Cellular and Molecular Life Sciences

, Volume 71, Issue 17, pp 3297–3310 | Cite as

SOCS proteins in regulation of receptor tyrosine kinase signaling

  • Julhash U. Kazi
  • Nuzhat N. Kabir
  • Amilcar Flores-Morales
  • Lars Rönnstrand


Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment. The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar proteins, SOCS1–7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also evident that RTKs can sometimes bypass SOCS regulation and SOCS proteins can even potentiate RTKs-mediated mitogenic signaling. Thus, apart from negative regulation of receptor signaling, SOCS proteins may also influence signaling in other ways.





This research was funded by the Swedish Cancer Society (LR), the Swedish Childhood Cancer Foundation (LR), the Swedish Research Council (LR), ALF governmental clinical grant (LR), Stiftelsen Olle Engkvist Byggmästare (JUK), the Royal Physiographic Society in Lund (JUK), Ollie och Elof Ericssons Stiftelse (JUK) and The Lars Hierta Memorial Foundation (JUK).

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

18_2014_1619_MOESM1_ESM.pdf (678 kb)
Supplementary material 1 (PDF 678 kb)


  1. 1.
    Kazi JU, Kabir NN, Soh JW (2008) Bioinformatic prediction and analysis of eukaryotic protein kinases in the rat genome. Gene 410:147–153. doi: 10.1016/j.gene.2007.12.003 PubMedCrossRefGoogle Scholar
  2. 2.
    Kabir NN, Kazi JU (2011) Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity. Genet Mol Biol 34:587–591. doi: 10.1590/S1415-47572011005000035 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134. doi: 10.1016/j.cell.2010.06.011 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kazi JU, Vaapil M, Agarwal S, Bracco E, Påhlman S, Rönnstrand L (2013) The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling. Cell Signal 25:1852–1860. doi: 10.1016/j.cellsig.2013.05.016 PubMedCrossRefGoogle Scholar
  5. 5.
    Kazi JU, Rönnstrand L (2013) FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol 7:402–418. doi: 10.1016/j.molonc.2012.11.003 PubMedCrossRefGoogle Scholar
  6. 6.
    Lin DC, Yin T, Koren-Michowitz M et al (2012) Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood 120:3310–3317. doi: 10.1182/blood-2011-10-388611 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kazi JU, Rönnstrand L (2012) Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling. PLoS One 7:e53509. doi: 10.1371/journal.pone.0053509 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lennartsson J, Rönnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–1649. doi: 10.1152/physrev.00046.2011 PubMedCrossRefGoogle Scholar
  9. 9.
    Masson K, Rönnstrand L (2009) Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 21:1717–1726. doi: 10.1016/j.cellsig.2009.06.002 PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshimura A, Ohkubo T, Kiguchi T et al (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14:2816–2826PubMedCentralPubMedGoogle Scholar
  11. 11.
    Masuhara M, Sakamoto H, Matsumoto A et al (1997) Cloning and characterization of novel CIS family genes. Biochem Biophys Res Commun 239:439–446. doi: 10.1006/bbrc.1997.7484 PubMedCrossRefGoogle Scholar
  12. 12.
    Endo TA, Masuhara M, Yokouchi M et al (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387:921–924. doi: 10.1038/43213 PubMedCrossRefGoogle Scholar
  13. 13.
    Starr R, Willson TA, Viney EM et al (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921. doi: 10.1038/43206 PubMedCrossRefGoogle Scholar
  14. 14.
    Hilton DJ, Richardson RT, Alexander WS et al (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95:114–119PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kile BT, Alexander WS (2001) The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci 58:1627–1635PubMedCrossRefGoogle Scholar
  16. 16.
    Kazi JU, Rönnstrand L (2013) Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol 7:693–703. doi: 10.1016/j.molonc.2013.02.020 PubMedCrossRefGoogle Scholar
  17. 17.
    Kazi JU, Sun J, Phung B, Zadjali F, Flores-Morales A, Rönnstrand L (2012) Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3. J Biol Chem 287:36509–36517. doi: 10.1074/jbc.M112.376111 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bayle J, Letard S, Frank R, Dubreuil P, De Sepulveda P (2004) Suppressor of cytokine signaling 6 associates with KIT and regulates KIT receptor signaling. J Biol Chem 279:12249–12259. doi: 10.1074/jbc.M313381200 PubMedCrossRefGoogle Scholar
  19. 19.
    Kawazoe Y, Naka T, Fujimoto M et al (2001) Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med 193:263–269PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Jamieson E, Chong MM, Steinberg GR et al (2005) Socs1 deficiency enhances hepatic insulin signaling. J Biol Chem 280:31516–31521. doi: 10.1074/jbc.M502163200 PubMedCrossRefGoogle Scholar
  21. 21.
    Wiejak J, Dunlop J, Gao S, Borland G, Yarwood SJ (2012) Extracellular signal-regulated kinase mitogen-activated protein kinase-dependent SOCS-3 gene induction requires c-Jun, signal transducer and activator of transcription 3, and specificity protein 3 transcription factors. Mol Pharmacol 81:657–668. doi: 10.1124/mol.111.076976 PubMedCrossRefGoogle Scholar
  22. 22.
    Iglesias-Gato D, Chuan YC, Wikström P et al (2014) SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis 35:24–33. doi: 10.1093/carcin/bgt304 PubMedCrossRefGoogle Scholar
  23. 23.
    Okochi O, Hibi K, Sakai M et al (2003) Methylation-mediated silencing of SOCS-1 gene in hepatocellular carcinoma derived from cirrhosis. Clin Cancer Res 9:5295–5298PubMedGoogle Scholar
  24. 24.
    He B, You L, Uematsu K et al (2003) SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA 100:14133–14138. doi: 10.1073/pnas.2232790100 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R (1999) Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J 18:904–915. doi: 10.1093/emboj/18.4.904 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Reddy PN, Sargin B, Choudhary C et al (2012) SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. Blood 120:1691–1702. doi: 10.1182/blood-2010-08-301416 PubMedCrossRefGoogle Scholar
  27. 27.
    Rottapel R, Ilangumaran S, Neale C et al (2002) The tumor suppressor activity of SOCS-1. Oncogene 21:4351–4362. doi: 10.1038/sj.onc.1205537 PubMedCrossRefGoogle Scholar
  28. 28.
    Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398. doi: 10.1074/jbc.C200444200 PubMedCrossRefGoogle Scholar
  29. 29.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446. doi: 10.1128/MCB.24.12.5434-5446.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Bourette RP, De Sepulveda P, Arnaud S, Dubreuil P, Rottapel R, Mouchiroud G (2001) Suppressor of cytokine signaling 1 interacts with the macrophage colony-stimulating factor receptor and negatively regulates its proliferation signal. J Biol Chem 276:22133–22139. doi: 10.1074/jbc.M101878200 PubMedCrossRefGoogle Scholar
  31. 31.
    Yu W, Chen J, Xiong Y et al (2008) CSF-1 receptor structure/function in MacCsf1r-/- macrophages: regulation of proliferation, differentiation, and morphology. J Leukoc Biol 84:852–863. doi: 10.1189/jlb.0308171 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Gui Y, Yeganeh M, Ramanathan S et al (2011) SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. J Hepatol 55:1300–1308. doi: 10.1016/j.jhep.2011.03.027 PubMedCrossRefGoogle Scholar
  33. 33.
    Hafizi S, Alindri F, Karlsson R, Dahlback B (2002) Interaction of Axl receptor tyrosine kinase with C1-TEN, a novel C1 domain-containing protein with homology to tensin. Biochem Biophys Res Commun 299:793–800PubMedCrossRefGoogle Scholar
  34. 34.
    Dey BR, Spence SL, Nissley P, Furlanetto RW (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 273:24095–24101PubMedCrossRefGoogle Scholar
  35. 35.
    Xia L, Wang L, Chung AS et al (2002) Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation. J Biol Chem 277:30716–30723. doi: 10.1074/jbc.M202823200 PubMedCrossRefGoogle Scholar
  36. 36.
    Ben-Zvi T, Yayon A, Gertler A, Monsonego-Ornan E (2006) Suppressors of cytokine signaling (SOCS) 1 and SOCS3 interact with and modulate fibroblast growth factor receptor signaling. J Cell Sci 119:380–387. doi: 10.1242/jcs.02740 PubMedCrossRefGoogle Scholar
  37. 37.
    Choudhary C, Brandts C, Schwable J et al (2007) Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 110:370–374. doi: 10.1182/blood-2006-05-024018 PubMedCrossRefGoogle Scholar
  38. 38.
    Gui Y, Yeganeh M, Cepero-Donates Y, Ramanathan S, Saucier C, Ilangumaran S (2013) Regulation of MET receptor signaling by SOCS1 and its implications for hepatocellular carcinoma. Curr Pharm Des 19:1–12Google Scholar
  39. 39.
    Kazi JU, Agarwal S, Sun J, Bracco E, Rönnstrand L (2014) Src-like adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. J Cell Sci 127:653–662. doi: 10.1242/jcs.140590 PubMedCrossRefGoogle Scholar
  40. 40.
    Gulli LF, Palmer KC, Chen YQ, Reddy KB (1996) Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ 7:173–178PubMedGoogle Scholar
  41. 41.
    Oveland E, Wergeland L, Hovland R, Lorens JB, Gjertsen BT, Fladmark KE (2012) Ectopic expression of Flt3 kinase inhibits proliferation and promotes cell death in different human cancer cell lines. Cell Biol Toxicol 28:201–212. doi: 10.1007/s10565-012-9216-z PubMedCrossRefGoogle Scholar
  42. 42.
    Greenhalgh CJ, Rico-Bautista E, Lorentzon M et al (2005) SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 115:397–406. doi: 10.1172/JCI22710 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Vesterlund M, Zadjali F, Persson T et al (2011) The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels. PLoS One 6:e25358. doi: 10.1371/journal.pone.0025358 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lopaczynski W (1999) Differential regulation of signaling pathways for insulin and insulin-like growth factor I. Acta Biochim Pol 46:51–60PubMedGoogle Scholar
  45. 45.
    Kazi JU, Kabir NN, Rönnstrand L (2013) Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol 30:575. doi: 10.1007/s12032-013-0757-7 CrossRefGoogle Scholar
  46. 46.
    Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466. doi: 10.1038/ncb983 PubMedGoogle Scholar
  47. 47.
    Farabegoli F, Ceccarelli C, Santini D, Taffurelli M (2005) Suppressor of cytokine signalling 2 (SOCS-2) expression in breast carcinoma. J Clin Pathol 58:1046–1050. doi: 10.1136/jcp.2004.024919 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Goldshmit Y, Walters CE, Scott HJ, Greenhalgh CJ, Turnley AM (2004) SOCS2 induces neurite outgrowth by regulation of epidermal growth factor receptor activation. J Biol Chem 279:16349–16355. doi: 10.1074/jbc.M312873200 PubMedCrossRefGoogle Scholar
  49. 49.
    Roberts AW, Robb L, Rakar S et al (2001) Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proc Natl Acad Sci USA 98:9324–9329. doi: 10.1073/pnas.161271798 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Mori H, Hanada R, Hanada T et al (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743. doi: 10.1038/nm1071 PubMedCrossRefGoogle Scholar
  51. 51.
    Jo D, Liu D, Yao S, Collins RD, Hawiger J (2005) Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nat Med 11:892–898. doi: 10.1038/nm1269 PubMedCrossRefGoogle Scholar
  52. 52.
    Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991PubMedCrossRefGoogle Scholar
  53. 53.
    Emanuelli B, Peraldi P, Filloux C et al (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949. doi: 10.1074/jbc.M104602200 PubMedCrossRefGoogle Scholar
  54. 54.
    Dey BR, Furlanetto RW, Nissley P (2000) Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem Biophys Res Commun 278:38–43. doi: 10.1006/bbrc.2000.3762 PubMedCrossRefGoogle Scholar
  55. 55.
    Zolotnik IA, Figueroa TY, Yaspelkis BB 3rd (2012) Insulin receptor and IRS-1 co-immunoprecipitation with SOCS-3, and IKKalpha/beta phosphorylation are increased in obese Zucker rat skeletal muscle. Life Sci 91:816–822. doi: 10.1016/j.lfs.2012.08.038 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Peraldi P, Filloux C, Emanuelli B, Hilton DJ, Van Obberghen E (2001) Insulin induces suppressor of cytokine signaling-3 tyrosine phosphorylation through janus-activated kinase. J Biol Chem 276:24614–24620. doi: 10.1074/jbc.M102209200 PubMedCrossRefGoogle Scholar
  57. 57.
    Sundaram K, Senn J, Reddy SV (2013) SOCS-1/3 participation in FGF-2 signaling to modulate RANK ligand expression in Paget’s disease of bone. J Cell Biochem 114:2032–2038. doi: 10.1002/jcb.24554 PubMedCrossRefGoogle Scholar
  58. 58.
    Cacalano NA, Sanden D, Johnston JA (2001) Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 3:460–465. doi: 10.1038/35074525 PubMedGoogle Scholar
  59. 59.
    Kario E, Marmor MD, Adamsky K et al (2005) Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 280:7038–7048. doi: 10.1074/jbc.M408575200 PubMedCrossRefGoogle Scholar
  60. 60.
    Bullock AN, Rodriguez MC, Debreczeni JE, Songyang Z, Knapp S (2007) Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation. Structure 15:1493–1504. doi: 10.1016/j.str.2007.09.016 PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Nicholson SE, Metcalf D, Sprigg NS et al (2005) Suppressor of cytokine signaling (SOCS)-5 is a potential negative regulator of epidermal growth factor signaling. Proc Natl Acad Sci USA 102:2328–2333. doi: 10.1073/pnas.0409675102 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Linossi EM, Chandrashekaran IR, Kolesnik TB et al (2013) Suppressor of cytokine signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 8:e70536. doi: 10.1371/journal.pone.0070536 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Lai RH, Hsiao YW, Wang MJ et al (2010) SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett 288:75–85. doi: 10.1016/j.canlet.2009.06.025 PubMedCrossRefGoogle Scholar
  64. 64.
    Sriram KB, Larsen JE, Savarimuthu Francis SM et al (2012) Array-comparative genomic hybridization reveals loss of SOCS6 is associated with poor prognosis in primary lung squamous cell carcinoma. PLoS One 7:e30398. doi: 10.1371/journal.pone.0030398 PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Krebs DL, Uren RT, Metcalf D et al (2002) SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 22:4567–4578PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Li L, Grønning LM, Anderson PO et al (2004) Insulin induces SOCS-6 expression and its binding to the p85 monomer of phosphoinositide 3-kinase, resulting in improvement in glucose metabolism. J Biol Chem 279:34107–34114. doi: 10.1074/jbc.M312672200 PubMedCrossRefGoogle Scholar
  67. 67.
    Mooney RA, Senn J, Cameron S et al (2001) Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. J Biol Chem 276:25889–25893. doi: 10.1074/jbc.M010579200 PubMedCrossRefGoogle Scholar
  68. 68.
    Hwang MN, Ha TH, Park J et al (2007) Increased SOCS6 stability with PMA requires its N-terminal region and the Erk pathway via Pkcdelta activation. Biochem Biophys Res Commun 354:184–189. doi: 10.1016/j.bbrc.2006.12.175 PubMedCrossRefGoogle Scholar
  69. 69.
    Zadjali F, Pike AC, Vesterlund M et al (2011) Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J Biol Chem 286:480–490. doi: 10.1074/jbc.M110.173526 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Sitko JC, Guevara CI, Cacalano NA (2004) Tyrosine-phosphorylated SOCS3 interacts with the Nck and Crk-L adapter proteins and regulates Nck activation. J Biol Chem 279:37662–37669. doi: 10.1074/jbc.M404007200 PubMedCrossRefGoogle Scholar
  71. 71.
    Matuoka K, Miki H, Takahashi K, Takenawa T (1997) A novel ligand for an SH3 domain of the adaptor protein Nck bears an SH2 domain and nuclear signaling motifs. Biochem Biophys Res Commun 239:488–492. doi: 10.1006/bbrc.1997.7492 PubMedCrossRefGoogle Scholar
  72. 72.
    Martens N, Wery M, Wang P et al (2004) The suppressor of cytokine signaling (SOCS)-7 interacts with the actin cytoskeleton through vinexin. Exp Cell Res 298:239–248. doi: 10.1016/j.yexcr.2004.04.002 PubMedCrossRefGoogle Scholar
  73. 73.
    Banks AS, Li J, McKeag L et al (2005) Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest 115:2462–2471. doi: 10.1172/JCI23853 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Sasi W, Ye L, Jiang WG, Mokbel K, Sharma A (2013) Observations on the effects of suppressor of cytokine signaling 7 (SOCS7) knockdown in breast cancer cells: their in vitro response to Insulin like growth factor I (IGF-I). Clin Transl Oncol. doi: 10.1007/s12094-013-1107-0 PubMedGoogle Scholar
  75. 75.
    Krejci P, Prochazkova J, Bryja V et al (2009) Fibroblast growth factor inhibits interferon gamma-STAT1 and interleukin 6-STAT3 signaling in chondrocytes. Cell Signal 21:151–160. doi: 10.1016/j.cellsig.2008.10.006 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Chen S, Anderson PO, Li L, Sjögren HO, Wang P, Li SL (2003) Functional association of cytokine-induced SH2 protein and protein kinase C in activated T cells. Int Immunol 15:403–409PubMedCrossRefGoogle Scholar
  77. 77.
    Raccurt M, Tam SP, Lau P et al (2003) Suppressor of cytokine signalling gene expression is elevated in breast carcinoma. Br J Cancer 89:524–532. doi: 10.1038/sj.bjc.6601115 PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Sasi W, Jiang WG, Sharma A, Mokbel K (2010) Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer. BMC Cancer 10:178. doi: 10.1186/1471-2407-10-178 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Li Z, Metze D, Nashan D et al (2004) Expression of SOCS-1, suppressor of cytokine signalling-1, in human melanoma. J Invest Dermatol 123:737–745. doi: 10.1111/j.0022-202X.2004.23408.x PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang J, Li H, Yu JP, Wang SE, Ren XB (2012) Role of SOCS1 in tumor progression and therapeutic application. Int J Cancer 130:1971–1980. doi: 10.1002/ijc.27318 PubMedGoogle Scholar
  81. 81.
    Mottok A, Renne C, Seifert M et al (2009) Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood 114:4503–4506. doi: 10.1182/blood-2009-06-225839 PubMedCrossRefGoogle Scholar
  82. 82.
    Hanada T, Kobayashi T, Chinen T et al (2006) IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203:1391–1397. doi: 10.1084/jem.20060436 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Weniger MA, Melzner I, Menz CK et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684. doi: 10.1038/sj.onc.1209151 PubMedCrossRefGoogle Scholar
  84. 84.
    Hiwatashi K, Tamiya T, Hasegawa E et al (2011) Suppression of SOCS3 in macrophages prevents cancer metastasis by modifying macrophage phase and MCP2/CCL8 induction. Cancer Lett 308:172–180. doi: 10.1016/j.canlet.2011.04.024 PubMedCrossRefGoogle Scholar
  85. 85.
    Qiu X, Zheng J, Guo X et al (2013) Reduced expression of SOCS2 and SOCS6 in hepatocellular carcinoma correlates with aggressive tumor progression and poor prognosis. Mol Cell Biochem 378:99–106. doi: 10.1007/s11010-013-1599-5 PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu JG, Dai QS, Han ZD et al (2013) Expression of SOCSs in human prostate cancer and their association in prognosis. Mol Cell Biochem 381:51–59. doi: 10.1007/s11010-013-1687-6 PubMedCrossRefGoogle Scholar
  87. 87.
    Iglesias-Gato D, Chuan YC, Wikström P et al (2013) SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis. doi: 10.1093/carcin/bgt304 PubMedGoogle Scholar
  88. 88.
    Niwa Y, Kanda H, Shikauchi Y et al (2005) Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24:6406–6417. doi: 10.1038/sj.onc.1208788 PubMedGoogle Scholar
  89. 89.
    Zhang L, Li J, Li L et al (2014) IL-23 selectively promotes the metastasis of colorectal carcinoma cells with impaired Socs3 expression via the STAT5 pathway. Carcinogenesis. doi: 10.1093/carcin/bgu017 Google Scholar
  90. 90.
    Sakai I, Takeuchi K, Yamauchi H, Narumi H, Fujita S (2002) Constitutive expression of SOCS3 confers resistance to IFN-alpha in chronic myelogenous leukemia cells. Blood 100:2926–2931. doi: 10.1182/blood-2002-01-0073 PubMedCrossRefGoogle Scholar
  91. 91.
    Suessmuth Y, Elliott J, Percy MJ et al (2009) A new polycythaemia vera-associated SOCS3 SH2 mutant (SOCS3F136L) cannot regulate erythropoietin responses. Br J Haematol 147:450–458. doi: 10.1111/j.1365-2141.2009.07860.x PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Quentmeier H, Geffers R, Jost E et al (2008) SOCS2: inhibitor of JAK2V617F-mediated signal transduction. Leukemia 22:2169–2175. doi: 10.1038/leu.2008.226 PubMedCrossRefGoogle Scholar
  93. 93.
    Jost E, ON do, Dahl E et al (2007) Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 21:505–510. doi: 10.1038/sj.leu.2404513 PubMedCrossRefGoogle Scholar
  94. 94.
    Etienne A, Carbuccia N, Adelaide J et al (2007) Rearrangements involving 12q in myeloproliferative disorders: possible role of HMGA2 and SOCS2 genes. Cancer Genet Cytogenet 176:80–88. doi: 10.1016/j.cancergencyto.2007.03.009 PubMedCrossRefGoogle Scholar
  95. 95.
    Fourouclas N, Li J, Gilby DC et al (2008) Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica 93:1635–1644. doi: 10.3324/haematol.13043 PubMedCrossRefGoogle Scholar
  96. 96.
    Haan S, Ferguson P, Sommer U et al (2003) Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation. J Biol Chem 278:31972–31979. doi: 10.1074/jbc.M303170200 PubMedCrossRefGoogle Scholar
  97. 97.
    Ueki K, Kondo T, Tseng YH, Kahn CR (2004) Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA 101:10422–10427. doi: 10.1073/pnas.0402511101 PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Ueki K, Kadowaki T, Kahn CR (2005) Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res 33:185–192. doi: 10.1016/j.hepres.2005.09.032 PubMedCrossRefGoogle Scholar
  99. 99.
    Kato H, Nomura K, Osabe D et al (2006) Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese. Genomics 87:446–458. doi: 10.1016/j.ygeno.2005.11.009 PubMedCrossRefGoogle Scholar
  100. 100.
    Ramos MI, Perez SG, Aarrass S et al (2013) FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis in rheumatoid arthritis. Arthritis Res Ther 15:R209. doi: 10.1186/ar4403 PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Madan B, Goh KC, Hart S et al (2012) SB1578, a novel inhibitor of JAK2, FLT3, and c-Fms for the treatment of rheumatoid arthritis. J Immunol 189:4123–4134. doi: 10.4049/jimmunol.1200675 PubMedCrossRefGoogle Scholar
  102. 102.
    Juurikivi A, Sandler C, Lindstedt KA et al (2005) Inhibition of c-kit tyrosine kinase by imatinib mesylate induces apoptosis in mast cells in rheumatoid synovia: a potential approach to the treatment of arthritis. Ann Rheum Dis 64:1126–1131. doi: 10.1136/ard.2004.029835 PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Tsao JT, Kuo CC, Lin SC (2008) The analysis of CIS, SOCS1, SOSC2 and SOCS3 transcript levels in peripheral blood mononuclear cells of systemic lupus erythematosus and rheumatoid arthritis patients. Clin Exp Med 8:179–185. doi: 10.1007/s10238-008-0006-0 PubMedCrossRefGoogle Scholar
  104. 104.
    Chen YH, Hsieh SC, Chen WY et al (2011) Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGFbeta1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3. Ann Rheum Dis 70:1655–1663. doi: 10.1136/ard.2010.145821 PubMedCrossRefGoogle Scholar
  105. 105.
    De Souza D, Fabri LJ, Nash A, Hilton DJ, Nicola NA, Baca M (2002) SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry 41:9229–9236PubMedCrossRefGoogle Scholar
  106. 106.
    Puissant A, Fenouille N, Alexe G et al (2014) SYK is a critical regulator of FLT3 in acute myeloid leukemia. Cancer Cell 25:226–242. doi: 10.1016/j.ccr.2014.01.022 PubMedCrossRefGoogle Scholar
  107. 107.
    Kabir NN, Kazi JU (2014) Grb10 is a dual regulator of receptor tyrosine kinase signaling. Mol Biol Rep. doi: 10.1007/s11033-014-3046-4 Google Scholar
  108. 108.
    Neuwirt H, Puhr M, Santer FR et al (2009) Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. Am J Pathol 174:1921–1930. doi: 10.2353/ajpath.2009.080751 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Julhash U. Kazi
    • 1
    • 2
    • 3
  • Nuzhat N. Kabir
    • 3
  • Amilcar Flores-Morales
    • 4
  • Lars Rönnstrand
    • 1
    • 2
  1. 1.Division of Translational Cancer ResearchLund UniversityLundSweden
  2. 2.Lund Stem Cell CenterLund UniversityLundSweden
  3. 3.Laboratory of Computational BiochemistryKN Biomedical Research InstituteBarisalBangladesh
  4. 4.Novo Nordisk Foundation Center for Protein Research, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations