Cellular and Molecular Life Sciences

, Volume 72, Issue 1, pp 51–72 | Cite as

What does genetics tell us about imprinting and the placenta connection?



Genomic imprinting is an epigenetic gene silencing phenomenon that is specific to eutherians in the vertebrate lineage. The acquisition of both placentation and genomic imprinting has spurred interest in the possible evolutionary link for many years. In this review we examine the genetic evidence and find that while many imprinted domains are anchored by genes required for proper placenta development in a parent of origin fashion, an equal number of imprinted genes have no apparent function that depends on imprinting. Examination of recent data from studies of molecular and genetic mechanisms points to a maternal control of the selection and maintenance of imprint marks, reinforcing the importance of the oocyte in the healthy development of the placenta and fetus.


Genomic imprinting Placentation Maternal effect Differential methylation Targeted mutation Conflict hypothesis Trophoblast Oocyte 


  1. 1.
    Barton SC, Surani MAH, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376. doi: 10.1038/311374a0 PubMedGoogle Scholar
  2. 2.
    McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183. doi: 10.1016/0092-8674(84)90313-1 PubMedGoogle Scholar
  3. 3.
    Varmuza S, Mann M, Rogers I (1993) Site of action of imprinted genes revealed by phenotypic analysis of parthenogenetic embryos. Dev Genet 14:239–248. doi: 10.1002/dvg.1020140310 PubMedGoogle Scholar
  4. 4.
    Kaufman MH, Barton SC, Surani MA (1977) Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265:53–55PubMedGoogle Scholar
  5. 5.
    Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550PubMedGoogle Scholar
  6. 6.
    Cattanach BM, Kirk M (1985) Differential activity of maternal and paternally derived chromosome regions in mice. Nature 315:496–498. doi: 10.1038/315496a0 PubMedGoogle Scholar
  7. 7.
    Hall JG (1990) Genomic imprinting. Arch Dis Child 65:1013–1015PubMedCentralPubMedGoogle Scholar
  8. 8.
    Varmuza S, Mann M (1994) Genomic imprinting—defusing the ovarian time bomb. Trends Genet 10:118–123. doi: 10.1016/0168-9525(94)90212-7 PubMedGoogle Scholar
  9. 9.
    Keverne EB (2012) Importance of the matriline for genomic imprinting, brain development and behaviour. Philos Trans R Soc B Biol Sci 368:20110327. doi: 10.1098/rstb.2011.0327 Google Scholar
  10. 10.
    Spencer HG, Clark AG (2014) Non-conflict theories for the evolution of genomic imprinting. Heredity. doi: 10.1038/hdy.2013.129 Google Scholar
  11. 11.
    Haig D, Westoby M (1989) Parent-specific gene expression and the triploid endosperm. Am Nat 134:147–155Google Scholar
  12. 12.
    Yuen RK, Jiang R, Peñaherrera MS et al (2011) Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin 4:10. doi: 10.1186/1756-8935-4-10 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Court F, Tayama C, Romanelli V et al (2014) Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 24:554–569. doi: 10.1101/gr.164913.113 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Renfree MB, Suzuki S, Kaneko-Ishino T (2012) The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc B Biol Sci 368:20120151. doi: 10.1098/rstb.2012.0151 Google Scholar
  15. 15.
    Tunster SJ, Jensen AB, John RM (2013) Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 145:R117–R137. doi: 10.1530/REP-12-0511 PubMedGoogle Scholar
  16. 16.
    Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485. doi: 10.1038/35013100 PubMedGoogle Scholar
  17. 17.
    Yoon B, Herman H, Hu B et al (2005) Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 25:11184–11190. doi: 10.1128/MCB.25.24.11184-11190.2005 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Fedoriw AM (2004) Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238–240. doi: 10.1126/science.1090934 PubMedGoogle Scholar
  19. 19.
    Smallwood SA, Tomizawa S, Krueger F et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814. doi: 10.1038/ng.864 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Hanna CW, Kelsey G (2014) The specification of imprints in mammals. Heredity. doi: 10.1038/hdy.2014.54 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Kelsey G, Feil R (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci 368:20110336. doi: 10.1098/rstb.2011.0336 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Wang Q, Chow J, Hong J et al (2011) Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genom 12:204. doi: 10.1186/1471-2164-12-204 Google Scholar
  23. 23.
