Cellular and Molecular Life Sciences

, Volume 72, Issue 4, pp 845–853 | Cite as

Endogenous animal toxin-like human β-defensin 2 inhibits own K+ channels through interaction with channel extracellular pore region

  • Weishan Yang
  • Jing Feng
  • Fang Xiang
  • Zili Xie
  • Guoyi Zhang
  • Jean-Marc Sabatier
  • Zhijian Cao
  • Wenxin Li
  • Zongyun Chen
  • Yingliang Wu
Research Article

Abstract

Human potassium channels are widely inhibited by peptide toxins from venomous animals. However, no human endogenous peptide inhibitor has been discovered so far. In this study, we demonstrate for the first time using electrophysiological techniques, that endogenous human β–defensin 2 (hBD2) is able to selectively and dose-dependently inhibit the human voltage-gated Kv1.3 channel at picomolar peptide concentration. The co-immunoprecipitation assays further supported the selective binding of hBD2 to Kv1.3 channel. Using mutagenesis experiments, we found that the outer pore domain of Kv1.3 channel was the binding site of hBD2, which is similar to the interacting site of Kv1.3 channel recognized by animal toxin inhibitors. The hBD2 was able to suppress IL-2 production through inhibition of Kv1.3 channel currents in human Jurkat cells, which was further confirmed by the lack of hBD2 activity on IL-2 production after Kv1.3 knockdown in these cells. More interestingly, hBD2 was also found to efficiently inhibit Kv1.3 channel currents and suppress IL-2 production in both human primary CD3+ T cells and peripheral mononuclear cells from either healthy donors or psoriasis patients. Our findings not only evidenced hBD2 as the first characterized endogenous peptide inhibitor of human potassium channels, but also paved a promising avenue to investigate newly discovered function of hBD2 as Kv1.3 channel inhibitor in the immune system and other fields.

Keywords

Antibacterial and antiviral peptide Endogenous inhibitors Lymphocyte Interaction mechanism Cytokine secretion Adaptive immune modulation 

Supplementary material

18_2014_1715_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2405 kb)

References

  1. 1.
    Ashcroft FM (2006) From molecule to malady. Nature 440(7083):440–447PubMedCrossRefGoogle Scholar
  2. 2.
    Mouhat S, Andreotti N, Jouirou B, Sabatier JM (2008) Animal toxins acting on voltage-gated potassium channels. Curr Pharm Des 14(24):2503–2518PubMedCrossRefGoogle Scholar
  3. 3.
    Ohno-Shosaku T, Kim I, Sawada S, Yamamoto C (1996) Presence of the voltage-gated potassium channels sensitive to charybdotoxin in inhibitory presynaptic terminals of cultured rat hippocampal neurons. Neurosci Lett 207(3):195–198PubMedCrossRefGoogle Scholar
  4. 4.
    Han S, Yi H, Yin SJ, Chen ZY, Liu H, Cao ZJ, Wu YL, Li WX (2008) Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J Biol Chem 283(27):19058–19065PubMedCrossRefGoogle Scholar
  5. 5.
    Mouhat S, Teodorescu G, Homerick D, Visan V, Wulff H, Wu Y, Grissmer S, Darbon H, De Waard M, Sabatier JM (2006) Pharmacological profiling of Orthochirus scrobiculosus toxin 1 analogs with a trimmed N-terminal domain. Mol Pharmacol 69(1):354–362PubMedGoogle Scholar
  6. 6.
    Lanigan MD, Pennington MW, Lefievre Y, Rauer H, Norton RS (2001) Designed peptide analogues of the potassium channel blocker ShK toxin. Biochemistry 40(51):15528–15537PubMedCrossRefGoogle Scholar
  7. 7.
    Chen ZY, Hu YT, Yang WS, He YW, Feng J, Wang B, Zhao RM, Ding JP, Cao ZJ, Li WX, Wu YL (2012) Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz-type potassium channel toxin family. J Biol Chem 287(17):13813–13821PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63(11):1294–1313PubMedCrossRefGoogle Scholar
  9. 9.
    Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528PubMedCrossRefGoogle Scholar
  10. 10.
    Yount NY, Kupferwasser D, Spisni A, Dutz SM, Ramjan ZH, Sharma S, Waring AJ, Yeaman MR (2009) Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci USA 106(35):14972–14977PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Liu R, Zhang Z, Liu H, Hou P, Lang J, Wang S, Yan H, Li P, Huang Z, Wu H, Rong M, Huang J, Wang H, Lv L, Qiu M, Ding J, Lai R (2013) Human beta-defensin 2 is a novel opener of Ca2+-activated potassium channels and induces vasodilation and hypotension in monkeys. Hypertension 62(2):415–425PubMedCrossRefGoogle Scholar
  12. 12.
    Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378(Pt 3):717–726PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Banerjee A, Lee A, Campbell E, Mackinnon R (2013) Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. Elife 2:e00594PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rauer H, Pennington M, Cahalan M, Chandy KG (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 274(31):21885–21892PubMedCrossRefGoogle Scholar
  15. 15.
    Lee HC, Wang JM, Swartz KJ (2003) Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40(3):527–536PubMedCrossRefGoogle Scholar
  16. 16.
    Swartz KJ, MacKinnon R (1997) Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18(4):675–682PubMedCrossRefGoogle Scholar
  17. 17.
    Kanda N, Kamata M, Tada Y, Ishikawa T, Sato S, Watanabe S (2011) Human beta-defensin 2 enhances IFN-gamma and IL-10 production and suppresses IL-17 production in T cells. J Leukoc Biol 89(6):935–944PubMedCrossRefGoogle Scholar
  18. 18.
    Jansen PA, Rodijk-Olthuis D, Hollox EJ, Kamsteeg M, Tjabringa GS, de Jongh GJ, van Vlijmen-Willems IM, Bergboer JG, van Rossum MM, de Jong EM, den Heijer M, Evers AW, Bergers M, Armour JA, Zeeuwen PL, Schalkwijk J (2009) Beta-defensin 2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin. PLoS One 4(3):e4725PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts, Wang PH, LeeHealey CJ, SA B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103(46):17414–17419PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hu L, Pennington M, Jiang Q, Whartenby KA, Calabresi PA (2007) Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4+ T lymphocytes. J Immunol 179(7):4563–4570PubMedCrossRefGoogle Scholar
  21. 21.
    Takacs Z, Toups M, Kollewe A, Johnson E, Cuello LG, Driessens G, Biancalana M, Koide A, Ponte CG, Perozo E, Gajewski TF, Suarez-Kurtz G, Koide S, Goldstein SA (2009) A designer ligand specific for Kv1.3 channels from a scorpion neurotoxin-based library. Proc Natl Acad Sci USA 106(52):22211–22216PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol 358:197–237PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Partiseti M, Choquet D, Diu A, Korn H (1992) Differential regulation of voltage- and calcium-activated potassium channels in human B lymphocytes. J Immunol 148(11):3361–3368PubMedGoogle Scholar
  24. 24.
    Zsiros E, Kis-Toth K, Hajdu P, Gaspar R, Bielanska J, Felipe A, Rajnavolgyi E, Panyi G (2009) Developmental switch of the expression of ion channels in human dendritic cells. J Immunol 183(7):4483–4492PubMedCrossRefGoogle Scholar
  25. 25.
    Cheong A, Li J, Sukumar P, Kumar B, Zeng F, Riches K, Munsch C, Wood IC, Porter KE, Beech DJ (2011) Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by Kv1.3 channel blockers. Cardiovasc Res 89(2):282–289PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    McCloskey C, Jones S, Amisten S, Snowden RT, Kaczmarek LK, Erlinge D, Goodall AH, Forsythe ID, Mahaut-Smith MP (2010) Kv1.3 is the exclusive voltage-gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signalling and platelet count. J Physiol 588(Pt 9):1399–1406PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yin SJ, Jiang L, Yi H, Han S, Yang DW, Liu ML, Liu H, Cao ZJ, Wu YL, Li WX (2008) Different residues in channel turret determining the selectivity of ADWX-1 inhibitor peptide between Kv1.1 and Kv1.3 channels. J Proteome Res 7(11):4890–4897PubMedCrossRefGoogle Scholar
  28. 28.
    Chen ZY, Zeng DY, Hu YT, He YW, Pan N, Ding JP, Cao ZJ, Liu ML, Li WX, Yi H, Jiang L, Wu YL (2012) Structural and functional diversity of acidic scorpion potassium channel toxins. PLoS One 7(4):e35154PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Weishan Yang
    • 1
  • Jing Feng
    • 1
  • Fang Xiang
    • 1
  • Zili Xie
    • 1
  • Guoyi Zhang
    • 3
  • Jean-Marc Sabatier
    • 4
  • Zhijian Cao
    • 1
    • 2
  • Wenxin Li
    • 1
    • 2
  • Zongyun Chen
    • 1
  • Yingliang Wu
    • 1
    • 2
  1. 1.State Key Laboratory of Virology, College of Life SciencesWuhan UniversityWuhanChina
  2. 2.Center for BioDrug ResearchWuhan UniversityWuhanChina
  3. 3.Institute of DermatologyChinese Academy of Medicine SciencesNanjingChina
  4. 4.Laboratoire INSERM UMR 1097Université d’Aix-MarseilleMarseille Cedex 09France

Personalised recommendations