Cellular and Molecular Life Sciences

, Volume 71, Issue 20, pp 3903–3916 | Cite as

Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release

  • John Jia En ChuaEmail author


The release of neurotransmitters from synaptic vesicles exocytosing at presynaptic nerve terminals is a critical event in the initiation of synaptic transmission. This event occurs at specialized sites known as active zones. The task of faithfully executing various steps in the process is undertaken by careful orchestration of overlapping sets of molecular nano-machineries upon a core macromolecular scaffold situated at active zones. However, their composition remains incompletely elucidated. This review provides an overview of the role of the active zone in mediating neurotransmitter release and summarizes the recent progress using neuroproteomic approaches to decipher their composition. Key proteins of these nano-machineries are highlighted.


Synaptic transmission Presynaptic nerve terminal Active zone Presynaptic proteins Neuroproteomics 



The author is indebted to Reinhard Jahn for the many stimulating discussions and critical comments to the manuscript. Research from the group is supported by funding from the European Union Seventh Framework Programme under grant agreement no. HEALTH-F2-2009-241498 (‘EUROSPIN’) and from the Deutsche Forschungsgemeinschaft (grant no. CH 1385/1-1).


  1. 1.
    Sudhof TC (2012) The presynaptic active zone. Neuron 75(1):11–25. doi: 10.1016/j.neuron.2012.06.012 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Chua JJ, Kindler S, Boyken J, Jahn R (2010) The architecture of an excitatory synapse. J Cell Sci 123(Pt 6):819–823. doi: 10.1242/jcs.052696 PubMedGoogle Scholar
  3. 3.
    Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4(2012):a005587. doi: 10.1101/cshperspect.a005587
  4. 4.
    Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10(9):635–646. doi: 10.1038/nrn2701 PubMedGoogle Scholar
  5. 5.
    Volknandt W, Karas M (2012) Proteomic analysis of the presynaptic active zone. Exp Brain Res Experimentelle Hirnforschung Experimentation cerebrale 217(3–4):449–461. doi: 10.1007/s00221-012-3031-x Google Scholar
  6. 6.
    Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190(4):491–500. doi: 10.1083/jcb.201004052 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Miller LC, Sossin WS (2007) The significance of organellar proteomics for the nervous system. Proteomics Clin Appl 1(11):1436–1445. doi: 10.1002/prca.200700366 PubMedGoogle Scholar
  8. 8.
    Li KW (2007) Proteomics of synapse. Anal Bioanal Chem 387(1):25–28. doi: 10.1007/s00216-006-0608-x PubMedGoogle Scholar
  9. 9.
    Heuser JE, Reese TS (1981) Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 88(3):564–580PubMedGoogle Scholar
  10. 10.
    Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81(2):275–300PubMedGoogle Scholar
  11. 11.
    Augustine GJ, Kasai H (2007) Bernard Katz, quantal transmitter release and the foundations of presynaptic physiology. J Physiol 578(Pt 3):623–625. doi: 10.1113/jphysiol.2006.123224 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57(2):315–344PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547PubMedGoogle Scholar
  14. 14.
    Tsuji S (2006) Rene Couteaux (1909–1999) and the morphological identification of synapses. Biol Cell 98(8):503–509. doi: 10.1042/BC20050036 PubMedGoogle Scholar
  15. 15.
    Zhai RG, Bellen HJ (2004) The architecture of the active zone in the presynaptic nerve terminal. Physiology 19:262–270. doi: 10.1152/physiol.00014.2004 PubMedGoogle Scholar
  16. 16.
    Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901. doi: 10.1016/j.neuron.2008.09.005 PubMedGoogle Scholar
  17. 17.
    Haucke V, Neher E, Sigrist SJ (2011) Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci 12(3):127–138. doi: 10.1038/nrn2948 PubMedGoogle Scholar
  18. 18.
    Atlas D (2013) The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem 82:607–635. doi: 10.1146/annurev-biochem-080411-121438 PubMedGoogle Scholar
  19. 19.
    Rosenmund C, Rettig J, Brose N (2003) Molecular mechanisms of active zone function. Curr Opin Neurobiol 13(5):509–519PubMedGoogle Scholar
  20. 20.
    Siksou L, Triller A, Marty S (2009) An emerging view of presynaptic structure from electron microscopic studies. J Neurochem 108(6):1336–1342. doi: 10.1111/j.1471-4159.2009.05888.x PubMedGoogle Scholar
  21. 21.
    Gray EG (1963) Electron microscopy of presynaptic organelles of the spinal cord. J Anat 97:101–106PubMedPubMedCentralGoogle Scholar
  22. 22.
    Pfenninger K, Akert K, Moor H, Sandri C (1972) The fine structure of freeze-fractured presynaptic membranes. J Neurocytol 1(2):129–149PubMedGoogle Scholar
  23. 23.
    Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409(6819):479–484. doi: 10.1038/35054000 PubMedGoogle Scholar
  24. 24.
    Nagwaney S, Harlow ML, Jung JH, Szule JA, Ress D, Xu J, Marshall RM, McMahan UJ (2009) Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse. J Comp Neurol 513(5):457–468. doi: 10.1002/cne.21975 PubMedGoogle Scholar
  25. 25.
    Burette AC, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman MH, Weinberg RJ (2012) Electron tomographic analysis of synaptic ultrastructure. J Comp Neurol 520(12):2697–2711. doi: 10.1002/cne.23067 PubMedGoogle Scholar
  26. 26.
    Stigloher C, Zhan H, Zhen M, Richmond J, Bessereau JL (2011) The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions. J Neurosci 31(12):4388–4396. doi: 10.1523/JNEUROSCI.6164-10.2011 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27(26):6868–6877. doi: 10.1523/JNEUROSCI.1773-07.2007 PubMedGoogle Scholar
  28. 28.
    Fernandez-Busnadiego R, Zuber B, Maurer UE, Cyrklaff M, Baumeister W, Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J Cell Biol 188(1):145–156. doi: 10.1083/jcb.200908082 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326(2):379–391. doi: 10.1007/s00441-006-0244-y PubMedGoogle Scholar
  30. 30.
    Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88PubMedPubMedCentralGoogle Scholar
  31. 31.
    Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22(9):735–742PubMedGoogle Scholar
  32. 32.
    Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90(2):293–303PubMedPubMedCentralGoogle Scholar
  33. 33.
    De Robertis E, De Lores Rodriguez, Arnaiz G, Salganicoff L, Pellegrino De Iraldi A, Zieher LM (1963) Isolation of synaptic vesicles and structural organization of the acetycholine system within brain nerve endings. J Neurochem 10:225–235Google Scholar
  34. 34.
    Fiszer S, Robertis ED (1967) Action of triton X-100 on ultrastructure and membrane-bound- enzymes of isolated nerve endings from rat brain. Brain Res 5(1):31–44PubMedGoogle Scholar
  35. 35.
    Davis GA, Bloom FE (1973) Isolation of synaptic junctional complexes from rat brain. Brain Res 62(1):135–153PubMedGoogle Scholar
  36. 36.
    Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86(3):831–845PubMedGoogle Scholar
  37. 37.
    Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96(5):1374–1388PubMedGoogle Scholar
  38. 38.
    Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846. doi: 10.1016/j.cell.2006.10.030 PubMedGoogle Scholar
  39. 39.
    Morciano M, Burre J, Corvey C, Karas M, Zimmermann H, Volknandt W (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 95(6):1732–1745. doi: 10.1111/j.1471-4159.2005.03506.x PubMedGoogle Scholar
  40. 40.
    Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 279(2):987–1002. doi: 10.1074/jbc.M303116200 PubMedGoogle Scholar
  41. 41.
    Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279(20):21003–21011. doi: 10.1074/jbc.M400103200 PubMedGoogle Scholar
  42. 42.
    Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW (2010) Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 31(8):1294–1301. doi: 10.1002/elps.200900647 PubMedGoogle Scholar
  43. 43.
    Witzmann FA, Arnold RJ, Bai F, Hrncirova P, Kimpel MW, Mechref YS, McBride WJ, Novotny MV, Pedrick NM, Ringham HN, Simon JR (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5(8):2177–2201. doi: 10.1002/pmic.200401102 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5(10):2531–2541. doi: 10.1002/pmic.200401198 PubMedGoogle Scholar
  45. 45.
    Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3(7):661–669. doi: 10.1038/76615 PubMedGoogle Scholar
  46. 46.
    Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP (2007) Composition of the synaptic PSD-95 complex. Mol Cell Proteomics 6(10):1749–1760. doi: 10.1074/mcp.M700040-MCP200 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Fernandez E, Collins MO, Uren RT, Kopanitsa MV, Komiyama NH, Croning MD, Zografos L, Armstrong JD, Choudhary JS, Grant SG (2009) Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol Syst Biol 5:269. doi: 10.1038/msb.2009.27 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schwenk J, Harmel N, Brechet A, Zolles G, Berkefeld H, Muller CS, Bildl W, Baehrens D, Huber B, Kulik A, Klocker N, Schulte U, Fakler B (2012) High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74(4):621–633. doi: 10.1016/j.neuron.2012.03.034 PubMedGoogle Scholar
  49. 49.