    Noguer-Dance M, Abu-Amero S, Al-Khtib M et al (2010) The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 19:3566–3582. doi: 10.1093/hmg/ddq272 PubMedGoogle Scholar
  24. 24.
    Hudson QJ, Seidl CIM, Kulinski TM et al (2011) Extra-embryonic-specific imprinted expression is restricted to defined lineages in the post-implantation embryo. Dev Biol 353:420–431. doi: 10.1016/j.ydbio.2011.02.017 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Kulinski TM, Barlow DP, Hudson QJ (2013) Imprinted silencing is extended over broad chromosomal domains in mouse extra-embryonic lineages. Curr Opin Cell Biol 25:297–304. doi: 10.1016/j.ceb.2013.02.012 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Lewis A, Mitsuya K, Umlauf D et al (2004) Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36:1291–1295. doi: 10.1038/ng1468 PubMedGoogle Scholar
  27. 27.
    Guillemot F, Caspary T, Tilghman SM et al (1995) Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet 9:235–242. doi: 10.1038/ng0395-235 PubMedGoogle Scholar
  28. 28.
    Duvillié B, Bucchini D, Tang T et al (1998) Imprinting at the mouse Ins2 locus: evidence for cis- and trans-allelic interactions. Genomics 47:52–57. doi: 10.1006/geno.1997.5070 PubMedGoogle Scholar
  29. 29.
    Miri K, Latham K, Panning B, et al. (2013) The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta. Development. doi: 10.1242/dev.096511
  30. 30.
    Zwart R, Sleutels F, Wutz A et al (2001) Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev 15:2361–2366. doi: 10.1101/GAD.206201 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Okae H, Hiura H, Nishida Y et al (2011) Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet. doi: 10.1093/hmg/ddr488 PubMedGoogle Scholar
  32. 32.
    Kuzmin A, Han Z, Golding MC et al (2008) The PcG gene Sfmbt2 is paternally expressed in extraembryonic tissues. Gene Expr Patterns GEP 8:107–116. doi: 10.1016/j.modgep.2007.09.005 Google Scholar
  33. 33.
    Sakaue M, Ohta H, Kumaki Y et al (2010) DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr Biol CB 20:1452–1457. doi: 10.1016/j.cub.2010.06.050 Google Scholar
  34. 34.
    Calabrese JM, Sun W, Song L et al (2012) Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:951–963. doi: 10.1016/j.cell.2012.10.037 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Fowden AL, Coan PM, Angiolini E et al (2011) Imprinted genes and the epigenetic regulation of placental phenotype. Prog Biophys Mol Biol 106:281–288. doi: 10.1016/j.pbiomolbio.2010.11.005 PubMedGoogle Scholar
  36. 36.
    Constância M, Hemberger M, Hughes J et al (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948. doi: 10.1038/nature00819 PubMedGoogle Scholar
  37. 37.
    Tunster SJ, Tycko B, John RM (2010) The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol Cell Biol 30:295–306. doi: 10.1128/MCB.00662-09 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Okabe H, Satoh S, Furukawa Y et al (2003) Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 63:3043–3048PubMedGoogle Scholar
  39. 39.
    Ono R, Nakamura K, Inoue K et al (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38:101–106. doi: 10.1038/ng1699 PubMedGoogle Scholar
  40. 40.
    Suzuki S, Ono R, Narita T et al (2007) Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 3:e55. doi: 10.1371/journal.pgen.0030055 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Lefebvre L, Viville S, Barton SC et al (1998) Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 20:163–169. doi: 10.1038/2464 PubMedGoogle Scholar
  42. 42.
    Yang D, Lutter D, Burtscher I et al (2014) miR-335 promotes mesendodermal lineage segregation and shapes a transcription factor gradient in the endoderm. Dev Camb Engl 141:514–525. doi: 10.1242/dev.104232 Google Scholar
  43. 43.
    Li L, Keverne EB, Aparicio SA et al (1999) Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:330–333PubMedGoogle Scholar
  44. 44.
    Keniry A, Oxley D, Monnier P et al (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665. doi: 10.1038/ncb2521 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Ripoche MA, Kress C, Poirier F, Dandolo L (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11:1596–1604. doi: 10.1101/gad.11.12.1596 PubMedGoogle Scholar
  46. 46.
    Weaver JR, Bartolomei MS (2014) Chromatin regulators of genomic imprinting. Biochim Biophys Acta BBA Gene Regul Mech 1839:169–177. doi: 10.1016/j.bbagrm.2013.12.002 Google Scholar
  47. 47.
    Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32:426–431. doi: 10.1038/ng988 PubMedGoogle Scholar
  48. 48.
    Salas M, John R, Saxena A et al (2004) Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev 121:1199–1210. doi: 10.1016/j.mod.2004.05.017 PubMedGoogle Scholar
  49. 49.
    Shin J-Y, Fitzpatrick GV, Higgins MJ (2008) Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J 27:168–178PubMedCentralPubMedGoogle Scholar
  50. 50.
    Lee MP, Ravenel JD, Hu R-J et al (2000) Targeted disruption of the <i> Kvlqt1 </i> gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455PubMedCentralPubMedGoogle Scholar
  51. 51.
    Susaki E, Nakayama K, Yamasaki L, Nakayama KI (2009) Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci 106:5192–5197PubMedCentralPubMedGoogle Scholar
  52. 52.
    Takahashi K, Kobayashi T, Kanayama N (2000) p57(Kip2) regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod 6:1019–1025PubMedGoogle Scholar
  53. 53.
    Kanayama N, Takahashi K, Matsuura T et al (2002) Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod 8:1129–1135PubMedGoogle Scholar
  54. 54.
    Frank D, Fortino W, Clark L et al (2002) Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci 99:7490–7495PubMedCentralPubMedGoogle Scholar
  55. 55.
    Iglesias-Platas I, Martin-Trujillo A, Cirillo D et al (2012) Characterization of novel paternal ncRNAs at the Plagl1 locus, including Hymai, predicted to interact with regulators of active chromatin. PLoS ONE 7:e38907. doi: 10.1371/journal.pone.0038907 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Arima T, Wake N (2006) Establishment of the primary imprint of the <i> HYMAI/PLAGL1 </i> imprint control region during oogenesis. Cytogenet Genome Res 113:247–252. doi: 10.1159/000090839 PubMedGoogle Scholar
  57. 57.
    Varrault A, Gueydan C, Delalbre A et al (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11:711–722. doi: 10.1016/j.devcel.2006.09.003 PubMedGoogle Scholar
  58. 58.
    Charalambous M, Smith FM, Bennett WR et al (2003) Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci USA 100:8292–8297. doi: 10.1073/pnas.1532175100 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Appelbe OK, Yevtodiyenko A, Muniz-Talavera H, Schmidt JV (2013) Conditional deletions refine the embryonic requirement for Dlk1. Mech Dev 130:143–159. doi: 10.1016/j.mod.2012.09.010 PubMedCentralPubMedGoogle Scholar
  60. 60.
    Sekita Y, Wagatsuma H, Nakamura K et al (2008) Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 40:243–248. doi: 10.1038/ng.2007.51 PubMedGoogle Scholar
  61. 61.
    Latos PA, Pauler FM, Koerner MV et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472. doi: 10.1126/science.1228110 PubMedGoogle Scholar
  62. 62.
    Lau MM, Stewart CE, Liu Z et al (1994) Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev 8:2953–2963. doi: 10.1101/gad.8.24.2953 PubMedGoogle Scholar
  63. 63.
    Yang T, Adamson TE, Resnick JL et al (1998) A mouse model for Prader–Willi syndrome imprinting-centre mutations. Nat Genet 19:25–31. doi: 10.1038/ng0598-25 PubMedGoogle Scholar
  64. 64.
    Gérard M, Hernandez L, Wevrick R, Stewart CL (1999) Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet 23:199–202. doi: 10.1038/13828 PubMedGoogle Scholar
  65. 65.
    Skryabin BV, Gubar LV, Seeger B et al (2007) Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 3:e235. doi: 10.1371/journal.pgen.0030235 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Plagge A, Gordon E, Dean W et al (2004) The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nat Genet 36:818–826. doi: 10.1038/ng1397 PubMedGoogle Scholar
  67. 67.
    Frohlich LF, Mrakovcic M, Steinborn R et al (2010) Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. Proc Natl Acad Sci 107:9275–9280. doi: 10.1073/pnas.0910224107 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Braun T, Brauer M, Fuchs I et al (2010) Mirror syndrome: a systematic review of fetal associated conditions, maternal presentation and perinatal outcome. Fetal Diagn Ther 27:191–203. doi: 10.1159/000305096 PubMedGoogle Scholar
  69. 69.
