, Foiani M, Aguilera A (2011) Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J 30(15):3106–3119. doi:10.1038/emboj.2011.206 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ (2011) Yeast Sen1 Helicase protects the genome from transcription-associated instability. Mol Cell 41(1):21–32. doi:10.1016/j.molcel.2010.12.007 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Becherel OJ, Yeo AJ, Stellati A, Heng EY, Luff J, Suraweera AM, Woods R, Fleming J, Carrie D, McKinney K, Xu X, Deng C, Lavin MF (2013) Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 9(4):e1003435. doi:10.1371/journal.pgen.1003435 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W, Saponaro M, Brambati A, Cocito A, Foiani M, Liberi G (2012) Senataxin associates with replication forks to protect fork integrity across RNA-Polymerase-II-transcribed genes. Cell 151(4):835–846. doi:10.1016/j.cell.2012.09.041 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Williams JS, Smith DJ, Marjavaara L, Lujan SA, Chabes A, Kunkel TA (2013) Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol Cell 49(5):1010–1015. doi:10.1016/j.molcel.2012.12.021 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6(10):774–781. doi:10.1038/nchembio.424 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122(3):365–378. doi:10.1016/j.cell.2005.06.008 PubMedGoogle Scholar
  80. 80.
    Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, Ashworth A (1999) Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell Biol 19(7):4633–4642PubMedCentralPubMedGoogle Scholar
  81. 81.
    Li J, Zou C, Bai Y, Wazer DE, Band V, Gao Q (2006) DSS1 is required for the stability of BRCA2. Oncogene 25(8):1186–1194. doi:10.1038/sj.onc.1209153 PubMedGoogle Scholar
  82. 82.
    Bhatia V, Barroso SI, Garcia-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature. doi:10.1038/nature13374 PubMedGoogle Scholar
  83. 83.
    Gomez-Gonzalez B, Felipe-Abrio I, Aguilera A (2009) The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 29(19):5203–5213. doi:10.1128/MCB.00402-09 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25(19):2041–2056. doi:10.1101/gad.17010011 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, Meyer T, Cimprich KA (2009) A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 35(2):228–239. doi:10.1016/j.molcel.2009.06.021 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Castellano-Pozo M, Garcia-Muse T, Aguilera A (2012) R-loops cause replication impairment and genome instability during meiosis. EMBO Rep 13(10):923–929. doi:10.1038/embor.2012.119 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Vermeulen W, Fousteri M (2013) Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol 5(8):a012625. doi:10.1101/cshperspect.a012625 PubMedGoogle Scholar
  88. 88.
    Ljungman M, Hanawalt PC (1996) The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription. Carcinogenesis 17(1):31–35PubMedGoogle Scholar
  89. 89.
    Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, Proshkin S, Mironov A, Nudler E (2014) UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505(7483):372–377. doi:10.1038/nature12928 PubMedGoogle Scholar
  90. 90.
    Le May N, Mota-Fernandes D, Velez-Cruz R, Iltis I, Biard D, Egly JM (2010) NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38(1):54–66. doi:10.1016/j.molcel.2010.03.004 PubMedGoogle Scholar
  91. 91.
    Le May N, Fradin D, Iltis I, Bougneres P, Egly JM (2012) XPG and XPF endonucleases trigger chromatin looping and DNA demethylation for accurate expression of activated genes. Mol Cell 47(4):622–632. doi:10.1016/j.molcel.2012.05.050 PubMedGoogle Scholar
  92. 92.
    Raveendranathan M, Chattopadhyay S, Bolon YT, Haworth J, Clarke DJ, Bielinsky AK (2006) Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J 25(15):3627–3639. doi:10.1038/sj.emboj.7601251 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120(5):587–598. doi:10.1016/j.cell.2004.12.039 PubMedGoogle Scholar
  94. 94.
    Dudley DD, Chaudhuri J, Bassing CH, Alt FW (2005) Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43–112. doi:10.1016/S0065-2776(04)86002-4 PubMedGoogle Scholar
  95. 95.
    Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292. doi:10.1146/annurev.immunol.26.021607.090248 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Alt FW, Zhang Y, Meng FL, Guo C, Schwer B (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152(3):417–429. doi:10.1016/j.cell.2013.01.007 PubMedGoogle Scholar
  97. 97.
    Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, Reina San-Martin B, Barreto V, Nieland TJ, Root DE, Casellas R, Nussenzweig MC (2010) Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143(1):122–133. doi:10.1016/j.cell.2010.09.017 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Zarrin AA, Alt FW, Chaudhuri J, Stokes N, Kaushal D, Du Pasquier L, Tian M (2004) An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol 5(12):1275–1281. doi:10.1038/ni1137 PubMedGoogle Scholar
  99. 99.
    Yamane A, Resch W, Kuo N, Kuchen S, Li Z, Sun HW, Robbiani DF, McBride K, Nussenzweig MC, Casellas R (2011) Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol 12(1):62–69. doi:10.1038/ni.1964 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, McBride KM, Klein IA, Stone G, Eisenreich TR, Ried T, Nussenzweig A, Nussenzweig MC (2009) AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell 36(4):631–641. doi:10.1016/j.molcel.2009.11.007 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, Di Virgilio M, Bothmer A, Nussenzweig A, Robbiani DF, Casellas R, Nussenzweig MC (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147(1):95–106. doi:10.1016/j.cell.2011.07.048 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR, Choi VW, Compagno M, Malkin DJ, Neuberg D, Monti S, Giallourakis CC, Gostissa M, Alt FW (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147(1):107–119. doi:10.1016/j.cell.2011.07.049 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Lindsley RC, LaCasce AS (2012) Biology of double-hit B-cell lymphomas. Curr Opin Hematol 19(4):299–304. doi:10.1097/MOH.0b013e328353bbbd PubMedCentralPubMedGoogle Scholar
  104. 104.
    Kridel R, Sehn LH, Gascoyne RD (2012) Pathogenesis of follicular lymphoma. J Clin Investig 122(10):3424–3431. doi:10.1172/JCI63186 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Xie M, Yen Y, Owonikoko TK, Ramalingam SS, Khuri FR, Curran WJ, Doetsch PW, Deng X (2014) Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase. Cancer Res 74(1):212–223. doi:10.1158/0008-5472.CAN-13-1536-T PubMedGoogle Scholar
  106. 106.
    Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231. doi:10.1038/35106065 PubMedGoogle Scholar
  107. 107.
    Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. doi:10.1038/nature11378 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, Signoretti S, Look AT, Kung AL, von Boehmer H, Sicinski P (2012) The requirement for cyclin D function in tumor maintenance. Cancer Cell 22(4):438–451. doi:10.1016/j.ccr.2012.09.015 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153(3):590–600. doi:10.1016/j.cell.2013.03.025 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel (outside the USA) 2014

Authors and Affiliations

  1. 1.Laboratory of Genome IntegrityNIHBethesdaUSA

Personalised recommendations