Cellular and Molecular Life Sciences

, Volume 71, Issue 21, pp 4149–4177 | Cite as

Ionic mechanisms in pancreatic β cell signaling

  • Shao-Nian Yang
  • Yue Shi
  • Guang Yang
  • Yuxin Li
  • Jia Yu
  • Per-Olof Berggren
Review

Abstract

The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.

Keywords

Calcium mobilization Electrophysiology Exocytosis Ion channel Pancreatic endocrine cell Protein kinase 

Abbreviations

AID

α1-interaction domain

[Ca2+]i

Cytosolic free Ca2+ concentration

CaMKII

Calcium/calmodulin-dependent kinase II

CaV

Voltage-gated Ca2+

gCaV1

CaV1 channel conductance

gKATP

KATP channel conductance

gKV2.1

KV2.1 channel conductance

KATP

ATP-sensitive K+

KV

Voltage-gated K+

Kir

Potassium inward rectifier

NBF

Nucleotide-binding fold

PIP2

Phosphatidylinositol 4,5-bisphosphate

PKA

Protein kinase A

PKC

Protein kinase C

P-loop

Membrane-associated pore loop

SUR

Sulfonylurea receptor

TMD

Transmembrane domain

References

  1. 1.
    Drews G, Krippeit-Drews P, Dufer M (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163PubMedGoogle Scholar
  2. 2.
    Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143PubMedGoogle Scholar
  3. 3.
    Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135PubMedGoogle Scholar
  4. 4.
    Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81:133–176PubMedGoogle Scholar
  5. 5.
    Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476PubMedGoogle Scholar
  6. 6.
    Jacobson DA, Philipson LH (2007) Action potentials and insulin secretion: new insights into the role of Kv channels. Diabetes Obes Metab 9:89–98PubMedGoogle Scholar
  7. 7.
    Yang SN, Berggren PO (2005) β-Cell CaV channel regulation in physiology and pathophysiology. Am J Physiol 288:E16–E28Google Scholar
  8. 8.
    Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev 27:621–676PubMedGoogle Scholar
  9. 9.
    Philipson LH, Kusnetsov A, Larson T, Zeng Y, Westermark G (1993) Human, rodent, and canine pancreatic β-cells express a sodium channel α1-subunit related to a fetal brain isoform. Diabetes 42:1372–1377PubMedGoogle Scholar
  10. 10.
    Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ (2013) The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 170:1607–1651PubMedGoogle Scholar
  11. 11.
    Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628PubMedGoogle Scholar
  12. 12.
    Vignali S, Leiss V, Karl R, Hofmann F, Welling A (2006) Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J Physiol 572:691–706PubMedPubMedCentralGoogle Scholar
  13. 13.
    Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179PubMedGoogle Scholar
  14. 14.
    Yang SN, Berggren PO (2005) CaV2.3 channel and PKCλ: new players in insulin secretion. J Clin Invest 115:16–20PubMedPubMedCentralGoogle Scholar
  15. 15.
    Rorsman P, Eliasson L, Kanno T, Zhang Q, Gopel S (2011) Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog Biophys Mol Biol 107:224–235PubMedGoogle Scholar
  16. 16.
    Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL, Jones NC, Braine E, Rind G, Fee-Maki M, Parker D, Pajouhesh H, Parmar M, O’Brien TJ, Snutch TP (2012) T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med 4:121ra119Google Scholar
  17. 17.
    MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15:1423–1435PubMedGoogle Scholar
  18. 18.
    MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic β-cells enhances glucose-dependent insulin secretion. J Biol Chem 277:44938–44945PubMedGoogle Scholar
  19. 19.
    Tamarina NA, Kuznetsov A, Fridlyand LE, Philipson LH (2005) Delayed-rectifier (KV2.1) regulation of pancreatic β-cell calcium responses to glucose: inhibitor specificity and modeling. Am J Physiol Endocrinol Metab 289:E578–E585PubMedGoogle Scholar
  20. 20.
    Roe MW, Worley JF 3rd, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM 3rd, Blair N, Lancaster ME, McIntyre MS, Shehee WR, Dukes ID, Philipson LH (1996) Expression and function of pancreatic β-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling. J Biol Chem 271:32241–32246PubMedGoogle Scholar
  21. 21.
    Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607PubMedGoogle Scholar
  22. 22.
    Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammala CE, Philipson LH (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab 6:229–235PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ashcroft FM, Rorsman P (2013) KATP channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol 9:660–669PubMedGoogle Scholar
  24. 24.
    Dufer M, Gier B, Wolpers D, Krippeit-Drews P, Ruth P, Drews G (2009) Enhanced glucose tolerance by SK4 channel inhibition in pancreatic β-cells. Diabetes 58:1835–1843PubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang M, Houamed K, Kupershmidt S, Roden D, Satin LS (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic β-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363PubMedPubMedCentralGoogle Scholar
  26. 26.
    Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006PubMedGoogle Scholar
  27. 27.
    Gopel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renstrom E, Rorsman P (1999) Activation of Ca2+-dependent K+ channels contributes to rhythmic firing of action potentials in mouse pancreatic β cells. J Gen Physiol 114:759–770PubMedPubMedCentralGoogle Scholar
  28. 28.
    Jacobson DA, Mendez F, Thompson M, Torres J, Cochet O, Philipson LH (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol 588:3525–3537PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS ONE 7:e38005PubMedPubMedCentralGoogle Scholar
  30. 30.
    Colsoul B, Nilius B, Vennekens R (2013) Transient receptor potential (TRP) cation channels in diabetes. Curr Top Med Chem 13:258–269PubMedGoogle Scholar
  31. 31.