    Siddiqui TJ, Craig AM (2011) Synaptic organizing complexes. Curr Opin Neurobiol 21(1):132–143. doi: 10.1016/j.conb.2010.08.016 PubMedPubMedCentralGoogle Scholar
  50. 50.
    Benson DL, Huntley GW (2012) Building and remodeling synapses. Hippocampus 22(5):954–968. doi: 10.1002/hipo.20872 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, Gawinowicz MA, Zhao Y, Colman DR (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32(1):63–77PubMedGoogle Scholar
  52. 52.
    Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates JR 3rd, Colman DR (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 81(6):762–775. doi: 10.1002/jnr.20614 PubMedGoogle Scholar
  53. 53.
    Abul-Husn NS, Bushlin I, Moron JA, Jenkins SL, Dolios G, Wang R, Iyengar R, Ma’ayan A, Devi LA (2009) Systems approach to explore components and interactions in the presynapse. Proteomics 9(12):3303–3315. doi: 10.1002/pmic.200800767 PubMedPubMedCentralGoogle Scholar
  54. 54.
    Boyken J, Gronborg M, Riedel D, Urlaub H, Jahn R, Chua JJ (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78(2):285–297. doi: 10.1016/j.neuron.2013.02.027 PubMedGoogle Scholar
  55. 55.
    Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W (2009) The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J Neurochem 108(3):662–675. doi: 10.1111/j.1471-4159.2008.05824.x PubMedGoogle Scholar
  56. 56.
    Muller CS, Haupt A, Bildl W, Schindler J, Knaus HG, Meissner M, Rammner B, Striessnig J, Flockerzi V, Fakler B, Schulte U (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci USA 107(34):14950–14957. doi: 10.1073/pnas.1005940107 PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gundelfinger ED, Fejtova A (2012) Molecular organization and plasticity of the cytomatrix at the active zone. Curr Opin Neurobiol 22(3):423–430. doi: 10.1016/j.conb.2011.10.005 PubMedGoogle Scholar
  58. 58.
    Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3(2011):a005637. doi: 10.1101/cshperspect.a005637
  59. 59.
    Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207. doi: 10.1038/nature11320 PubMedGoogle Scholar
  60. 60.
    Pang ZP, Sudhof TC (2010) Cell biology of Ca2+ -triggered exocytosis. Curr Opin Cell Biol 22(4):496–505. doi: 10.1016/ PubMedPubMedCentralGoogle Scholar
  61. 61.
    Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872. doi: 10.1016/j.neuron.2008.08.019 PubMedGoogle Scholar
  62. 62.
    Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2012) Nanodomain coupling between Ca(2)(+) channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13(1):7–21. doi: 10.1038/nrn3125 Google Scholar
  63. 63.
    Spangler SA, Hoogenraad CC (2007) Liprin-alpha proteins: scaffold molecules for synapse maturation. Biochem Soc Trans 35(Pt 5):1278–1282. doi: 10.1042/BST0351278 PubMedGoogle Scholar
  64. 64.
    Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15(7):988–997. doi: 10.1038/nn.3137 PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang X, Hu B, Zieba A, Neumann NG, Kasper-Sonnenberg M, Honsbein A, Hultqvist G, Conze T, Witt W, Limbach C, Geitmann M, Danielson H, Kolarow R, Niemann G, Lessmann V, Kilimann MW (2009) A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1. J Neurosci 29(40):12584–12596. doi: 10.1523/JNEUROSCI.1255-09.2009 PubMedGoogle Scholar
  66. 66.
    Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 164(2):301–311PubMedPubMedCentralGoogle Scholar
  67. 67.
    Ohtsuka T, Takao-Rikitsu E, Inoue E, Inoue M, Takeuchi M, Matsubara K, Deguchi-Tawarada M, Satoh K, Morimoto K, Nakanishi H, Takai Y (2002) Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J Cell Biol 158(3):577–590PubMedPubMedCentralGoogle Scholar
  68. 68.
    Limbach C, Laue MM, Wang X, Hu B, Thiede N, Hultqvist G, Kilimann MW (2011) Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site. Proc Natl Acad Sci USA 108(31):E392–E401. doi: 10.1073/pnas.1101707108 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Mittelstaedt T, Alvarez-Baron E, Schoch S (2010) RIM proteins and their role in synapse function. Biol Chem 391(6):599–606. doi: 10.1515/BC.2010.064 PubMedGoogle Scholar
  70. 70.
    Dulubova I, Lou X, Lu J, Huryeva I, Alam A, Schneggenburger R, Sudhof TC, Rizo J (2005) A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J 24(16):2839–2850. doi: 10.1038/sj.emboj.7600753 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Sudhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415(6869):321–326PubMedGoogle Scholar
  72. 72.
    Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388(6642):593–598. doi: 10.1038/41580 PubMedGoogle Scholar
  73. 73.
    Deguchi-Tawarada M, Inoue E, Takao-Rikitsu E, Inoue M, Ohtsuka T, Takai Y (2004) CAST2: identification and characterization of a protein structurally related to the presynaptic cytomatrix protein CAST. Genes Cells 9(1):15–23PubMedGoogle Scholar
  74. 74.
    Wang Y, Liu X, Biederer T, Sudhof TC (2002) A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc Natl Acad Sci USA 99(22):14464–14469. doi: 10.1073/pnas.182532999 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J Biol Chem 276(35):32756–32762. doi: 10.1074/jbc.M100929200 PubMedGoogle Scholar
  76. 76.
    Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M, Kanagawa M, Itakura M, Takahashi M, Campbell KP, Mori Y (2007) RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10(6):691–701. doi: 10.1038/nn1904 PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Sudhof TC (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144(2):282–295. doi: 10.1016/j.cell.2010.12.029 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Brose N, Rosenmund C, Rettig J (2000) Regulation of transmitter release by Unc-13 and its homologues. Curr Opin Neurobiol 10(3):303–311PubMedGoogle Scholar
  79. 79.
    James DJ, Martin TF (2013) CAPS and Munc13: CATCHRs that SNARE vesicles. Front Endocrinol 4:187. doi: 10.3389/fendo.2013.00187 Google Scholar
  80. 80.
    Basu J, Shen N, Dulubova I, Lu J, Guan R, Guryev O, Grishin NV, Rosenmund C, Rizo J (2005) A minimal domain responsible for Munc13 activity. Nat Struct Mol Biol 12(11):1017–1018PubMedGoogle Scholar
  81. 81.
    Stevens DR, Wu ZX, Matti U, Junge HJ, Schirra C, Becherer U, Wojcik SM, Brose N, Rettig J (2005) Identification of the minimal protein domain required for priming activity of Munc13-1. Curr Biol 15(24):2243–2248PubMedGoogle Scholar
  82. 82.
    Rizo J, Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—guilty as charged? Annu Rev Cell Dev Biol 28:279–308. doi: 10.1146/annurev-cellbio-101011-155818 PubMedGoogle Scholar
  83. 83.
    Ma C, Su L, Seven AB, Xu Y, Rizo J (2013) Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339(6118):421–425. doi: 10.1126/science.1230473 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ma C, Li W, Xu Y, Rizo J (2011) Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nat Struct Mol Biol 18(5):542–549. doi: 10.1038/nsmb.2047 PubMedPubMedCentralGoogle Scholar
  85. 85.
    Deng L, Kaeser PS, Xu W, Sudhof TC (2011) RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron 69(2):317–331. doi: 10.1016/j.neuron.2011.01.005 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wierda KD, Toonen RF, de Wit H, Brussaard AB, Verhage M (2007) Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54(2):275–290. doi: 10.1016/j.neuron.2007.04.001 PubMedGoogle Scholar
  87. 87.
    Lou X, Korogod N, Brose N, Schneggenburger R (2008) Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C. J Neurosci 28(33):8257–8267. doi: 10.1523/jneurosci.0550-08.2008 PubMedGoogle Scholar
  88. 88.
    Shin OH, Lu J, Rhee JS, Tomchick DR, Pang ZP, Wojcik SM, Camacho-Perez M, Brose N, Machius M, Rizo J, Rosenmund C, Sudhof TC (2010) Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat Struct Mol Biol 17(3):280–288. doi: 10.1038/nsmb.1758 PubMedPubMedCentralGoogle Scholar
  89. 89.
    Lipstein N, Sakaba T, Cooper BH, Lin KH, Strenzke N, Ashery U, Rhee JS, Taschenberger H, Neher E, Brose N (2013) Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)–calmodulin–Munc13-1 signaling. Neuron 79(1):82–96. doi: 10.1016/j.neuron.2013.05.011 PubMedGoogle Scholar
  90. 90.
    Chen Z, Cooper B, Kalla S, Varoqueaux F, Young SM Jr (2013) The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse. J Neurosci 33(19):8336–8351. doi: 10.1523/JNEUROSCI.5128-12.2013 PubMedGoogle Scholar
  91. 91.
    Dick O, Hack I, Altrock WD, Garner CC, Gundelfinger ED, Brandstatter JH (2001) Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. J Comp Neurol 439(2):224–234PubMedGoogle Scholar
  92. 92.
    Kim S, Ko J, Shin H, Lee JR, Lim C, Han JH, Altrock WD, Garner CC, Gundelfinger ED, Premont RT, Kaang BK, Kim E (2003) The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J Biol Chem 278(8):6291–6300. doi: 10.1074/jbc.M212287200 PubMedGoogle Scholar
  93. 93.
    Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED, Garner CC (2003) Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 278(22):20268–20277. doi: 10.1074/jbc.M210792200 PubMedGoogle Scholar
  94. 94.
    Dick O, Tom Dieck S, Altrock WD, Ammermuller J, Weiler R, Garner CC, Gundelfinger ED, Brandstatter JH (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37(5):775–786PubMedGoogle Scholar
  95. 95.
    Altrock WD, Tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fassler R, Richter K, Boeckers TM, Potschka H, Brandt C, Loscher W, Grimberg D, Dresbach T, Hempelmann A, Hassan H, Balschun D, Frey JU, Brandstatter JH, Garner CC, Rosenmund C, Gundelfinger ED (2003) Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37(5):787–800PubMedGoogle Scholar
  96. 96.
    Jing Z, Rutherford MA, Takago H, Frank T, Fejtova A, Khimich D, Moser T, Strenzke N (2013) Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse. J Neurosci 33(10):4456–4467. doi: 10.1523/JNEUROSCI.3491-12.2013 PubMedGoogle Scholar
  97. 97.
    Leal-Ortiz S, Waites CL, Terry-Lorenzo R, Zamorano P, Gundelfinger ED, Garner CC (2008) Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. J Cell Biol 181(5):831–846. doi: 10.1083/jcb.200711167 PubMedPubMedCentralGoogle Scholar
  98. 98.
    Hallermann S, Fejtova A, Schmidt H, Weyhersmuller A, Silver RA, Gundelfinger ED, Eilers J (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68(4):710–723. doi: 10.1016/j.neuron.2010.10.026 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Frank T, Rutherford MA, Strenzke N, Neef A, Pangrsic T, Khimich D, Fejtova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T (2010) Bassoon and the synaptic ribbon organize Ca(2)+ channels and vesicles to add release sites and promote refilling. Neuron 68(4):724–738. doi: 10.1016/j.neuron.2010.10.027 PubMedPubMedCentralGoogle Scholar
  100. 100.
    Mendoza Schulz A, Jing Z, Maria Sanchez Caro J, Wetzel F, Dresbach T, Strenzke N, Wichmann C, Moser T (2014) Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse. EMBO J. doi: 10.1002/embj.201385887 PubMedGoogle Scholar
  101. 101.
    Waites CL, Leal-Ortiz SA, Okerlund N, Dalke H, Fejtova A, Altrock WD, Gundelfinger ED, Garner CC (2013) Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 32(7):954–969. doi: 10.1038/emboj.2013.27 PubMedPubMedCentralGoogle Scholar
  102. 102.
    Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401(6751):371–375. doi: 10.1038/43886 PubMedGoogle Scholar
  103. 103.
    Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M, Bargmann CI, Shen K (2006) Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 9(12):1488–1498. doi: 10.1038/nn1806 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Kittelmann M, Hegermann J, Goncharov A, Taru H, Ellisman MH, Richmond JE, Jin Y, Eimer S (2013) Liprin-alpha/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans. J Cell Biol 203(5):849–863. doi: 10.1083/jcb.201302022 PubMedPubMedCentralGoogle Scholar
  105. 105.
    Dai Y, Taru H, Deken SL, Grill B, Ackley B, Nonet ML, Jin Y (2006) SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neurosci 9(12):1479–1487. doi: 10.1038/nn1808 PubMedGoogle Scholar
  106. 106.
    Kaufmann N, DeProto J, Ranjan R, Wan H, Van Vactor D (2002) Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34(1):27–38PubMedGoogle Scholar
  107. 107.
    Astigarraga S, Hofmeyer K, Farajian R, Treisman JE (2010) Three Drosophila liprins interact to control synapse formation. J Neurosci 30(46):15358–15368. doi: 10.1523/JNEUROSCI.1862-10.2010 PubMedPubMedCentralGoogle Scholar
  108. 108.
    Owald D, Khorramshahi O, Gupta VK, Banovic D, Depner H, Fouquet W, Wichmann C, Mertel S, Eimer S, Reynolds E, Holt M, Aberle H, Sigrist SJ (2012) Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly. Nat Neurosci 15(9):1219–1226. doi: 10.1038/nn.3183 PubMedGoogle Scholar
  109. 109.
    Spangler SA, Jaarsma D, De Graaff E, Wulf PS, Akhmanova A, Hoogenraad CC (2011) Differential expression of liprin-alpha family proteins in the brain suggests functional diversification. J Comp Neurol 519(15):3040–3060. doi: 10.1002/cne.22665 PubMedGoogle Scholar
  110. 110.
    Spangler SA, Schmitz SK, Kevenaar JT, de Graaff E, de Wit H, Demmers J, Toonen RF, Hoogenraad CC (2013) Liprin-alpha2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. J Cell Biol 201(6):915–928. doi: 10.1083/jcb.201301011 PubMedPubMedCentralGoogle Scholar
  111. 111.
    Olsen O, Moore KA, Fukata M, Kazuta T, Trinidad JC, Kauer FW, Streuli M, Misawa H, Burlingame AL, Nicoll RA, Bredt DS (2005) Neurotransmitter release regulated by a MALS–liprin-alpha presynaptic complex. J Cell Biol 170(7):1127–1134. doi: 10.1083/jcb.200503011 PubMedPubMedCentralGoogle Scholar
  112. 112.
    Monier S, Jollivet F, Janoueix-Lerosey I, Johannes L, Goud B (2002) Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic 3(4):289–297PubMedGoogle Scholar
  113. 113.
    Nakata T, Kitamura Y, Shimizu K, Tanaka S, Fujimori M, Yokoyama S, Ito K, Emi M (1999) Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosom Cancer 25(2):97–103PubMedGoogle Scholar
  114. 114.
    Ko J, Na M, Kim S, Lee JR, Kim E (2003) Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. J Biol Chem 278(43):42377–42385. doi: 10.1074/jbc.M307561200 PubMedGoogle Scholar
  115. 115.
    Kiyonaka S, Nakajima H, Takada Y, Hida Y, Yoshioka T, Hagiwara A, Kitajima I, Mori Y, Ohtsuka T (2012) Physical and functional interaction of the active zone protein CAST/ERC2 and the beta-subunit of the voltage-dependent Ca(2+) channel. J Biochem 152(2):149–159. doi: 10.1093/jb/mvs054 PubMedGoogle Scholar
  116. 116.
    Ko J, Yoon C, Piccoli G, Chung HS, Kim K, Lee JR, Lee HW, Kim H, Sala C, Kim E (2006) Organization of the presynaptic active zone by ERC2/CAST1-dependent clustering of the tandem PDZ protein syntenin-1. J Neurosci 26(3):963–970. doi: 10.1523/JNEUROSCI.4475-05.2006 PubMedGoogle Scholar
  117. 117.
    Kaeser PS, Deng L, Chavez AE, Liu X, Castillo PE, Sudhof TC (2009) ELKS2alpha/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. Neuron 64(2):227–239. doi: 10.1016/j.neuron.2009.09.019 PubMedPubMedCentralGoogle Scholar
  118. 118.
    Deken SL, Vincent R, Hadwiger G, Liu Q, Wang ZW, Nonet ML (2005) Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J Neurosci 25(25):5975–5983. doi: 10.1523/JNEUROSCI.0804-05.2005 PubMedGoogle Scholar
  119. 119.
    tom Dieck S, Specht D, Strenzke N, Hida Y, Krishnamoorthy V, Schmidt KF, Inoue E, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Hagiwara A, Brandstatter JH, Lowel S, Gollisch T, Ohtsuka T, Moser T (2012) Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 32(35):12192–12203. doi: 10.1523/JNEUROSCI.0752-12.2012 PubMedGoogle Scholar
  120. 120.
    Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in drosophila. Neuron 49(6):833–844. doi: 10.1016/j.neuron.2006.02.008 PubMedGoogle Scholar
  121. 121.
    Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776):1051–1054. doi: 10.1126/science.1126308 PubMedGoogle Scholar
  122. 122.
    Fouquet W, Owald D, Wichmann C, Mertel S, Depner H, Dyba M, Hallermann S, Kittel RJ, Eimer S, Sigrist SJ (2009) Maturation of active zone assembly by drosophila Bruchpilot. J Cell Biol 186(1):129–145. doi: 10.1083/jcb.200812150 PubMedPubMedCentralGoogle Scholar
  123. 123.
    Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, Schmidt M, Thomas U, Sickmann A, Kamin D, Hell SW, Burger J, Hollmann C, Mielke T, Wichmann C, Sigrist SJ (2013) The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. J Cell Biol 202(4):667–683. doi: 10.1083/jcb.201301072 PubMedPubMedCentralGoogle Scholar
  124. 124.
    Xu J, Mashimo T, Sudhof TC (2007) Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54(4):567–581. doi: 10.1016/j.neuron.2007.05.004 PubMedGoogle Scholar
  125. 125.
    Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 76(1):333–363. doi: 10.1146/annurev-physiol-021113-170338 PubMedGoogle Scholar
  126. 126.
    Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79(4):717–727PubMedGoogle Scholar
  127. 127.
    Xu J, Pang ZP, Shin OH, Sudhof TC (2009) Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci 12(6):759–766. doi: 10.1038/nn.2320 PubMedPubMedCentralGoogle Scholar
  128. 128.
    Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE (2002) The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418(6895):340–344. doi: 10.1038/nature00846 PubMedGoogle Scholar
  129. 129.
    Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643. doi: 10.1038/nrm2002 PubMedGoogle Scholar
  130. 130.
    Hammarlund M, Palfreyman MT, Watanabe S, Olsen S, Jorgensen EM (2007) Open syntaxin docks synaptic vesicles. PLoS Biol 5(8):e198. doi: 10.1371/journal.pbio.0050198 PubMedPubMedCentralGoogle Scholar
  131. 131.
    de Wit H, Cornelisse LN, Toonen RF, Verhage M (2006) Docking of secretory vesicles is syntaxin dependent. PLoS One 1:e126PubMedPubMedCentralGoogle Scholar
  132. 132.
    O’Rourke NA, Weiler NC, Micheva KD, Smith SJ (2012) Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 13(6):365–379. doi: 10.1038/nrn3170 PubMedPubMedCentralGoogle Scholar
  133. 133.
    Craig AM, Boudin H (2001) Molecular heterogeneity of central synapses: afferent and target regulation. Nat Neurosci 4(6):569–578. doi: 10.1038/88388 PubMedGoogle Scholar
  134. 134.
    Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130(3):567–580. doi: 10.1016/j.neuroscience.2004.09.042 PubMedGoogle Scholar
  135. 135.
    Sheng M, Kim E (2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 3(2011):a005678. doi:  10.1101/cshperspect.a005678
  136. 136.
    Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69(15):2485–2499. doi: 10.1007/s00018-012-0926-4 PubMedGoogle Scholar
  137. 137.
    Gronborg M, Pavlos NJ, Brunk I, Chua JJ, Munster-Wandowski A, Riedel D, Ahnert-Hilger G, Urlaub H, Jahn R (2010) Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12. doi: 10.1523/JNEUROSCI.4074-09.2010 PubMedGoogle Scholar
  138. 138.
    Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55(6):835–858. doi: 10.1016/j.neuron.2007.09.001 PubMedGoogle Scholar
  139. 139.
    Futai K, Doty CD, Baek B, Ryu J, Sheng M (2013) Specific trans-synaptic interaction with inhibitory interneuronal neurexin underlies differential ability of neuroligins to induce functional inhibitory synapses. J Neurosci 33(8):3612–3623. doi: 10.1523/JNEUROSCI.1811-12.2013 PubMedGoogle Scholar
  140. 140.
    Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41(4):599–610PubMedGoogle Scholar
  141. 141.
    Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 3(7):497–516. doi: 10.1038/nrn876 PubMedGoogle Scholar
  142. 142.
    Selimi F, Cristea IM, Heller E, Chait BT, Heintz N (2009) Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse. PLoS Biol 7(4):e83. doi: 10.1371/journal.pbio.1000083 PubMedGoogle Scholar
  143. 143.
    Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 5(6):1158–1170. doi: 10.1074/mcp.D500009-MCP200 PubMedGoogle Scholar
  144. 144.
    Butko MT, Savas JN, Friedman B, Delahunty C, Ebner F, Yates JR 3rd, Tsien RY (2013) In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation. Proc Natl Acad Sci USA 110(8):E726–E735. doi: 10.1073/pnas.1300424110 PubMedPubMedCentralGoogle Scholar
  145. 145.
    Micheva KD, Busse B, Weiler NC, O’Rourke N, Smith SJ (2010) Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68(4):639–653. doi: 10.1016/j.neuron.2010.09.024 PubMedPubMedCentralGoogle Scholar
  146. 146.
    Clarke GL, Chen J, Nishimune H (2012) Presynaptic active zone density during development and synaptic plasticity. Front Mol Neurosci 5:12. doi: 10.3389/fnmol.2012.00012 PubMedPubMedCentralGoogle Scholar
  147. 147.
    Sigrist SJ, Schmitz D (2011) Structural and functional plasticity of the cytoplasmic active zone. Curr Opin Neurobiol 21(1):144–150. doi: 10.1016/j.conb.2010.08.012 PubMedGoogle Scholar
  148. 148.
    Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13(7):478–490. doi: 10.1038/nrn3258 PubMedGoogle Scholar
  149. 149.
    Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673. doi: 10.1093/brain/awl082 PubMedGoogle Scholar
  150. 150.
    Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293. doi: 10.1038/nn.2741 PubMedPubMedCentralGoogle Scholar
  151. 151.
    Melom JE, Littleton JT (2011) Synapse development in health and disease. Curr Opin Genetics Dev 21(3):256–261. doi: 10.1016/j.gde.2011.01.002 Google Scholar
  152. 152.
    Xiong XD, Chen GH (2010) Research progress on the age-related changes in proteins of the synaptic active zone. Physiol Behav 101(1):1–12. doi: 10.1016/j.physbeh.2010.04.025 PubMedGoogle Scholar
  153. 153.
    Grant SG (2012) Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 22(3):522–529. doi: 10.1016/j.conb.2012.02.002 PubMedGoogle Scholar
  154. 154.
    Lazarevic V, Schone C, Heine M, Gundelfinger ED, Fejtova A (2011) Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J Neurosci 31(28):10189–10200. doi: 10.1523/JNEUROSCI.2088-11.2011 PubMedGoogle Scholar
  155. 155.
    Cohen LD, Zuchman R, Sorokina O, Muller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8(5):e63191. doi: 10.1371/journal.pone.0063191 PubMedPubMedCentralGoogle Scholar
  156. 156.
    Wishart TM, Rooney TM, Lamont DJ, Wright AK, Morton AJ, Jackson M, Freeman MR, Gillingwater TH (2012) Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo. PLoS Genetics 8(8):e1002936. doi: 10.1371/journal.pgen.1002936 PubMedPubMedCentralGoogle Scholar
  157. 157.
    de Graaf EL, Vermeij WP, de Waard MC, Rijksen Y, van der Pluijm I, Hoogenraad CC, Hoeijmakers JH, Altelaar AF, Heck AJ (2013) Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum. Mol Cell Proteomics 12(5):1350–1362. doi: 10.1074/mcp.M112.024950 PubMedPubMedCentralGoogle Scholar
  158. 158.
    von Eichborn J, Dunkel M, Gohlke BO, Preissner SC, Hoffmann MF, Bauer JM, Armstrong JD, Schaefer MH, Andrade-Navarro MA, Le Novere N, Croning MD, Grant SG, van Nierop P, Smit AB, Preissner R (2013) SynSysNet: integration of experimental data on synaptic protein–protein interactions with drug–target relations. Nucleic Acids Res 41(Database issue):D834–D840. doi: 10.1093/nar/gks1040 Google Scholar
  159. 159.
    Pielot R, Smalla KH, Muller A, Landgraf P, Lehmann AC, Eisenschmidt E, Haus UU, Weismantel R, Gundelfinger ED, Dieterich DC (2012) SynProt: a database for proteins of detergent-resistant synaptic protein preparations. Front Synaptic Neurosci 4:1. doi: 10.3389/fnsyn.2012.00001 PubMedPubMedCentralGoogle Scholar
  160. 160.
    Croning MD, Marshall MC, McLaren P, Armstrong JD, Grant SG (2009) G2Cdb: the genes to cognition database. Nucleic Acids Res 37(Database issue):D846–D851. doi: 10.1093/nar/gkn700 PubMedPubMedCentralGoogle Scholar
  161. 161.
    Zhang W, Zhang Y, Zheng H, Zhang C, Xiong W, Olyarchuk JG, Walker M, Xu W, Zhao M, Zhao S, Zhou Z, Wei L (2007) SynDB: a synapse protein database based on synapse ontology. Nucleic Acids Res 35(Database issue):D737–D741PubMedPubMedCentralGoogle Scholar
  162. 162.
    Cornelisse LN, Tsivtsivadze E, Meijer M, Dijkstra TM, Heskes T, Verhage M (2012) Molecular machines in the synapse: overlapping protein sets control distinct steps in neurosecretion. PLoS Comput Biol 8(4):e1002450. doi: 10.1371/journal.pcbi.1002450 PubMedPubMedCentralGoogle Scholar
  163. 163.
    Rostaing P, Real E, Siksou L, Lechaire JP, Boudier T, Boeckers TM, Gertler F, Gundelfinger ED, Triller A, Marty S (2006) Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur J Neurosci 24(12):3463–3474. doi: 10.1111/j.1460-9568.2006.05234.x PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of NeurobiologyMax-Planck-Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations