Cellular and Molecular Life Sciences

, Volume 71, Issue 17, pp 3257–3268 | Cite as

Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation

  • Irene Faravelli
  • Giulietta Riboldi
  • Monica Nizzardo
  • Chiara Simone
  • Chiara Zanetta
  • Nereo Bresolin
  • Giacomo P. Comi
  • Stefania Corti
Review

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3–5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.

Keywords

Amyotrophic lateral sclerosis Stem cells Transplantation Clinical translation 

References

  1. 1.
    Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264PubMedCrossRefGoogle Scholar
  2. 2.
    Gordon P, Corcia P, Meininger V (2013) New therapy options for amyotrophic lateral sclerosis. Expert Opin Pharmacother 14:1907–1917PubMedCrossRefGoogle Scholar
  3. 3.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955PubMedCrossRefGoogle Scholar
  4. 4.
    Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9PubMedCrossRefGoogle Scholar
  6. 6.
    Yang W, Strong MJ (2012) Widespread neuronal and glial hyperphosphorylated tau deposition in ALS with cognitive impairment. Amyotroph Lateral Scler 13:178–193PubMedCrossRefGoogle Scholar
  7. 7.
    Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 3:CD001447PubMedGoogle Scholar
  8. 8.
    Dupuis L, Gonzalez de Aguilar JL, Echaniz-Laguna A, Eschbach J, Rene F (2009) Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons. PLoS One 4:e5390PubMedCentralPubMedGoogle Scholar
  9. 9.
    Nizzardo M, Simone C, Falcone M, Riboldi G, Rizzo F et al (2012) Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis. Cell Mol Life Sci 69:1641–1650PubMedGoogle Scholar
  10. 10.
    Boulis NM, Federici T, Glass JD, Lunn JS, Sakowski SA et al (2011) Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 8:172–176PubMedGoogle Scholar
  11. 11.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  12. 12.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089PubMedGoogle Scholar
  13. 13.
    Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R et al (2006) Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 15:167–187PubMedGoogle Scholar
  14. 14.
    Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M et al (2007) Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 130:1289–1305PubMedGoogle Scholar
  15. 15.
    Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, et al (2014) Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 23:342–354Google Scholar
  16. 16.
    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S et al (2008) Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 118:3316–3330PubMedCentralPubMedGoogle Scholar
  17. 17.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedGoogle Scholar
  18. 18.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122PubMedCentralPubMedGoogle Scholar
  19. 19.
    Wyatt TJ, Rossi SL, Siegenthaler MM, Frame J, Robles R et al (2011) Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in three models of motor neuron loss. Stem Cells Int 2011:207230PubMedCentralPubMedGoogle Scholar
  20. 20.
    Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA et al (2010) Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 28:1541–1549PubMedCentralPubMedGoogle Scholar
  21. 21.
    Valori CF, Brambilla L, Martorana F, Rossi D (2014) The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 71:287–297Google Scholar
  22. 22.
    Boucherie C, Schafer S, Lavand’homme P, Maloteaux JM, Hermans E (2009) Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 87:2034–2046PubMedGoogle Scholar
  23. 23.
    Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS et al (2008) Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 11:1294–1301PubMedCentralPubMedGoogle Scholar
  24. 24.
    Suzuki M, McHugh J, Tork C, Shelley B, Hayes A et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16:2002–2010PubMedCentralPubMedGoogle Scholar
  25. 25.
    Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM et al (2011) Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 6:201–213PubMedCentralPubMedGoogle Scholar
  26. 26.
    Borlongan CV (2012) Recent preclinical evidence advancing cell therapy for Alzheimer’s disease. Exp Neurol 237:142–146PubMedCentralPubMedGoogle Scholar
  27. 27.
    Lee ST, Chu K, Jung KH, Kim SJ, Kim DH et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629PubMedGoogle Scholar
  28. 28.
    Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096PubMedGoogle Scholar
  29. 29.
    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S et al (2010) Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 19:3782–3796PubMedGoogle Scholar
  30. 30.
    Kerr DA, Llado J, Shamblott MJ, Maragakis NJ, Irani DN et al (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23:5131–5140PubMedGoogle Scholar
  31. 31.
    Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K et al (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521PubMedGoogle Scholar
  32. 32.
    Mitrecic D, Nicaise C, Gajovic S, Pochet R (2010) Distribution, differentiation, and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis. Cell Transpl 19:537–548Google Scholar
  33. 33.
    Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC et al (2012) Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med 4:165ra164PubMedGoogle Scholar
  34. 34.
    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789PubMedGoogle Scholar
  35. 35.
    Han SS, Williams LA, Eggan KC (2011) Constructing and deconstructing stem cell models of neurological disease. Neuron 70:626–644PubMedGoogle Scholar
  36. 36.
    Madhavan L, Collier TJ (2010) A synergistic approach for neural repair: cell transplantation and induction of endogenous precursor cell activity. Neuropharmacology 58:835–844PubMedGoogle Scholar
  37. 37.
    Chu K, Kim M, Jeong SW, Kim SU, Yoon BW (2003) Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343:129–133PubMedGoogle Scholar
  38. 38.
    Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200PubMedGoogle Scholar
  39. 39.
    Jeong SW, Chu K, Jung KH, Kim SU, Kim M et al (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34:2258–2263PubMedGoogle Scholar
  40. 40.
    Pluchino S, Cossetti C (2013) How stem cells speak with host immune cells in inflammatory brain diseases. Glia 61:1379–1401PubMedCentralPubMedGoogle Scholar
  41. 41.
    Pluchino S, Zanotti L, Deleidi M, Martino G (2005) Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev 48:211–219PubMedGoogle Scholar
  42. 42.
    Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH et al (2013) Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125:111–120PubMedCentralPubMedGoogle Scholar
  43. 43.
    D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H (2013) Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 65C:509–527Google Scholar
  44. 44.
    Steinman L (2009) A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 9:440–447PubMedGoogle Scholar
  45. 45.
    Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M et al (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223:229–237PubMedGoogle Scholar
  46. 46.
    Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, Caro E, Gutierrez-Jimenez E et al (2009) Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11:26–34PubMedGoogle Scholar
  47. 47.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194PubMedCentralPubMedGoogle Scholar
  48. 48.
    Cashman N, Tan LY, Krieger C, Madler B, Mackay A et al (2008) Pilot study of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle Nerve 37:620–625PubMedGoogle Scholar
  49. 49.
    Chio A, Mora G, La Bella V, Caponnetto C, Mancardi G et al (2011) Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis: clinical and biological results from a prospective multicenter study. Muscle Nerve 43:189–195PubMedGoogle Scholar
  50. 50.
    Riley J, Glass J, Feldman EL, Polak M, Bordeau J, et al (2014) Intraspinal stem cell transplantation in ALS: a phase I trial, cervical microinjection and final surgical safety outcomes. Neurosurgery 74:77–87Google Scholar
  51. 51.
    Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W (2014) Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol 5:7PubMedCentralPubMedGoogle Scholar
  52. 52.
    Scheiner ZS, Talib S, Feigal EG (2014) The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 289:4571–4577PubMedGoogle Scholar
  53. 53.
    Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y et al (2012) Emerging methods for preparing iPS cells. Jpn J Clin Oncol 42:773–779PubMedGoogle Scholar
  54. 54.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedCentralPubMedGoogle Scholar
  55. 55.
    Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G et al (2010) Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci 67:3837–3847PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Irene Faravelli
    • 1
  • Giulietta Riboldi
    • 1
  • Monica Nizzardo
    • 1
  • Chiara Simone
    • 1
  • Chiara Zanetta
    • 1
  • Nereo Bresolin
    • 1
  • Giacomo P. Comi
    • 1
  • Stefania Corti
    • 1
  1. 1.Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology UnitUniversity of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore PoliclinicoMilanItaly

Personalised recommendations