    Colsoul B, Vennekens R, Nilius B (2011) Transient receptor potential cation channels in pancreatic β cells. Rev Physiol Biochem Pharmacol 161:87–110PubMedGoogle Scholar
  32. 32.
    Roe MW, Worley JF, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived β-cells. J Biol Chem 273:10402–10410PubMedGoogle Scholar
  33. 33.
    Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in β cells. Sci Signal 2:ra23PubMedPubMedCentralGoogle Scholar
  34. 34.
    Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60:119–126PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J (2010) TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460:755–765PubMedGoogle Scholar
  36. 36.
    Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat Cell Biol 10:1421–1430PubMedGoogle Scholar
  37. 37.
    Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320PubMedGoogle Scholar
  38. 38.
    Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic β-cells. Cell Calcium 41:51–61PubMedGoogle Scholar
  39. 39.
    Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D (2010) TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch 460:69–76PubMedGoogle Scholar
  40. 40.
    Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. Proc Natl Acad Sci USA 107:5208–5213PubMedPubMedCentralGoogle Scholar
  41. 41.
    Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225PubMedGoogle Scholar
  42. 42.
    Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Nagamatsu S (2010) Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells. Biochem J 432:375–386PubMedGoogle Scholar
  43. 43.
    Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51:2252–2262PubMedGoogle Scholar
  44. 44.
    Zhang Y, Liu Y, Qu J, Hardy A, Zhang N, Diao J, Strijbos PJ, Tsushima R, Robinson RB, Gaisano HY, Wang Q, Wheeler MB (2009) Functional characterization of hyperpolarization-activated cyclic nucleotide-gated channels in rat pancreatic β cells. J Endocrinol 203:45–53PubMedPubMedCentralGoogle Scholar
  45. 45.
    El-Kholy W, MacDonald PE, Fox JM, Bhattacharjee A, Xue T, Gao X, Zhang Y, Stieber J, Li RA, Tsushima RG, Wheeler MB (2007) Hyperpolarization-activated cyclic nucleotide-gated channels in pancreatic β-cells. Mol Endocrinol 21:753–764PubMedGoogle Scholar
  46. 46.
    Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683PubMedPubMedCentralGoogle Scholar
  47. 47.
    Silva AM, Rodrigues RJ, Tome AR, Cunha RA, Misler S, Rosario LM, Santos RM (2008) Electrophysiological and immunocytochemical evidence for P2X purinergic receptors in pancreatic β cells. Pancreas 36:279–283PubMedGoogle Scholar
  48. 48.
    Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, Kaneko T, Iwanaga T, Seino S (1995) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9:686–691PubMedGoogle Scholar
  49. 49.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedPubMedCentralGoogle Scholar
  50. 50.
    Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud’homme GJ, Wang Q (2011) GABA exerts protective and regenerative effects on islet β cells and reverses diabetes. Proc Natl Acad Sci USA 108:11692–11697PubMedPubMedCentralGoogle Scholar
  51. 51.
    Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, Rorsman P (2010) γ-Aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells. Diabetes 59:1694–1701PubMedPubMedCentralGoogle Scholar
  52. 52.
    Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313PubMedGoogle Scholar
  53. 53.
    Best L, Sheader EA, Brown PD (1996) A volume-activated anion conductance in insulin-secreting cells. Pflugers Arch 431:363–370PubMedGoogle Scholar
  54. 54.
    Kinard TA, Satin LS (1995) An ATP-sensitive Cl channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44:1461–1466PubMedGoogle Scholar
  55. 55.
    Britsch S, Krippeit-Drews P, Gregor M, Lang F, Drews G (1994) Effects of osmotic changes in extracellular solution on electrical activity of mouse pancreatic B-cells. Biochem Biophys Res Commun 204:641–645PubMedGoogle Scholar
  56. 56.
    Best L, Brown PD, Sener A, Malaisse WJ (2010) Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2:59–64PubMedGoogle Scholar
  57. 57.
    Boom A, Lybaert P, Pollet JF, Jacobs P, Jijakli H, Golstein PE, Sener A, Malaisse WJ, Beauwens R (2007) Expression and localization of cystic fibrosis transmembrane conductance regulator in the rat endocrine pancreas. Endocrine 32:197–205PubMedGoogle Scholar
  58. 58.
    Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171PubMedPubMedCentralGoogle Scholar
  59. 59.
    Varadi A, Grant A, McCormack M, Nicolson T, Magistri M, Mitchell KJ, Halestrap AP, Yuan H, Schwappach B, Rutter GA (2006) Intracellular ATP-sensitive K+ channels in mouse pancreatic beta cells: against a role in organelle cation homeostasis. Diabetologia 49:1567–1577PubMedGoogle Scholar
  60. 60.
    Quesada I, Rovira JM, Martin F, Roche E, Nadal A, Soria B (2002) Nuclear KATP channels trigger nuclear Ca2+ transients that modulate nuclear function. Proc Natl Acad Sci USA 99:9544–9549PubMedPubMedCentralGoogle Scholar
  61. 61.
    Soria B, Quesada I, Ropero AB, Pertusa JA, Martin F, Nadal A (2004) Novel players in pancreatic islet signaling: from membrane receptors to nuclear channels. Diabetes 53:S86–S91PubMedGoogle Scholar
  62. 62.
    Barker CJ, Berggren PO (2013) New horizons in cellular regulation by inositol polyphosphates: insights from the pancreatic β-cell. Pharmacol Rev 65:641–669PubMedGoogle Scholar
  63. 63.
    Berggren PO, Yang SN, Murakami M, Efanov AM, Uhles S, Kohler M, Moede T, Fernstrom A, Appelskog IB, Aspinwall CA, Zaitsev SV, Larsson O, Moitoso de Vargas L, Fecher-Trost C, Weissgerber P, Ludwig A, Leibiger B, Juntti-Berggren L, Barker CJ, Gromada J, Freichel M, Leibiger IB, Flockerzi V (2004) Removal of Ca2+ channel β3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Cell 119:273–284PubMedGoogle Scholar
  64. 64.
    Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic β-cells (MIN6). J Biol Chem 278:11057–11064PubMedGoogle Scholar
  65. 65.
    Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287:31624–31632PubMedPubMedCentralGoogle Scholar
  66. 66.
    Geng X, Li L, Watkins S, Robbins PD, Drain P (2003) The insulin secretory granule is the major site of KATP channels of the endocrine pancreas. Diabetes 52:767–776PubMedGoogle Scholar
  67. 67.
    Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl uptake and acidification. J Cell Sci 114:2145–2154PubMedGoogle Scholar
  68. 68.
    Thevenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 283:C651–C672PubMedGoogle Scholar
  69. 69.
    Li DQ, Jing X, Salehi A, Collins SC, Hoppa MB, Rosengren AH, Zhang E, Lundquist I, Olofsson CS, Morgelin M, Eliasson L, Rorsman P, Renstrom E (2009) Suppression of sulfonylurea- and glucose-induced insulin secretion in vitro and in vivo in mice lacking the chloride transport protein ClC-3. Cell Metab 10:309–315PubMedGoogle Scholar
  70. 70.
    Deriy LV, Gomez EA, Jacobson DA, Wang X, Hopson JA, Liu XY, Zhang G, Bindokas VP, Philipson LH, Nelson DJ (2009) The granular chloride channel ClC-3 is permissive for insulin secretion. Cell Metab 10:316–323PubMedPubMedCentralGoogle Scholar
  71. 71.
    Blondel O, Moody MM, Depaoli AM, Sharp AH, Ross CA, Swift H, Bell GI (1994) Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc Natl Acad Sci USA 91:7777–7781PubMedPubMedCentralGoogle Scholar
  72. 72.
    Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51PubMedPubMedCentralGoogle Scholar
  73. 73.
    Yang SN, Wenna ND, Yu J, Yang G, Qiu H, Yu L, Juntti-Berggren L, Kohler M, Berggren PO (2007) Glucose recruits KATP channels via non-insulin-containing dense-core granules. Cell Metab 6:217–228PubMedGoogle Scholar
  74. 74.
    Ahmed M, Muhammed SJ, Kessler B, Salehi A (2010) Mitochondrial proteome analysis reveals altered expression of voltage dependent anion channels in pancreatic β-cells exposed to high glucose. Islets 2:283–292PubMedGoogle Scholar
  75. 75.
    Kim WH, Lee JW, Suh YH, Hong SH, Choi JS, Lim JH, Song JH, Gao B, Jung MH (2005) Exposure to chronic high glucose induces β-cell apoptosis through decreased interaction of glucokinase with mitochondria: downregulation of glucokinase in pancreatic β-cells. Diabetes 54:2602–2611PubMedGoogle Scholar
  76. 76.
    O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364PubMedGoogle Scholar
  78. 78.
    Nita II, Hershfinkel M, Kantor C, Rutter GA, Lewis EC, Sekler I (2014) Pancreatic β-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria. FASEB J (Epub ahead of print)Google Scholar
  79. 79.
    Kullin M, Li Z, Hansen JB, Bjork E, Sandler S, Karlsson FA (2000) KATP channel openers protect rat islets against the toxic effect of streptozotocin. Diabetes 49:1131–1136PubMedGoogle Scholar
  80. 80.
    Quesada I, Soria B (2004) Intracellular location of KATP channels and sulphonylurea receptors in the pancreatic β-cell: new targets for oral antidiabetic agents. Curr Med Chem 11:2707–2716PubMedGoogle Scholar
  81. 81.
    Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791PubMedGoogle Scholar
  82. 82.
    Toth B, Csanady L (2010) Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem 285:30091–30102PubMedPubMedCentralGoogle Scholar
  83. 83.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599PubMedGoogle Scholar
  84. 84.
    Best L (2005) Glucose-induced electrical activity in rat pancreatic β-cells: dependence on intracellular chloride concentration. J Physiol 568:137–144PubMedPubMedCentralGoogle Scholar
  85. 85.
    Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, Bokvist K (1999) Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic β-cells. Biophys J 76:2018–2028PubMedPubMedCentralGoogle Scholar
  86. 86.
    Best L, Miley HE, Yates AP (1996) Activation of an anion conductance and β-cell depolarization during hypotonically induced insulin release. Exp Physiol 81:927–933PubMedGoogle Scholar
  87. 87.
    Ashcroft FM, Rorsman P (1990) ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans 18:109–111PubMedGoogle Scholar
  88. 88.
    Rorsman P, Berggren PO, Bokvist K, Efendic S (1990) ATP-regulated K+ channels and diabetes mellitus. News Physiol Sci 5:143–147Google Scholar
  89. 89.
    Gilon P, Ravier MA, Jonas JC, Henquin JC (2002) Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51:S144–S151PubMedGoogle Scholar
  90. 90.
    Zhang M, Goforth P, Bertram R, Sherman A, Satin L (2003) The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys J 84:2852–2870PubMedPubMedCentralGoogle Scholar
  91. 91.
    Beauvois MC, Merezak C, Jonas JC, Ravier MA, Henquin JC, Gilon P (2006) Glucose-induced mixed [Ca2+]c oscillations in mouse β-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am J Physiol Cell Physiol 290:C1503–C1511PubMedGoogle Scholar
  92. 92.
    Poea-Guyon S, Ammar MR, Erard M, Amar M, Moreau AW, Fossier P, Gleize V, Vitale N, Morel N (2013) The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J Cell Biol 203:283–298PubMedPubMedCentralGoogle Scholar
  93. 93.
    Hille B (2001) Ion channels of excitable membranes. Sinauer, SunderlandGoogle Scholar
  94. 94.
    Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591–2599PubMedPubMedCentralGoogle Scholar
  95. 95.
    Nichols CG, Remedi (2012) The diabetic β-cell: hyperstimulated vs. hyperexcited. Diabetes Obes Metab 14(Suppl 3):129–135PubMedPubMedCentralGoogle Scholar
  96. 96.
    Smith PA, Ashcroft FM, Rorsman P (1990) Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K+-currents in isolated mouse pancreatic β-cells. FEBS Lett 261:187–190PubMedGoogle Scholar
  97. 97.
    Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC, Ashcroft FM (2005) 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 24:4166–4175PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ashcroft SJ, Ashcroft FM (1990) Properties and functions of ATP-sensitive K-channels. Cell Signal 2:197–214PubMedGoogle Scholar
  99. 99.
    Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic β-cells are regulated by intracellular ATP. Pflugers Arch 405:305–309PubMedGoogle Scholar
  100. 100.
    Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273PubMedGoogle Scholar
  101. 101.
    Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312:446–448PubMedGoogle Scholar
  102. 102.
    Bokvist K, Rorsman P, Smith PA (1990) Block of ATP-regulated and Ca2+-activated K+ channels in mouse pancreatic β-cells by external tetraethylammonium and quinine. J Physiol 423:327–342PubMedPubMedCentralGoogle Scholar
  103. 103.
    Misler S, Falke LC, Gillis K, McDaniel ML (1986) A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci USA 83:7119–7123PubMedPubMedCentralGoogle Scholar
  104. 104.
    Arkhammar P, Nilsson T, Rorsman P, Berggren PO (1987) Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic β-cells. J Biol Chem 262:5448–5454PubMedGoogle Scholar
  105. 105.
    Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflugers Arch 407:493–499PubMedGoogle Scholar
  106. 106.
    Ashcroft FM, Kakei M, Gibson JS, Gray DW, Sutton R (1989) The ATP- and tolbutamide-sensitivity of the ATP-sensitive K-channel from human pancreatic B cells. Diabetologia 32:591–598PubMedGoogle Scholar
  107. 107.
    Ashcroft FM, Ashcroft SJ, Harrison DE (1988) Properties of single potassium channels modulated by glucose in rat pancreatic β-cells. J Physiol 400:501–527PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ashcroft FM (2006) KATP channels and insulin secretion: a key role in health and disease. Biochem Soc Trans 34:243–246PubMedGoogle Scholar
  109. 109.
    Wilson JE, Chin A (1991) Chelation of divalent cations by ATP, studied by titration calorimetry. Anal Biochem 193:16–19PubMedGoogle Scholar
  110. 110.
    Storer AC, Cornish-Bowden A (1976) Concentration of MgATP2− and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J 159:1–5PubMedPubMedCentralGoogle Scholar
  111. 111.
    Tarasov A, Dusonchet J, Ashcroft F (2004) Metabolic regulation of the pancreatic β-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53:S113–S122PubMedGoogle Scholar
  112. 112.
    Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141PubMedGoogle Scholar
  113. 113.
    Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144PubMedGoogle Scholar
  114. 114.
    Furukawa T, Yamane T, Terai T, Katayama Y, Hiraoka M (1996) Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflugers Arch 431:504–512PubMedGoogle Scholar
  115. 115.
    Nakano K, Suga S, Takeo T, Ogawa Y, Suda T, Kanno T, Wakui M (2002) Intracellular Ca2+ modulation of ATP-sensitive K+ channel activity in acetylcholine-induced activation of rat pancreatic β-cells. Endocrinology 143:569–576PubMedGoogle Scholar
  116. 116.
    Petit P, Hillaire-Buys D, Manteghetti M, Debrus S, Chapal J, Loubatieres-Mariani MM (1998) Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell. Br J Pharmacol 125:1368–1374PubMedPubMedCentralGoogle Scholar
  117. 117.
    Burnstock G (2014) Purinergic signalling in endocrine organs. Purinergic Signal 10:189–231PubMedPubMedCentralGoogle Scholar
  118. 118.
    Beguin P, Nagashima K, Nishimura M, Gonoi T, Seino S (1999) PKA-mediated phosphorylation of the human KATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J 18:4722–4732PubMedPubMedCentralGoogle Scholar
  119. 119.
    Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811PubMedGoogle Scholar
  120. 120.
    Hu K, Huang CS, Jan YN, Jan LY (2003) ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 38:417–432PubMedGoogle Scholar
  121. 121.
    Light PE, Bladen C, Winkfein RJ, Walsh MP, French RJ (2000) Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci USA 97:9058–9063PubMedPubMedCentralGoogle Scholar
  122. 122.
    Dorschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M (1999) Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 55:1060–1066PubMedGoogle Scholar
  123. 123.
    Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46:1029–1045PubMedGoogle Scholar
  124. 124.
    Satin LS (2000) Localized calcium influx in pancreatic β-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 13:251–262PubMedGoogle Scholar
  125. 125.
    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555PubMedGoogle Scholar
  126. 126.
    Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947PubMedPubMedCentralGoogle Scholar
  127. 127.
    Catterall WA (1991) Functional subunit structure of voltage-gated calcium channels. Science 253:1499–1500PubMedGoogle Scholar
  128. 128.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425PubMedGoogle Scholar
  129. 129.
    Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581PubMedGoogle Scholar
  130. 130.
    Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482PubMedPubMedCentralGoogle Scholar
  131. 131.
    Rorsman P, Braun M, Zhang Q (2012) Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 51:300–308PubMedPubMedCentralGoogle Scholar
  132. 132.
    Wang MC, Collins RF, Ford RC, Berrow NS, Dolphin AC, Kitmitto A (2004) The three-dimensional structure of the cardiac L-type voltage-gated calcium channel: comparison with the skeletal muscle form reveals a common architectural motif. J Biol Chem 279:7159–7168PubMedGoogle Scholar
  133. 133.
    Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61PubMedGoogle Scholar
  134. 134.
    Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr (2004) Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429:671–675PubMedPubMedCentralGoogle Scholar
  135. 135.
    Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004) Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429:675–680PubMedGoogle Scholar
  136. 136.
    Schulla V, Renstrom E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundquist I, Magnuson MA, Obermuller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F (2003) Impaired insulin secretion and glucose tolerance in β cell-selective CaV1.2 Ca2+ channel null mice. EMBO J 22:3844–3854PubMedPubMedCentralGoogle Scholar
  137. 137.
    Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions. J Physiol 374:531–550PubMedPubMedCentralGoogle Scholar
  138. 138.
    Hofmann F, Flockerzi V, Kahl S, Wegener JW (2014) L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 94:303–326PubMedGoogle Scholar
  139. 139.
    Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154PubMedPubMedCentralGoogle Scholar
  140. 140.
    Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P (2008) Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586:3313–3324PubMedPubMedCentralGoogle Scholar
  141. 141.
    Bhattacharjee A, Whitehurst RM Jr, Zhang M, Wang L, Li M (1997) T-type calcium channels facilitate insulin secretion by enhancing general excitability in the insulin-secreting β-cell line, INS-1. Endocrinology 138:3735–3740PubMedGoogle Scholar
  142. 142.
    Ohta M, Nelson J, Nelson D, Meglasson MD, Erecinska M (1993) Effect of Ca++ channel blockers on energy level and stimulated insulin secretion in isolated rat islets of Langerhans. J Pharmacol Exp Ther 264:35–40PubMedGoogle Scholar
  143. 143.
    Kanno T, Suga S, Wu J, Kimura M, Wakui M (1998) Intracellular cAMP potentiates voltage-dependent activation of L-type Ca2+ channels in rat islet β-cells. Pflugers Arch 435:578–580PubMedGoogle Scholar
  144. 144.
    Henquin JC, Meissner HP (1983) Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells. Biochem Biophys Res Commun 112:614–620PubMedGoogle Scholar
  145. 145.
    Gillis KD, Misler S (1993) Enhancers of cytosolic cAMP augment depolarization-induced exocytosis from pancreatic B-cells: evidence for effects distal to Ca2+ entry. Pflugers Arch 424:195–197PubMedGoogle Scholar
  146. 146.
    Ammala C, Ashcroft FM, Rorsman P (1993) Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature 363:356–358PubMedGoogle Scholar
  147. 147.
    Love JA, Richards NW, Owyang C, Dawson DC (1998) Muscarinic modulation of voltage-dependent Ca2+ channels in insulin-secreting HIT-T15 cells. Am J Physiol 274:G397–G405PubMedGoogle Scholar
  148. 148.
    Arkhammar P, Juntti-Berggren L, Larsson O, Welsh M, Nanberg E, Sjoholm A, Kohler M, Berggren PO (1994) Protein kinase C modulates the insulin secretory process by maintaining a proper function of the β-cell voltage-activated Ca2+ channels. J Biol Chem 269:2743–2749PubMedGoogle Scholar
  149. 149.
    Platano D, Pollo A, Carbone E, Aicardi G (1996) Up-regulation of L- and non-L, non-N-type Ca2+ channels by basal and stimulated protein kinase C activation in insulin-secreting RINm5F cells. FEBS Lett 391:189–194PubMedGoogle Scholar
  150. 150.
    Ishikawa T, Kaneko Y, Sugino F, Nakayama K (2003) Two distinct effects of cGMP on cytosolic Ca2+ concentration of rat pancreatic β-cells. J Pharmacol Sci 91:41–46PubMedGoogle Scholar
  151. 151.
    Doerner D, Alger BE (1988) Cyclic GMP depresses hippocampal Ca2+ current through a mechanism independent of cGMP-dependent protein kinase. Neuron 1:693–699PubMedGoogle Scholar
  152. 152.
    Li G, Hidaka H, Wollheim CB (1992) Inhibition of voltage-gated Ca2+ channels and insulin secretion in HIT cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62: comparison with antagonists of calmodulin and L-type Ca2+ channels. Mol Pharmacol 42:489–498PubMedGoogle Scholar
  153. 153.
    Bhatt HS, Conner BP, Prasanna G, Yorio T, Easom RA (2000) Dependence of insulin secretion from permeabilized pancreatic β-cells on the activation of Ca2+/calmodulin-dependent protein kinase II. A re-evaluation of inhibitor studies. Biochem Pharmacol 60:1655–1663PubMedGoogle Scholar
  154. 154.
    Ammala C, Eliasson L, Bokvist K, Berggren PO, Honkanen RE, Sjoholm A, Rorsman P (1994) Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic β cells. Proc Natl Acad Sci USA 91:4343–4347PubMedPubMedCentralGoogle Scholar
  155. 155.
    Rosenbaum T, Castanares DT, Lopez-Vaides HE, Hiriart M (2002) Nerve growth factor increases L-type calcium current in pancreatic β cells in culture. J Membr Biol 186:177–184PubMedGoogle Scholar
  156. 156.
    Rosenbaum T, Sanchez-Soto MC, Hiriart M (2001) Nerve growth factor increases insulin secretion and barium current in pancreatic β-cells. Diabetes 50:1755–1762PubMedGoogle Scholar
  157. 157.
    Blair LA, Marshall J (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421–429PubMedGoogle Scholar
  158. 158.
    Roper MG, Qian WJ, Zhang BB, Kulkarni RN, Kahn CR, Kennedy RT (2002) Effect of the insulin mimetic L-783,281 on intracellular Ca2+ and insulin secretion from pancreatic β-cells. Diabetes 51:S43–S49PubMedGoogle Scholar
  159. 159.
    Brubaker PL, Drucker DJ (2002) Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 8:179–188PubMedGoogle Scholar
  160. 160.
    Britsch S, Krippeit-Drews P, Lang F, Gregor M, Drews G (1995) Glucagon-like peptide-1 modulates Ca2+ current but not K+ ATP current in intact mouse pancreatic B-cells. Biochem Biophys Res Commun 207:33–39PubMedGoogle Scholar
  161. 161.
    Suga S, Kanno T, Nakano K, Takeo T, Dobashi Y, Wakui M (1997) GLP-I(7-36) amide augments Ba2+ current through L-type Ca2+ channel of rat pancreatic β-cell in a cAMP-dependent manner. Diabetes 46:1755–1760PubMedGoogle Scholar
  162. 162.
    Gilon P, Yakel J, Gromada J, Zhu Y, Henquin JC, Rorsman P (1997) G protein-dependent inhibition of L-type Ca2+ currents by acetylcholine in mouse pancreatic B-cells. J Physiol 499:65–76PubMedPubMedCentralGoogle Scholar
  163. 163.
    Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P (1998) Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic β-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47:57–65PubMedGoogle Scholar
  164. 164.
    Gromada J, Brock B, Schmitz O, Rorsman P (2004) Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 95:252–262PubMedGoogle Scholar
  165. 165.
    Gromada J, Holst JJ, Rorsman P (1998) Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 435:583–594PubMedGoogle Scholar
  166. 166.
    Salapatek AMF, MacDonald PE, Gaisano HY, Wheeler MB (1999) Mutations to the third cytoplasmic domain of the glucagon-like peptide 1 (GLP-1) receptor can functionally uncouple GLP-1-stimulated insulin secretion in HIT-T15 cells. Mol Endocrinol 13:1305–1317PubMedGoogle Scholar
  167. 167.
    Hsu WH, Xiang HD, Rajan AS, Boyd AE 3rd (1991) Activation of α2-adrenergic receptors decreases Ca2+ influx to inhibit insulin secretion in a hamster β-cell line: an action mediated by a guanosine triphosphate-binding protein. Endocrinology 128:958–964PubMedGoogle Scholar
  168. 168.
    Hsu WH, Xiang HD, Rajan AS, Kunze DL, Boyd AE 3rd (1991) Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the β cell. J Biol Chem 266:837–843PubMedGoogle Scholar
  169. 169.
    Degtiar VE, Harhammer R, Nurnberg B (1997) Receptors couple to L-type calcium channels via distinct Go proteins in rat neuroendocrine cell lines. J Physiol 502:321–333PubMedPubMedCentralGoogle Scholar
  170. 170.
    Nilsson T, Arkhammar P, Rorsman P, Berggren PO (1989) Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem 264:973–980PubMedGoogle Scholar
  171. 171.
    Rorsman P, Arkhammar P, Berggren PO, Nilsson T (1987) Clonidine inhibition of glucoe-stimulated insulin-release involves reduction of the Ca2+ current. Diabetologia 30:A575Google Scholar
  172. 172.
    Keahey HH, Boyd AE 3rd, Kunze DL (1989) Catecholamine modulation of calcium currents in clonal pancreatic β-cells. Am J Physiol 257:C1171–C1176PubMedGoogle Scholar
  173. 173.
    Bokvist K, Ammala C, Berggren PO, Rorsman P, Wahlander K (1991) Alpha2-adrenoreceptor stimulation does not inhibit L-type calcium channels in mouse pancreatic β-cells. Biosci Rep 11:147–157PubMedGoogle Scholar
  174. 174.
    Rorsman P, Bokvist K, Ammala C, Arkhammar P, Berggren PO, Larsson O, Wahlander K (1991) Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature 349:77–79PubMedGoogle Scholar
  175. 175.
    Homaidan FR, Sharp GW, Nowak LM (1991) Galanin inhibits a dihydropyridine-sensitive Ca2+ current in the RINm5f cell line. Proc Natl Acad Sci USA 88:8744–8748PubMedPubMedCentralGoogle Scholar
  176. 176.
    Yoshikawa H, Hellstrom-Lindahl E, Grill V (2005) Evidence for functional nicotinic receptors on pancreatic β cells. Metabolism 54:247–254PubMedGoogle Scholar
  177. 177.
    Yaney GC, Wheeler MB, Wei X, Perez-Reyes E, Birnbaumer L, Boyd AE 3rd, Moss LG (1992) Cloning of a novel α1-subunit of the voltage-dependent calcium channel from the β-cell. Mol Endocrinol 6:2143–2152PubMedGoogle Scholar
  178. 178.
    Wiser O, Trus M, Hernandez A, Renstrom E, Barg S, Rorsman P, Atlas D (1999) The voltage sensitive LC-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA 96:248–253PubMedPubMedCentralGoogle Scholar
  179. 179.
    Yang SN, Larsson O, Branstrom R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Kohler M, Meister B, Berggren PO (1999) Syntaxin 1 interacts with the LD subtype of voltage-gated Ca2+ channels in pancreatic β cells. Proc Natl Acad Sci USA 96:10164–10169PubMedPubMedCentralGoogle Scholar
  180. 180.
    Ji J, Yang SN, Huang X, Li X, Sheu L, Diamant N, Berggren PO, Gaisano HY (2002) Modulation of L-type Ca2+ channels by distinct domains within SNAP-25. Diabetes 51:1425–1436PubMedGoogle Scholar
  181. 181.
    Atlas D (2014) Voltage-gated calcium channels function as Ca2+-activated signaling receptors. Trends Biochem Sci 39:45–52PubMedGoogle Scholar
  182. 182.
    Trus M, Corkey RF, Nesher R, Richard AM, Deeney JT, Corkey BE, Atlas D (2007) The L-type voltage-gated Ca2+ channel is the Ca2+ sensor protein of stimulus-secretion coupling in pancreatic beta cells. Biochemistry 46:14461–14467PubMedGoogle Scholar
  183. 183.
    Smith PA, Rorsman P, Ashcroft FM (1989) Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic β-cells. Nature 342:550–553PubMedGoogle Scholar
  184. 184.
    Iwashima Y, Pugh W, Depaoli AM, Takeda J, Seino S, Bell GI, Polonsky KS (1993) Expression of calcium channel mRNAs in rat pancreatic islets and downregulation after glucose infusion. Diabetes 42:948–955PubMedGoogle Scholar
  185. 185.
    Iwashima Y, Kondoh-Abiko A, Seino S, Takeda J, Eto M, Polonsky KS, Makino I (1994) Reduced levels of messenger ribonucleic acid for calcium channel, glucose transporter-2, and glucokinase are associated with alterations in insulin secretion in fasted rats. Endocrinology 135:1010–1017PubMedGoogle Scholar
  186. 186.
    Fukuda M, Mikoshiba K (1997) The function of inositol high polyphosphate binding proteins. BioEssays 19:593–603PubMedGoogle Scholar
  187. 187.
    Tsui MM, York JD (2010) Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul 50:324–337PubMedPubMedCentralGoogle Scholar
  188. 188.
    Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K (2011) A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472:238–242PubMedPubMedCentralGoogle Scholar
  189. 189.
    Larsson O, Barker CJ, Sjoholm A, Carlqvist H, Michell RH, Bertorello A, Nilsson T, Honkanen RE, Mayr GW, Zwiller J, Berggren PO (1997) Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science 278:471–474PubMedGoogle Scholar
  190. 190.
    Hoy M, Efanov AM, Bertorello AM, Zaitsev SV, Olsen HL, Bokvist K, Leibiger B, Leibiger IB, Zwiller J, Berggren PO, Gromada J (2002) Inositol hexakisphosphate promotes dynamin I-mediated endocytosis. Proc Natl Acad Sci USA 99:6773–6777PubMedPubMedCentralGoogle Scholar
  191. 191.
    Hoy M, Berggren PO, Gromada J (2003) Involvement of protein kinase C-ε in inositol hexakisphosphate-induced exocytosis in mouse pancreatic β-cells. J Biol Chem 278:35168–35171PubMedGoogle Scholar
  192. 192.
    Efanov AM, Zaitsev SV, Berggren PO (1997) Inositol hexakisphosphate stimulates non-Ca2+-mediated and primes Ca2+-mediated exocytosis of insulin by activation of protein kinase C. Proc Natl Acad Sci USA 94:4435–4439PubMedPubMedCentralGoogle Scholar
  193. 193.
    Yang SN, Shi Y, Yang G, Li Y, Yu L, Shin OH, Bacaj T, Sudhof TC, Yu J, Berggren PO (2012) Inositol hexakisphosphate suppresses excitatory neurotransmission via synaptotagmin-1 C2B domain in the hippocampal neuron. Proc Natl Acad Sci USA 109:12183–12188PubMedPubMedCentralGoogle Scholar
  194. 194.
    Yang SN, Yu J, Mayr GW, Hofmann F, Larsson O, Berggren PO (2001) Inositol hexakisphosphate increases L-type Ca2+ channel activity by stimulation of adenylyl cyclase. FASEB J 15:1753–1763PubMedGoogle Scholar
  195. 195.
    Yu J, Leibiger B, Yang SN, Caffery JJ, Shears SB, Leibiger IB, Barker CJ, Berggren PO (2003) Cytosolic multiple inositol polyphosphate phosphatase in the regulation of cytoplasmic free Ca2+ concentration. J Biol Chem 278:46210–46218PubMedGoogle Scholar
  196. 196.
    Refai E, Dekki N, Yang SN, Imreh G, Cabrera O, Yu L, Yang G, Norgren S, Rossner SM, Inverardi L, Ricordi C, Olivecrona G, Andersson M, Jornvall H, Berggren PO, Juntti-Berggren L (2005) Transthyretin constitutes a functional component in pancreatic β-cell stimulus-secretion coupling. Proc Natl Acad Sci USA 102:17020–17025PubMedPubMedCentralGoogle Scholar
  197. 197.
    Olofsson CS, Salehi A, Holm C, Rorsman P (2004) Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic β-cells. J Physiol 557:935–948PubMedPubMedCentralGoogle Scholar
  198. 198.
    Lee AK, Yeung-Yam-Wah V, Tse FW, Tse A (2011) Cholesterol elevation impairs glucose-stimulated Ca2+ signaling in mouse pancreatic β-cells. Endocrinology 152:3351–3361PubMedGoogle Scholar
  199. 199.
    Xia F, Xie L, Mihic A, Gao X, Chen Y, Gaisano HY, Tsushima RG (2008) Inhibition of cholesterol biosynthesis impairs insulin secretion and voltage-gated calcium channel function in pancreatic β-cells. Endocrinology 149:5136–5145PubMedGoogle Scholar
  200. 200.
    Berggren PO, Larsson O (1994) Ca2+ and pancreatic β-cell function. Biochem Soc Trans 22:12–18PubMedGoogle Scholar
  201. 201.
    Namkung Y, Skrypnyk N, Jeong MJ, Lee T, Lee MS, Kim HL, Chin H, Suh PG, Kim SS, Shin HS (2001) Requirement for the L-type Ca2+ channel α1D subunit in postnatal pancreatic β cell generation. J Clin Invest 108:1015–1022PubMedPubMedCentralGoogle Scholar
  202. 202.
    Sjoholm A (1995) Regulation of insulinoma cell proliferation and insulin accumulation by peptides and second messengers. Ups J Med Sci 100:201–216PubMedGoogle Scholar
  203. 203.
    Popiela H, Moore W (1991) Tolbutamide stimulates proliferation of pancreatic β cells in culture. Pancreas 6:464–469PubMedGoogle Scholar
  204. 204.
    German MS, Moss LG, Rutter WJ (1990) Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem 265:22063–22066PubMedGoogle Scholar
  205. 205.
    Efrat S, Surana M, Fleischer N (1991) Glucose induces insulin gene transcription in a murine pancreatic β-cell line. J Biol Chem 266:11141–11143PubMedGoogle Scholar
  206. 206.
    Macfarlane WM, Campbell SC, Elrick LJ, Oates V, Bermano G, Lindley KJ, Aynsley-Green A, Dunne MJ, James RF, Docherty K (2000) Glucose regulates islet amyloid polypeptide gene transcription in a PDX1- and calcium-dependent manner. J Biol Chem 275:15330–15335PubMedGoogle Scholar
  207. 207.
    Lee B, Laychock SG (2000) Regulation of inositol trisphosphate receptor isoform expression in glucose-desensitized rat pancreatic islets: role of cyclic adenosine 3′,5′-monophosphate and calcium. Endocrinology 141:1394–1402PubMedGoogle Scholar
  208. 208.
    Huo J, Metz SA, Li G (2003) Role of tissue transglutaminase in GTP depletion-induced apoptosis of insulin-secreting (HIT-T15) cells. Biochem Pharmacol 66:213–223PubMedGoogle Scholar
  209. 209.
    Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S, Berggren PO (1998) Glucose and tolbutamide induce apoptosis in pancreatic β-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 273:33501–33507PubMedGoogle Scholar
  210. 210.
    Chang I, Cho N, Kim S, Kim JY, Kim E, Woo JE, Nam JH, Kim SJ, Lee MS (2004) Role of calcium in pancreatic islet cell death by IFN-γ/TNF-α. J Immunol 172:7008–7014PubMedGoogle Scholar
  211. 211.
    Zaitsev SV, Appelskog IB, Kapelioukh IL, Yang SN, Kohler M, Efendic S, Berggren PO (2001) Imidazoline compounds protect against interleukin 1β-induced β-cell apoptosis. Diabetes 50:S70–S76PubMedGoogle Scholar
  212. 212.
    Shi Y, Yang G, Yu J, Yu L, Westenbroek R, Catterall WA, Juntti-Berggren L, Berggren PO, Yang SN (2014) Apolipoprotein CIII hyperactivates β cell CaV1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src. Cell Mol Life Sci 71:1289–1303PubMedGoogle Scholar
  213. 213.
    Dekki N, Nilsson R, Norgren S, Rossner SM, Appelskog I, Marcus C, Simell O, Pugliese A, Alejandro R, Ricordi C, Berggren PO, Juntti-Berggren L (2007) Type 1 diabetic serum interferes with pancreatic β-cell Ca2+-handling. Biosci Rep 27:321–326PubMedGoogle Scholar
  214. 214.
    Holmberg R, Refai E, Höög A, Crooke RM, Graham M, Olivecrona G, Berggren PO, Juntti-Berggren L (2011) Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc Natl Acad Sci USA 108:10685–10689PubMedPubMedCentralGoogle Scholar
  215. 215.
    Juntti-Berggren L, Refai E, Appelskog I, Andersson M, Imreh G, Dekki N, Uhles S, Yu L, Griffiths WJ, Zaitsev S, Leibiger I, Yang SN, Olivecrona G, Jornvall H, Berggren PO (2004) Apolipoprotein CIII promotes Ca2+-dependent β cell death in type 1 diabetes. Proc Natl Acad Sci USA 101:10090–10094PubMedPubMedCentralGoogle Scholar
  216. 216.
    Juntti-Berggren L, Larsson O, Rorsman P, Ammala C, Bokvist K, Wahlander K, Nicotera P, Dypbukt J, Orrenius S, Hallberg A, Berggren PO (1993) Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science 261:86–90PubMedGoogle Scholar
  217. 217.
    Chandra J, Yang SN, Kohler M, Zaitsev S, Juntti-Berggren L, Berggren PO, Zhivotovsky B, Orrenius S (2001) Effects of serum from patients with type 1 diabetes on primary cerebellar granule cells. Diabetes 50:S77–S81PubMedGoogle Scholar
  218. 218.
    Adair B, Nunn R, Lewis S, Dukes I, Philipson L, Yeager M (2008) Single particle image reconstruction of the human recombinant Kv2.1 channel. Biophys J 94:2106–2114PubMedPubMedCentralGoogle Scholar
  219. 219.
    Mohapatra DP, Siino DF, Trimmer JS (2008) Interdomain cytoplasmic interactions govern the intracellular trafficking, gating, and modulation of the Kv2.1 channel. J Neurosci 28:4982–4994PubMedPubMedCentralGoogle Scholar
  220. 220.
    Pfaffinger PJ, DeRubeis D (1995) Shaker K+ channel T1 domain self-tetramerizes to a stable structure. J Biol Chem 270:28595–28600PubMedGoogle Scholar
  221. 221.
    Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948PubMedGoogle Scholar
  222. 222.
    Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S (1999) Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol 6:38–43PubMedGoogle Scholar
  223. 223.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526PubMedGoogle Scholar
  224. 224.
    Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903PubMedGoogle Scholar
  225. 225.
    Smith PA, Bokvist K, Arkhammar P, Berggren PO, Rorsman P (1990) Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic β-cells. J Gen Physiol 95:1041–1059PubMedGoogle Scholar
  226. 226.
    Mohapatra DP, Park KS, Trimmer JS (2007) Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation. Biochem Soc Trans 35:1064–1068PubMedGoogle Scholar
  227. 227.
    MacDonald PE, Salapatek AM, Wheeler MB (2003) Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic β-cells. J Physiol 546:647–653PubMedPubMedCentralGoogle Scholar
  228. 228.
    Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J (2008) Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2β in pancreatic β-cells and in iPLA2β-null mice. Am J Physiol Endocrinol Metab 294:E217–E229PubMedPubMedCentralGoogle Scholar
  229. 229.
    Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382PubMedGoogle Scholar
  230. 230.
    Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–779PubMedGoogle Scholar
  231. 231.
    Xia F, Gao X, Kwan E, Lam PP, Chan L, Sy K, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG (2004) Disruption of pancreatic β-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 279:24685–24691PubMedGoogle Scholar
  232. 232.
    MacDonald PE, Salapatek AM, Wheeler MB (2002) Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in β-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51:S443–S447PubMedGoogle Scholar
  233. 233.
    Feng DD, Luo Z, Roh SG, Hernandez M, Tawadros N, Keating DJ, Chen C (2006) Reduction in voltage-gated K+ currents in primary cultured rat pancreatic β-cells by linoleic acids. Endocrinology 147:674–682PubMedGoogle Scholar
  234. 234.
    Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH (2007) Modulation of the pancreatic islet β-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 282:7442–7449PubMedPubMedCentralGoogle Scholar
  235. 235.
    Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG (2000) Targeted overactivity of β cell KATP channels induces profound neonatal diabetes. Cell 100:645–654PubMedGoogle Scholar
  236. 236.
    Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the β cell: the last ten years. Cell 148:1160–1171PubMedGoogle Scholar
  237. 237.
    Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, Moede T, Kohler M, Wilbertz J, Leibiger B, Ricordi C, Leibiger IB, Caicedo A, Berggren PO (2008) Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14:574–578PubMedPubMedCentralGoogle Scholar
  238. 238.
    Speier S, Nyqvist D, Kohler M, Caicedo A, Leibiger IB, Berggren PO (2008) Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3:1278–1286PubMedPubMedCentralGoogle Scholar
  239. 239.
    Walker JN, Ramracheya R, Zhang Q, Johnson PR, Braun M, Rorsman P (2011) Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes Metab 13(Suppl 1):95–105PubMedGoogle Scholar
  240. 240.
    Henquin JC, Nenquin M, Stiernet P, Ahren B (2006) In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in β-cells. Diabetes 55:441–451PubMedGoogle Scholar
  241. 241.
    Henquin JC, Dufrane D, Nenquin M (2006) Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55:3470–3477PubMedGoogle Scholar
  242. 242.
    Falke LC, Gillis KD, Pressel DM, Misler S (1989) ‘Perforated patch recording’ allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet B cells. FEBS Lett 251:167–172PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Shao-Nian Yang
    • 1
    • 3
  • Yue Shi
    • 1
  • Guang Yang
    • 1
    • 2
  • Yuxin Li
    • 3
  • Jia Yu
    • 1
  • Per-Olof Berggren
    • 1
  1. 1.The Rolf Luft Research Center for Diabetes and EndocrinologyKarolinska InstitutetStockholmSweden
  2. 2.Jilin Academy of Traditional Chinese MedicineChangchunChina
  3. 3.National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchunChina

Personalised recommendations