Cellular and Molecular Life Sciences

, Volume 71, Issue 22, pp 4431–4441 | Cite as

Cancellation of cellular responses to nanoelectroporation by reversing the stimulus polarity

  • Andrei G. PakhomovEmail author
  • Iurii Semenov
  • Shu Xiao
  • Olga N. Pakhomova
  • Betsy Gregory
  • Karl H. Schoenbach
  • Jody C. Ullery
  • Hope T. Beier
  • Sambasiva R. Rajulapati
  • Bennett L. Ibey
Research Article


Nanoelectroporation of biomembranes is an effect of high-voltage, nanosecond-duration electric pulses (nsEP). It occurs both in the plasma membrane and inside the cell, and nanoporated membranes are distinguished by ion-selective and potential-sensitive permeability. Here we report a novel phenomenon of bioeffects cancellation that puts nsEP cardinally apart from the conventional electroporation and electrostimulation by milli- and microsecond pulses. We compared the effects of 60- and 300-ns monopolar, nearly rectangular nsEP on intracellular Ca2+ mobilization and cell survival with those of bipolar 60 + 60 and 300 + 300 ns pulses. For diverse endpoints, exposure conditions, pulse numbers (1–60), and amplitudes (15–60 kV/cm), the addition of the second phase cancelled the effects of the first phase. The overall effect of bipolar pulses was profoundly reduced, despite delivering twofold more energy. Cancellation also took place when two phases were separated into two independent nsEP of opposite polarities; it gradually tapered out as the interval between two nsEP increased, but was still present even at a 10-µs interval. The phenomenon of cancellation is unique for nsEP and has not been predicted by the equivalent circuit, transport lattice, and molecular dynamics models of electroporation. The existing paradigms of membrane permeabilization by nsEP will need to be modified. Here we discuss the possible involvement of the assisted membrane discharge, two-step oxidation of membrane phospholipids, and reverse transmembrane ion transport mechanisms. Cancellation impacts nsEP applications in cancer therapy, electrostimulation, and biotechnology, and provides new insights into effects of more complex waveforms, including pulsed electromagnetic emissions.


Electroporation Electropermeabilization Cell membrane Nanosecond pulsed electric field Bipolar pulses Ablation 



Calcium-induced calcium release


Cyclopiazonic acid


Endoplasmic reticulum


Nanosecond electric pulse


Reactive oxygen species



This work was supported by funds from the Air Force Surgeon General’s Office, Medical Research Program (to B.L.I.) AFOSR LRIR 13RH08COR (to B.L.I.), and by a National Institutes of Health grant R01GM088303 (to A.G.P.).


  1. 1.
    Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. Faseb J 17(11):1493–1495PubMedGoogle Scholar
  2. 2.
    Schoenbach KS, Hargrave B, Joshi RP, Kolb J, Osgood C, Nuccitelli R, Pakhomov AG, Swanson J, Stacey M, White JA, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of nanosecond pulses. IEEE Trans Dielectr Electr Insul 14(5):1088–1109CrossRefGoogle Scholar
  3. 3.
    Napotnik TB, Wu YH, Gundersen MA, Miklavcic D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264. doi: 10.1002/bem.20707 CrossRefGoogle Scholar
  4. 4.
    White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279(22):22964–22972PubMedCrossRefGoogle Scholar
  5. 5.
    Semenov I, Xiao S, Pakhomova ON, Pakhomov AG (2013) Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium 54(3):145–150. doi: 10.1016/j.ceca.2013.05.008
  6. 6.
    Semenov I, Xiao S, Pakhomov A (2013) Primary pathways of intracellular Ca2+ mobilization by nanosecond pulsed electric field. Biochim Biophys Acta 3:981–989. doi: 10.1016/j.bbamem.2012.11.032
  7. 7.
    Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta 3:792–801CrossRefGoogle Scholar
  8. 8.
    Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl+ uptake. J Membr Biol 236(1):15–26. doi: 10.1007/s00232-010-9269-y Google Scholar
  9. 9.
    Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Craviso GL, Choe S, Chatterjee I, Vernier PT (2012) Modulation of intracellular Ca2+ levels in chromaffin cells by nanoelectropulses. Bioelectrochemistry 87:244–252. doi: 10.1016/j.bioelechem.2011.11.016 Google Scholar
  11. 11.
    Vernier PT, Sun Y, Marcu L, Salem S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295PubMedCrossRefGoogle Scholar
  12. 12.
    Berghofer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 387(3):590–595. doi: 10.1016/j.bbrc.2009.07.072 PubMedCrossRefGoogle Scholar
  13. 13.
    Ibey BL, Pakhomov AG, Gregory BW, Khorokhorina VA, Roth CC, Rassokhin MA, Bernhard JA, Wilmink GJ (1800) Pakhomova ON (2010) Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells. Biochim Biophys Acta 11:1210–1219. doi: 10.1016/j.bbagen.2010.07.008 Google Scholar
  14. 14.
    Pakhomova ON, Gregory BW, Semenov I, Pakhomov AG (2013) Two modes of cell death caused by exposure to nanosecond pulsed electric field. PLoS ONE 8(7):e70278. doi: 10.1371/journal.pone.0070278 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ren W, Beebe SJ (2011) An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis 16(4):382–393. doi: 10.1007/s10495-010-0572-y PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385(2):181–186. doi: 10.1016/j.bbrc.2009.05.035 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pakhomov AG, Pakhomova ON (2010) Nanopores: a distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology in medicine. CRC Press, Boca Raton, pp 178–194Google Scholar
  18. 18.
    Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS ONE 4(11):e7966. doi: 10.1371/journal.pone.0007966 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ho MC, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B doi: 10.1021/jp401722g (epub ahead of print)
  20. 20.
    Tokman M, Lee JH, Levine ZA, Ho MC, Colvin ME, Vernier PT (2013) Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS ONE 8(4):e61111. doi: 10.1371/journal.pone.0061111 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245(9):531–543. doi: 10.1007/s00232-012-9434-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Smith KC, Weaver JC (2011) Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses. Biochem Biophys Res Commun 412(1):8–12. doi: 10.1016/j.bbrc.2011.06.171 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Smith KC, Weaver JC (2008) Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J 95(4):1547–1563PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Joshi RP, Schoenbach KH (2002) Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions. Phys Rev E: Stat Nonlin Soft Matter Phys 66(5 Pt 1):052901CrossRefGoogle Scholar
  25. 25.
    Pakhomov AG, Miklavcic D, Markov MS (eds) (2010) Advanced electroporation techniques in biology in medicine. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349(2):643–653PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663PubMedCrossRefGoogle Scholar
  28. 28.
    Craviso GL, Choe S, Chatterjee P, Chatterjee I, Vernier PT (2010) Nanosecond electric pulses: a novel stimulus for triggering Ca2+ nflux into chromaffin cells via voltage-gated Ca2+ channels. Cell Mol Neurobiol 30(8):1259–1265. doi: 10.1007/s10571-010-9573-1 PubMedCrossRefGoogle Scholar
  29. 29.
    Esser AT, Smith KC, Gowrishankar TR, Vasilkoski Z, Weaver JC (2010) Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 98(11):2506–2514PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Serpersu EH, Kinosita K Jr, Tsong TY (1985) Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta 812(3):779–785PubMedCrossRefGoogle Scholar
  31. 31.
    Kinosita K Jr, Tsong TT (1977) Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci USA 74(5):1923–1927PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kinosita K Jr, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268(5619):438–441PubMedCrossRefGoogle Scholar
  33. 33.
    Saulis G (1999) Kinetics of pore disappearance in a cell after electroporation. Biomed Sci Instrum 35:409–414PubMedGoogle Scholar
  34. 34.
    Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochem Bioenerg 26:1–13CrossRefGoogle Scholar
  35. 35.
    Kotnik T, Pucihar G, Rebersek M, Miklavcic D, Mir LM (2003) Role of pulse shape in cell membrane electropermeabilization. Biochim Biophys Acta 1614(2):193–200. S0005273603001731PubMedCrossRefGoogle Scholar
  36. 36.
    Kotnik T, Mir LM, Flisar K, Puc M, Miklavcic D (2001) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. part I. Increased efficiency of permeabilization. Bioelectrochemistry 54(1):83–90. S1567-5394(01)00114-1PubMedCrossRefGoogle Scholar
  37. 37.
    Kotnik T, Miklavcic D, Mir LM (2001) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses part II. Reduced electrolytic contamination. Bioelectrochemistry 54(1):91–95. S1567-5394(01)00115-3PubMedCrossRefGoogle Scholar
  38. 38.
    Tekle E, Astumian RD, Chock PB (1991) Electroporation by using bipolar oscillating electric-field—an improved method for DNA transfection of NIH 3T3 Cells. Proc Natl Acad Sci USA 88(10):4230–4234. doi: 10.1073/pnas.88.10.4230 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Moroz VV, Bogushevich MS, Chernysh AM, Kozlova EK, Sharakshane AS (2004) Effect of defibrillation pulses of different shapes on biomembranes: experimental study. Bull Exp Biol Med 137(2):120–123. doi: 10.1023/B:Bebm.0000028118.86481.F6 PubMedCrossRefGoogle Scholar
  40. 40.
    Tovar O, Tung L (1991) Electroporation of cardiac cell-membranes with monophasic or biphasic rectangular pulses. Pace 14(11):1887–1892. doi: 10.1111/j.1540-8159.1991.tb02785.x PubMedCrossRefGoogle Scholar
  41. 41.
    Faurie C, Rebersek M, Golzio M, Kanduser M, Escoffre JM, Pavlin M, Teissie J, Miklavcic D, Rols MP (2010) Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 12(1):117–125. doi:  10.1002/jgm.1414 PubMedCrossRefGoogle Scholar
  42. 42.
    Faurie C, Phez E, Golzio M, Vossen C, Lesbordes JC, Delteil C, Teissie J, Rols MP (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim Biophys Acta 1665(1–2):92–100. doi: 10.1016/j.bbamem.2004.06.018 PubMedCrossRefGoogle Scholar
  43. 43.
    de Oliveira PX, Bassani RA, Bassani JW (2008) Lethal effect of electric fields on isolated ventricular myocytes. IEEE Trans Biomed Eng 55(11):2635–2642. doi: 10.1109/TBME.2008.2001135 PubMedCrossRefGoogle Scholar
  44. 44.
    Ibey BL, Ullery JC, Pakhomova ON, Roth CC, Semenov I, Beier HT, Tarango M, Xiao S, Schoenbach KH, Pakhomov AG (2014) Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses. Biochem Biophys Res Commun 443(2):568–573. doi: 10.1016/j.bbrc.2013.12.004 PubMedCrossRefGoogle Scholar
  45. 45.
    Rajulapati SR, Husain FA, Ananthapadmanabha SB, Schoenbach KH, Xiao S (2013) Nanosecond biphasic pulse generators for biomedical applications. In: Pulsed power conference (PPC), 19th IEEE, 16–21 June 2013, pp 1–4. doi: 10.1109/ppc.2013.6627493
  46. 46.
    Rashid MH (2011) Power electronics handbook : devices, circuits, and applications handbook, 3rd edn. Elsevier, BurlingtonGoogle Scholar
  47. 47.
    Pakhomova ON, Gregory BW, Khorokhorina VA, Bowman AM, Xiao S, Pakhomov AG (2011) Electroporation-induced electrosensitization. PLoS ONE 6(2):e17100. doi: 10.1371/journal.pone.0017100 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pakhomova ON, Gregory BW, Pakhomov AG (2013) Facilitation of electroporative drug uptake and cell killing by electrosensitization. J Cell Mol Med 17(1):154–159. doi: 10.1111/j.1582-4934.2012.01658.x PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22(6):440–448PubMedCrossRefGoogle Scholar
  50. 50.
    Beebe SJ, Fox PM, Rec LJ, Somers K, Stark RH, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30(1):286–292CrossRefGoogle Scholar
  51. 51.
    Smith PW (2002) Transient electronics : pulsed circuit technology. Wiley, New YorkGoogle Scholar
  52. 52.
    Tolstykh GP, Beier HT, Roth CC, Thompson GL, Payne JA, Kuipers MA, Ibey BL (2013) Activation of intracellular phosphoinositide signaling after a single 600 nanosecond electric pulse. Bioelectrochemistry 94:23–29. doi: 10.1016/j.bioelechem.2013.05.002 PubMedCrossRefGoogle Scholar
  53. 53.
    Roodenburg B, Morren J, Berg HE, de Haan SWH (2005) Metal release in a stainless steel pulsed electric field (PEF) system part I. Effect of different pulse shapes; theory and experimental method. Innov Food Sci Emerg 6(3):327–336. doi: 10.1016/j.ifset.2005.04.006 CrossRefGoogle Scholar
  54. 54.
    Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198. doi: 10.1016/j.jneumeth.2004.10.020 PubMedCrossRefGoogle Scholar
  55. 55.
    Neumann E, Sowers AE, Jordan CA (eds) (1989) Electroporation and electrofusion in cell biology. Plenum, New YorkGoogle Scholar
  56. 56.
    Walker K 3rd, Pakhomova ON, Kolb J, Schoenbach KS, Stuck BE, Murphy MR, Pakhomov AG (2006) Oxygen enhances lethal effect of high-intensity, ultrashort electrical pulses. Bioelectromagnetics 27(3):221–225PubMedCrossRefGoogle Scholar
  57. 57.
    Pakhomov AG, Phinney A, Ashmore J, Walker K, Kolb J, Kono S, Schoenbach KS, Murphy MR (2004) Characterization of the cytotoxic effect of high-intensity, 10-ns duration electrical pulses. IEEE Trans Plasma Sci 32(4):1579–1585CrossRefGoogle Scholar
  58. 58.
    Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 130(3):401–409PubMedCrossRefGoogle Scholar
  59. 59.
    Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaite-Riseviciene R, Saulis G, Xiao S, Pakhomov AG (2012) Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 527(1):55–64. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Breton M, Mir LM (2013) Molecular mechanisms of electroporation/electropermeabilization: evidence for a chemical modification of membrane phospholipids. paper presented at the BioEM2013, Thessaloniki, Greece, 10–14 June 2013Google Scholar
  61. 61.
    Rodgers MAJ, Snowden PT (1982) Lifetime of O-2(1delta-G) in liquid water as determined by time-resolved infrared luminescence measurements. J Am Chem Soc 104(20):5541–5543. doi: 10.1021/Ja00384a070 CrossRefGoogle Scholar
  62. 62.
    Benz R, Zimmermann U (1981) The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta 640(1):169–178PubMedCrossRefGoogle Scholar
  63. 63.
    Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236(1):27–36. doi: 10.1007/s00232-010-9277-y PubMedCrossRefGoogle Scholar
  64. 64.
    Beebe SJ, Chen YJ, Sain NM, Schoenbach KH, Xiao S (2012) Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS ONE 7(12):e51349. doi: 10.1371/journal.pone.0051349 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Arena CB, Sano MB, Rossmeisl JH Jr, Caldwell JL, Garcia PA, Rylander MN, Davalos RV (2011) High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online 10:102. doi: 10.1186/1475-925X-10-102 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Arena CB, Sano MB, Rylander MN, Davalos RV (2011) Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans Biomed Eng 58(5):1474–1482. doi: 10.1109/TBME.2010.2102021 PubMedCrossRefGoogle Scholar
  67. 67.
    Pakhomov AG, Doyle J, Stuck BE, Murphy MR (2003) Effects of high power microwave pulses on synaptic transmission and long term potentiation in hippocampus. Bioelectromagnetics 24(3):174–181PubMedCrossRefGoogle Scholar
  68. 68.
    Pakhomov AG, Gajsek P, Allen L, Stuck BE, Murphy MR (2002) Comparison of dose dependences for bioeffects of continuous-wave and high-peak power microwave emissions using gel-suspended cell cultures. Bioelectromagnetics 23(2):158–167PubMedCrossRefGoogle Scholar
  69. 69.
    Seaman RL (2007) Effects of exposure of animals to ultra-wideband pulses. Health Phys 92(6):629–634. doi: 10.1097/01.Hp.0000256780.23536.15 PubMedCrossRefGoogle Scholar
  70. 70.
    French DM, Uhler MD, Gilgenbach RM, Lau YY (2009) Conductive versus capacitive coupling for cell electroporation with nanosecond pulses. J Appl Phys 106(7):074701–074704. doi: 10.1063/1.3238245 CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Andrei G. Pakhomov
    • 1
    Email author
  • Iurii Semenov
    • 1
  • Shu Xiao
    • 1
    • 2
  • Olga N. Pakhomova
    • 1
  • Betsy Gregory
    • 1
  • Karl H. Schoenbach
    • 1
    • 2
  • Jody C. Ullery
    • 3
  • Hope T. Beier
    • 4
  • Sambasiva R. Rajulapati
    • 2
  • Bennett L. Ibey
    • 4
  1. 1.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA
  2. 2.Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA
  3. 3.General Dynamics Information TechnologySan AntonioUSA
  4. 4.Bioeffects Division, 711th Human Performance WingAir Force Research LaboratorySan AntonioUSA

Personalised recommendations