    Barlow DP (2011) Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 45:379–403. doi: 10.1146/annurev-genet-110410-132459 PubMedGoogle Scholar
  70. 70.
    Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6:a018382. doi: 10.1101/cshperspect.a018382 PubMedGoogle Scholar
  71. 71.
    Wutz A, Theussl HC, Dausman J et al (2001) Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 128:1881–1887PubMedGoogle Scholar
  72. 72.
    Lucifero D, Mertineit C, Clarke HJ et al (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–538. doi: 10.1006/geno.2002.6732 PubMedGoogle Scholar
  73. 73.
    Hiura H, Obata Y, Komiyama J et al (2006) Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11:353–361. doi: 10.1111/j.1365-2443.2006.00943.x PubMedGoogle Scholar
  74. 74.
    Kobayashi H, Sakurai T, Imai M et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440. doi: 10.1371/journal.pgen.1002440 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Gu T-P, Guo F, Yang H et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610. doi: 10.1038/nature10443 PubMedGoogle Scholar
  76. 76.
    Nakamura T, Liu Y-J, Nakashima H et al (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature. doi: 10.1038/nature11093 Google Scholar
  77. 77.
    Santos F, Peters AH, Otte AP et al (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236. doi: 10.1016/j.ydbio.2005.01.025 PubMedGoogle Scholar
  78. 78.
    Quenneville S, Verde G, Corsinotti A et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372. doi: 10.1016/j.molcel.2011.08.032 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Li X, Ito M, Zhou F et al (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557. doi: 10.1016/j.devcel.2008.08.014 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Bian C, Yu X (2014) PGC7 suppresses TET3 for protecting DNA methylation. Nucleic Acids Res 42:2893–2905. doi: 10.1093/nar/gkt1261 PubMedCentralPubMedGoogle Scholar
  81. 81.
    Nakamura T (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9:64–71. doi: 10.1038/ncb1519 PubMedGoogle Scholar
  82. 82.
    Howell CY, Bestor TH, Ding F et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the <i> Dnmt1 </i> Gene. Cell 104:829–838PubMedGoogle Scholar
  83. 83.
    Bourc’his D, Xu G-L, Lin C-S et al (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539. doi: 10.1126/science.1065848 PubMedGoogle Scholar
  84. 84.
    Kaneda M, Okano M, Hata K et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903. doi: 10.1038/nature02633 PubMedGoogle Scholar
  85. 85.
    Murdoch S, Djuric U, Mazhar B et al (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38:300–302. doi: 10.1038/ng1740 PubMedGoogle Scholar
  86. 86.
    Parry DA, Logan CV, Hayward BE et al (2011) Mutations causing familial biparental hydatidiform mole implicate C6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 89:451–458. doi: 10.1016/j.ajhg.2011.08.002 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Loschiavo M, Nguyen QK, Duselis AR, Vrana PB (2007) Mapping and identification of candidate loci responsible for Peromyscus hybrid overgrowth. Mamm Genome 18:75–85. doi: 10.1007/s00335-006-0083-x PubMedCentralPubMedGoogle Scholar
  88. 88.
    Tanaka M, Puchyr M, Gertsenstein M et al (1999) Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation. Mech Dev 87:129–142PubMedGoogle Scholar
  89. 89.
    Wagschal A, Sutherland HG, Woodfine K et al (2008) G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol 28:1104–1113. doi: 10.1128/MCB.01111-07 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Arima T, Hata K, Tanaka S et al (2006) Loss of the maternal imprint in Dnmt3Lmat−/− mice leads to a differentiation defect in the extraembryonic tissue. Dev Biol 297:361–373. doi: 10.1016/j.ydbio.2006.05.003 PubMedGoogle Scholar
  91. 91.
    Chotalia M (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23:105–117. doi: 10.1101/gad.495809 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Rossignol S, Steunou V, Chalas C et al (2006) The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 43:902–907. doi: 10.1136/jmg.2006.042135 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Kou YC, Shao L, Peng HH et al (2008) A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 14:33–40. doi: 10.1093/molehr/gam079 PubMedGoogle Scholar
  94. 94.
    Cerrato F, Sparago A, Verde G et al (2008) Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith–Wiedemann syndrome and Wilms’ tumour. Hum Mol Genet 17:1427–1435. doi: 10.1093/hmg/ddn031 PubMedGoogle Scholar
  95. 95.
    Azzi S, Rossignol S, Steunou V et al (2009) Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet 18:4724–4733. doi: 10.1093/hmg/ddp435 PubMedGoogle Scholar
  96. 96.
    Bliek J, Verde G, Callaway J et al (2008) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 17:611–619PubMedCentralPubMedGoogle Scholar
  97. 97.
    Lim D, Bowdin SC, Tee L et al (2009) Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod Oxf Engl 24:741–747. doi: 10.1093/humrep/den406 Google Scholar
  98. 98.
    Hayward BE, De Vos M, Talati N et al (2009) Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat 30:E629–E639. doi: 10.1002/humu.20993 PubMedGoogle Scholar
  99. 99.
    Zhang P, Dixon M, Zucchelli M et al (2008) Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS ONE 3:e2755. doi: 10.1371/journal.pone.0002755 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Ivanova E, Chen J-H, Segonds-Pichon A et al (2012) DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics 7:1200–1210. doi: 10.4161/epi.22141 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Cooper WN, Khulan B, Owens S et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26:1782–1790. doi: 10.1096/fj.11-192708 PubMedGoogle Scholar
  102. 102.
    Dominguez-Salas P, Moore SE, Baker MS et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. doi: 10.1038/ncomms4746 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053. doi: 10.1093/hmg/ddp353 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Mitchell KJ, Pinson KI, Kelly OG et al (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28:241–249. doi: 10.1038/90074 PubMedGoogle Scholar
  105. 105.
    Wood AJ, Schulz R, Woodfine K et al (2008) Regulation of alternative polyadenylation by genomic imprinting. Genes Dev 22:1141–1146. doi: 10.1101/gad.473408 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Wood AJ, Roberts RG, Monk D et al (2007) A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet 3:e20. doi: 10.1371/journal.pgen.0030020 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Motoyama N, Wang F, Roth KA et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510PubMedGoogle Scholar
  108. 108.
    Schulz R, McCole RB, Woodfine K et al (2008) Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet 18:118–127. doi: 10.1093/hmg/ddn322 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Tang T, Li L, Tang J et al (2010) A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 28:749–755. doi: 10.1038/nbt.1644 PubMedGoogle Scholar
  110. 110.
    Wang X, Soloway PD, Clark AG (2011) A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics 189:109–122. doi: 10.1534/genetics.111.130088 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Coombes C, Arnaud P, Gordon E et al (2003) Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus. Mol Cell Biol 23:5475–5488PubMedCentralPubMedGoogle Scholar
  112. 112.
    Liu J, Yu S, Litman D et al (2000) Identification of a methylation imprint mark within the mouse Gnas locus. Mol Cell Biol 20:5808–5817PubMedCentralPubMedGoogle Scholar
  113. 113.
    Yu S, Yu D, Lee E et al (1998) Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. Proc Natl Acad Sci 95:8715–8720PubMedCentralPubMedGoogle Scholar
  114. 114.
    Skinner JA, Cattanach BM, Peters J (2002) the imprinted oedematous-small mutation on mouse chromosome 2 identifies new roles for Gnas and Gnasxl in development. Genomics 80:373–375. doi: 10.1006/geno.2002.6842 PubMedGoogle Scholar
  115. 115.
    Dunk CE, Roggensack AM, Cox B et al (2012) A distinct microvascular endothelial gene expression profile in severe IUGR placentas. Placenta 33:285–293. doi: 10.1016/j.placenta.2011.12.020 PubMedGoogle Scholar
  116. 116.
    Williamson CM (2006) Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet 38:350–355. doi: 10.1038/ng1731 PubMedGoogle Scholar
  117. 117.
    Tzouanacou E, Tweedie S, Wilson V (2003) Identification of Jade1, a gene encoding a PHD zinc finger protein, in a gene trap mutagenesis screen for genes involved in anteroposterior axis development. Mol Cell Biol 23:8553–8562. doi: 10.1128/MCB.23.23.8553-8562.2003 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Dacquin R (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164:509–514. doi: 10.1083/jcb.200312135 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Monk D, Wagschal A, Arnaud P et al (2008) Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res 18:1270–1281. doi: 10.1101/gr.077115.108 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Okae H, Hiura H, Nishida Y et al (2012) Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 21:548–558. doi: 10.1093/hmg/ddr488 PubMedGoogle Scholar
  121. 121.
    Babak T, Deveale B, Armour C et al (2008) Global survey of genomic imprinting by transcriptome sequencing. Curr Biol CB 18:1735–1741. doi: 10.1016/j.cub.2008.09.044 Google Scholar
  122. 122.
    Yokoi F, Dang MT, Mitsui S, Li Y (2005) Exclusive paternal expression and novel alternatively spliced variants of epsilon-sarcoglycan mRNA in mouse brain. FEBS Lett 579:4822–4828. doi: 10.1016/j.febslet.2005.07.065 PubMedGoogle Scholar
  123. 123.
    Allen PB, Zachariou V, Svenningsson P et al (2006) Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience 140:897–911PubMedGoogle Scholar
  124. 124.
    Royo H, Cavaillé J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166. doi: 10.1042/BC20070126 PubMedGoogle Scholar
  125. 125.
    Lee YJ, Park CW, Hahn Y et al (2000) Mit1/Lb9 and Copg2, new members of mouse imprinted genes closely linked to Peg1/Mest(1). FEBS Lett 472:230–234PubMedGoogle Scholar
  126. 126.
    Smith RJ, Dean W, Konfortova G, Kelsey G (2003) Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res 13:558–569. doi: 10.1101/gr.781503 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Kim J, Bergmann A, Lucas S et al (2004) Lineage-specific imprinting and evolution of the zinc-finger gene ZIM2. Genomics 84:47–58. doi: 10.1016/j.ygeno.2004.02.007 PubMedGoogle Scholar
  128. 128.
    Choo JH, Kim JD, Kim J (2008) Imprinting of an evolutionarily conserved antisense transcript gene APeg3. Gene 409:28–33. doi: 10.1016/j.gene.2007.10.036 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Kim J, Noskov VN, Lu X et al (2000) Discovery of a novel, paternally expressed ubiquitin-specific processing protease gene through comparative analysis of an imprinted region of mouse chromosome 7 and human chromosome 19q13.4. Genome Res 10:1138–1147PubMedCentralPubMedGoogle Scholar
  130. 130.
    Szeto IY, Li LL, Surani MA (2000) Ocat, a paternally expressed gene closely linked and transcribed in the opposite direction to Peg3. Genomics 67:221–227. doi: 10.1006/geno.2000.6251 PubMedGoogle Scholar
  131. 131.
    Kim J, Bergmann A, Wehri E et al (2001) Imprinting and evolution of two Kruppel-type zinc-finger genes, ZIM3 and ZNF264, located in the PEG3/USP29 imprinted domain. Genomics 77:91–98. doi: 10.1006/geno.2001.6621 PubMedGoogle Scholar
  132. 132.
    Jiang Y, Armstrong D, Albrecht U et al (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:799–811PubMedGoogle Scholar
  133. 133.
    Ding F, Prints Y, Dhar MS et al (2005) Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader–Willi syndrome mouse models. Mamm Genome 16:424–431. doi: 10.1007/s00335-005-2460-2 PubMedGoogle Scholar
  134. 134.
    Bressler J, Tsai T-F, Wu M-Y et al (2001) The SNRPN promoter is not required for genomic imprinting of the Prader–Willi/Angelman domain in mice. Nat Genet 28:232–240PubMedGoogle Scholar
  135. 135.
    Kozlov SV, Bogenpohl JW, Howell MP et al (2007) The imprinted gene Magel2 regulates normal circadian output. Nat Genet 39:1266–1272. doi: 10.1038/ng2114 PubMedGoogle Scholar
  136. 136.
    Prickett AR, Barkas N, McCole RB et al (2013) Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions. Genome Res 23:1624–1635. doi: 10.1101/gr.150136.112 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Jong MT, Carey AH, Caldwell KA et al (1999) Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader–Willi syndrome genetic region. Hum Mol Genet 8:795–803PubMedGoogle Scholar
  138. 138.
    Van Amerongen R (2005) Frat is dispensable for canonical Wnt signaling in mammals. Genes Dev 19:425–430. doi: 10.1101/gad.326705 PubMedCentralPubMedGoogle Scholar
  139. 139.
    Zhu W, Trivedi CM, Zhou D et al (2009) Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 105:1240–1247. doi: 10.1161/CIRCRESAHA.109.208785 PubMedCentralPubMedGoogle Scholar
  140. 140.
    Bartolomei MS, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7:1663–1673. doi: 10.1101/gad.7.9.1663 PubMedGoogle Scholar
  141. 141.
    Sasaki H, Ferguson-Smith AC, Shum AS et al (1995) Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Dev Camb Engl 121:4195–4202Google Scholar
  142. 142.
    Feil R, Walter J, Allen ND, Reik W (1994) Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Dev Camb Engl 120:2933–2943Google Scholar
  143. 143.
    Moore T, Constancia M, Zubair M et al (1997) Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci USA 94:12509–12514PubMedCentralPubMedGoogle Scholar
  144. 144.
    Duvillié B, Cordonnier N, Deltour L et al (1997) Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci 94:5137–5140PubMedCentralPubMedGoogle Scholar
  145. 145.
    Kobayashi K, Morita S, Sawada H et al (1995) Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem 270:27235–27243. doi: 10.1074/jbc.270.45.27235 PubMedGoogle Scholar
  146. 146.
    Tarrant JM, Groom J, Metcalf D et al (2002) The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro t-cell proliferative responses. Mol Cell Biol 22:5006–5018. doi: 10.1128/MCB.22.14.5006-5018.2002 PubMedCentralPubMedGoogle Scholar
  147. 147.
    Paulsen M, El-Maarri O, Engemann S et al (2000) Sequence conservation and variability of imprinting in the Beckwith–Wiedemann syndrome gene cluster in human and mouse. Hum Mol Genet 9:1829–1841PubMedGoogle Scholar
  148. 148.
    Umlauf D, Goto Y, Cao R et al (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300. doi: 10.1038/ng1467 PubMedGoogle Scholar
  149. 149.
    Bhogal B, Arnaudo A, Dymkowski A et al (2004) Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression. Genomics 84:961–970. doi: 10.1016/j.ygeno.2004.08.004 PubMedGoogle Scholar
  150. 150.
    Wood MD, Hiura H, Tunster SJ et al (2010) Autonomous silencing of the imprinted Cdkn1c gene in stem cells. Epigenetics Off J DNA Methylation Soc 5:214–221Google Scholar
  151. 151.
    Onyango P, Miller W, Lehoczky J et al (2000) Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res 10:1697–1710PubMedGoogle Scholar
  152. 152.
    Dao D, Frank D, Qian N et al (1998) IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum Mol Genet 7:597–608PubMedGoogle Scholar
  153. 153.
    Rock JR, Futtner CR, Harfe BD (2008) The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321:141–149. doi: 10.1016/j.ydbio.2008.06.009 PubMedGoogle Scholar
  154. 154.
    Sachs M, Brohmann H, Zechner D et al (2000) Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150:1375–1384PubMedCentralPubMedGoogle Scholar
  155. 155.
    Hollnagel A, Grund C, Franke WW, Arnold H-H (2002) The Cell Adhesion Molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol 22:4760–4770. doi: 10.1128/MCB.22.13.4760-4770.2002 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Nomura T, Kimura M, Horii T et al (2008) MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet 17:1192–1199. doi: 10.1093/hmg/ddn011 PubMedGoogle Scholar
  157. 157.
    De la Puente A, Hall J, Wu Y-Z et al (2002) Structural characterization of Rasgrf1 and a novel linked imprinted locus. Gene 291:287–297PubMedGoogle Scholar
  158. 158.
    Itier JM, Tremp GL, Léonard JF et al (1998) Imprinted gene in postnatal growth role. Nature 393:125–126. doi: 10.1038/30120 PubMedGoogle Scholar
  159. 159.
    Lee N-C, Shieh Y-D, Chien Y-H et al (2013) Regulation of the dopaminergic system in a murine model of aromatic l-amino acid decarboxylase deficiency. Neurobiol Dis 52:177–190. doi: 10.1016/j.nbd.2012.12.005 PubMedGoogle Scholar
  160. 160.
    Van de Sluis B, Muller P, Duran K et al (2007) Increased activity of hypoxia-inducible factor 1 is associated with early embryonic lethality in Commd1 null mice. mol cell Biol 27:4142–4156. doi: 10.1128/MCB.01932-06 PubMedCentralPubMedGoogle Scholar
  161. 161.
    Sunahara S, Nakamura K, Nakao K et al (2000) The oocyte-specific methylated region of the U2afbp-rs/U2af1-rs1 gene is dispensable for its imprinted methylation. Biochem Biophys Res Commun 268:590–595. doi: 10.1006/bbrc.2000.2189 PubMedGoogle Scholar
  162. 162.
    Harada A, Oguchi K, Okabe S et al (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369:488–491. doi: 10.1038/369488a0 PubMedGoogle Scholar
  163. 163.
    Becker-Heck A, Zohn IE, Okabe N et al (2011) The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43:79–84. doi: 10.1038/ng.727 PubMedCentralPubMedGoogle Scholar
  164. 164.
    DeVeale B, van der Kooy D, Babak T (2012) Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet 8:e1002600. doi: 10.1371/journal.pgen.1002600 PubMedCentralPubMedGoogle Scholar
  165. 165.
    Tierling S, Gasparoni G, Youngson N, Paulsen M (2009) The Begain gene marks the centromeric boundary of the imprinted region on mouse chromosome 12. Mamm Genome Off J Int Mamm Genome Soc 20:699–710. doi: 10.1007/s00335-009-9205-6 Google Scholar
  166. 166.
    Takada S, Tevendale M, Baker J et al (2000) Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr Biol CB 10:1135–1138Google Scholar
  167. 167.
    Schmidt JV, Matteson PG, Jones BK et al (2000) The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev 14:1997–2002PubMedCentralPubMedGoogle Scholar
  168. 168.
    Labialle S, Croteau S, Bélanger V et al (2008) Novel imprinted transcripts from the Dlk1-Gtl2 intergenic region, Mico1 and Mico1os, show circadian oscillations. Epigenetics Off J DNA Methylation Soc 3:322–329Google Scholar
  169. 169.
    Zhou Y, Cheunsuchon P, Nakayama Y et al (2010) Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137:2643–2652. doi: 10.1242/dev.045724 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Hatada I, Morita S, Obata Y et al (2001) Identification of a new imprinted gene, Rian, on mouse chromosome 12 by fluorescent differential display screening. J Biochem (Tokyo) 130:187–190Google Scholar
  171. 171.
    Seitz H, Royo H, Bortolin M-L et al (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14:1741–1748. doi: 10.1101/gr.2743304 PubMedCentralPubMedGoogle Scholar
  172. 172.
    Hernandez A (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484. doi: 10.1172/JCI26240 PubMedCentralPubMedGoogle Scholar
  173. 173.
    Fiorica-Howells E, Hen R, Gingrich J et al (2002) 5-HT2A receptors: location and functional analysis in intestines of wild-type and 5-HT2A knockout mice. Am J Physiol-Gastrointest Liver Physiol 282:G877–G893PubMedGoogle Scholar
  174. 174.
    Mulkey DK, Talley EM, Stornetta RL et al (2007) TASK channels determine ph sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27:14049–14058. doi: 10.1523/JNEUROSCI.4254-07.2007 PubMedGoogle Scholar
  175. 175.
    Wang X, Sun Q, McGrath SD et al (2008) Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS ONE. doi: 10.1371/journal.pone.0003839 Google Scholar
  176. 176.
    Liu J (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441. doi: 10.1126/science.1102513 PubMedGoogle Scholar
  177. 177.
    Siuciak JA, McCarthy SA, Chapin DS et al (2006) Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 51:374–385. doi: 10.1016/j.neuropharm.2006.01.012 PubMedGoogle Scholar
  178. 178.
    Rappold PM, Cui M, Chesser AS et al (2011) Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc Natl Acad Sci 108:20766–20771. doi: 10.1073/pnas.1115141108 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Jonker JW, Wagenaar E, van Eijl S, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23:7902–7908. doi: 10.1128/MCB.23.21.7902-7908.2003 PubMedCentralPubMedGoogle Scholar
  180. 180.
    Hu JF, Balaguru KA, Ivaturi RD et al (1999) Lack of reciprocal genomic imprinting of sense and antisense RNA of mouse insulin-like growth factor II receptor in the central nervous system. Biochem Biophys Res Commun 257:604–608PubMedGoogle Scholar
  181. 181.
    Stöger R, Kubicka P, Liu CG et al (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71PubMedGoogle Scholar
  182. 182.
    Wutz A, Theussl HC, Dausman J et al (2001) Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Dev Camb Engl 128:1881–1887Google Scholar
  183. 183.
    Hagiwara Y, Hirai M, Nishiyama K et al (1997) Screening for imprinted genes by allelic message display: identification of a paternally expressed gene impact on mouse chromosome 18. Proc Natl Acad Sci USA 94:9249–9254PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada

Personalised recommendations