Cellular and Molecular Life Sciences

, Volume 71, Issue 16, pp 3139–3150 | Cite as

Transport and diffusion of Tau protein in neurons

  • Tim Scholz
  • Eckhard Mandelkow


In highly polarized and elongated cells such as neurons, Tau protein must enter and move down the axon to fulfill its biological task of stabilizing axonal microtubules. Therefore, cellular systems for distributing Tau molecules are needed. This review discusses different mechanisms that have been proposed to contribute to the dispersion of Tau molecules in neurons. They include (1) directed transport along microtubules as cargo of tubulin complexes and/or motor proteins, (2) diffusion, either through the cytosolic space or along microtubules, and (3) mRNA-based mechanisms such as transport of Tau mRNA into axons and local translation. Diffusion along the microtubule lattice or through the cytosol appear to be the major mechanisms for axonal distribution of Tau protein in the short-to-intermediate range over distances of up to a millimetre. The high diffusion coefficients ensure that Tau can distribute evenly throughout the axonal volume as well as along microtubules. Motor protein-dependent transport of Tau dominates over longer distances and time scales. At low near-physiological levels, Tau is co-transported along with short microtubules from cell bodies into axons by cytoplasmic dynein and kinesin family members at rates of slow axonal transport.


Alzheimer disease Tau protein Diffusion Axonal transport Kinesin Dynein Motor protein Microtubules 



3′ Untranslated region


Amino acids


Central nervous system


Fluorescence recovery after photobleaching


Fronto-temporal dementia and Parkinsonism linked to chromosome 17


c-Jun N-terminal kinase-interacting protein 1


Microtubule-associated protein


Periaxoplasmic ribosomal plaques


Paired helical filaments


Protein phosphatase 1




Total internal reflection fluorescence



Work performed in the Scholz or Mandelkow groups was partially supported by Deutsche Forschungsgemeinschaft (DFG) Research Unit FOR629 grants to T.S and E.M. We thank Dietmar J. Manstein for organizing Research Unit FOR629 as well as Walter Steffen and Bernhard Brenner for helpful discussions.


  1. 1.
    Ackmann M, Wiech H, Mandelkow E (2000) Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation. J Biol Chem 275(39):30335–30343PubMedGoogle Scholar
  2. 2.
    Ahmad FJ, Baas PW (1995) Microtubules released from the neuronal centrosome are transported into the axon. J Cell Sci 108(Pt 8):2761–2769PubMedGoogle Scholar
  3. 3.
    Al-Bassam J, Ozer RS, Safer D, Halpain S, Milligan RA (2002) MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 157(7):1187–1196PubMedCentralPubMedGoogle Scholar
  4. 4.
    Andreadis A (2005) Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 1739(2–3):91–103PubMedGoogle Scholar
  5. 5.
    Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31(43):10626–10633PubMedGoogle Scholar
  6. 6.
    Aranda-Abreu GE, Behar L, Chung S, Furneaux H, Ginzburg I (1999) Embryonic lethal abnormal vision—like RNA—binding proteins regulate neurite outgrowth and tau expression in PC12 cells. J Neurosci 19(16):6907–6917PubMedGoogle Scholar
  7. 7.
    Aronov S, Aranda G, Behar L, Ginzburg I (2001) Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J Neurosci 21(17):6577–6587PubMedGoogle Scholar
  8. 8.
    Aronov S, Aranda G, Behar L, Ginzburg I (2002) Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules. J Cell Sci 115(Pt 19):3817–3827PubMedGoogle Scholar
  9. 9.
    Baas PW, Vidya Nadar C, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7(5):490–498PubMedGoogle Scholar
  10. 10.
    Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672PubMedGoogle Scholar
  11. 11.
    Berg OG, Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20(24):6929–6948PubMedGoogle Scholar
  12. 12.
    Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280(42):35119–35125 (Epub 2005 Aug 22)PubMedGoogle Scholar
  13. 13.
    Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11(1):153–163PubMedGoogle Scholar
  14. 14.
    Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378PubMedGoogle Scholar
  15. 15.
    Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16(11):3601–3619PubMedGoogle Scholar
  16. 16.
    Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131(5):1327–1340PubMedGoogle Scholar
  17. 17.
    Brion JP, Couck AM, Passareiro E, Flament-Durand J (1985) Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 17(1):89–96PubMedGoogle Scholar
  18. 18.
    Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115(3):717–730PubMedGoogle Scholar
  19. 19.
    Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360(6405):674–677PubMedGoogle Scholar
  20. 20.
    Choi MC, Raviv U, Miller HP, Gaylord MR, Kiris E, Ventimiglia D, Needleman DJ, Kim MW, Wilson L, Feinstein SC, Safinya CR (2009) Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron X-ray scattering study. Biophys J 97(2):519–527. doi: 10.1016/j.bpj.2009.04.047 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116(2):227–247PubMedGoogle Scholar
  22. 22.
    Cooper JR, Wordeman L (2009) The diffusive interaction of microtubule binding proteins. Curr Opin Cell Biol 21(1):68–73 (Epub 2009 Jan 29)PubMedCentralPubMedGoogle Scholar
  23. 23.
    Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH, Hanger DP (2008) Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 22(9):3186–3195 (Epub 2008 May 29)PubMedGoogle Scholar
  24. 24.
    Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319(5866):1086–1089PubMedCentralPubMedGoogle Scholar
  25. 25.
    Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103(6 Pt 2):2739–2746PubMedGoogle Scholar
  26. 26.
    Falzone TL, Gunawardena S, McCleary D, Reis GF, Goldstein LS (2010) Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies. Hum Mol Genet 19(22):4399–4408. doi: 10.1093/hmg/ddq363 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Falzone TL, Stokin GB, Lillo C, Rodrigues EM, Westerman EL, Williams DS, Goldstein LS (2009) Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects. J Neurosci 29(18):5758–5767. doi: 10.1523/JNEUROSCI.0780-09.2009 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA, Diez S (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11(6):717–723. doi: 10.1038/ncb1877 PubMedGoogle Scholar
  29. 29.
    Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139–148 (Epub 2006 Dec 24)PubMedGoogle Scholar
  30. 30.
    Furuta K, Toyoshima YY (2008) Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro. Curr Biol 18(2):152–157PubMedGoogle Scholar
  31. 31.
    Garcia ML, Cleveland DW (2001) Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 13(1):41–48PubMedGoogle Scholar
  32. 32.
    Goedert M, Ghetti B, Spillantini MG (2012) Frontotemporal dementia: implications for understanding Alzheimer disease. Cold Spring Harb Perspect Med 2(2):a006254. doi: 10.1101/cshperspect.a006254 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739(2–3):240–250PubMedGoogle Scholar
  34. 34.
    Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8(2):393–399PubMedCentralPubMedGoogle Scholar
  35. 35.
    Goode BL, Denis PE, Panda D, Radeke MJ, Miller HP, Wilson L, Feinstein SC (1997) Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol Biol Cell 8(2):353–365PubMedCentralPubMedGoogle Scholar
  36. 36.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917PubMedCentralPubMedGoogle Scholar
  37. 37.
    Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33(32):9511–9522PubMedGoogle Scholar
  38. 38.
    Hagiwara H, Yorifuji H, Sato-Yoshitake R, Hirokawa N (1994) Competition between motor molecules (kinesin and cytoplasmic dynein) and fibrous microtubule-associated proteins in binding to microtubules. J Biol Chem 269(5):3581–3589PubMedGoogle Scholar
  39. 39.
    Haque SA, Hasaka TP, Brooks AD, Lobanov PV, Baas PW (2004) Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Cell Motil Cytoskeleton 58(1):10–16PubMedGoogle Scholar
  40. 40.
    Hasaka TP, Myers KA, Baas PW (2004) Role of actin filaments in the axonal transport of microtubules. J Neurosci 24(50):11291–11301PubMedGoogle Scholar
  41. 41.
    He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW (2005) Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J Cell Biol 168(5):697–703 (Epub 2005 Feb 22)PubMedCentralPubMedGoogle Scholar
  42. 42.
    Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T (2012) Tau protein diffuses along the microtubule lattice. J Biol Chem 287(46):38559–38568. doi: 10.1074/jbc.M112.369785 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol 132(4):667–679PubMedGoogle Scholar
  44. 44.
    Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107(4):1449–1459PubMedGoogle Scholar
  45. 45.
    Hoenger A, Gross H (2008) Structural investigations into microtubule-MAP complexes. Methods Cell Biol 84:425–444PubMedGoogle Scholar
  46. 46.
    Ittner LM, Gotz J (2011) Amyloid-beta and tau–a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72. doi: 10.1038/nrn2967 PubMedGoogle Scholar
  47. 47.
    Ittner LM, Ke YD, Gotz J (2009) Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J Biol Chem 284(31):20909–20916. doi: 10.1074/jbc.M109.014472 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45(7):2283–2293PubMedGoogle Scholar
  49. 49.
    Kanaan NM, Morfini G, Pigino G, LaPointe NE, Andreadis A, Song Y, Leitman E, Binder LI, Brady ST (2012) Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport. Neurobiol Aging 33(4):826.e815–826.e830. doi: 10.1016/j.neurobiolaging.2011.06.006 Google Scholar
  50. 50.
    Kanaan NM, Morfini GA, LaPointe NE, Pigino GF, Patterson KR, Song Y, Andreadis A, Fu Y, Brady ST, Binder LI (2011) Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci 31(27):9858–9868. doi: 10.1523/JNEUROSCI.0560-11.2011 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Kanai Y, Hirokawa N (1995) Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 14(2):421–432PubMedGoogle Scholar
  52. 52.
    Kar S, Fan J, Smith MJ, Goedert M, Amos LA (2003) Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J 22(1):70–77PubMedCentralPubMedGoogle Scholar
  53. 53.
    Kardon JR, Vale RD (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10(12):854–865. doi: 10.1038/nrm2804 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16(18):5583–5592PubMedGoogle Scholar
  55. 55.
    Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E (2007) Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J Neurosci 27(37):9916–9927PubMedGoogle Scholar
  56. 56.
    Kosik KS, Finch EA (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci 7(10):3142–3153PubMedGoogle Scholar
  57. 57.
    Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83(11):4044–4048PubMedCentralPubMedGoogle Scholar
  58. 58.
    Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequences. Neuron 2(4):1389–1397PubMedGoogle Scholar
  59. 59.
    Kreplak L, Aebi U (2006) From the polymorphism of amyloid fibrils to their assembly mechanism and cytotoxicity. Adv Protein Chem 73:217–233PubMedGoogle Scholar
  60. 60.
    LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87(2):440–451. doi: 10.1002/jnr.21850 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111(Pt 21):3167–3177PubMedGoogle Scholar
  62. 62.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159PubMedGoogle Scholar
  63. 63.
    Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30(23):4825–4837. doi: 10.1038/emboj.2011.376 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Liao H, Li Y, Brautigan DL, Gundersen GG (1998) Protein phosphatase 1 is targeted to microtubules by the microtubule-associated protein Tau. J Biol Chem 273(34):21901–21908PubMedGoogle Scholar
  65. 65.
    Littauer UZ, Giveon D, Thierauf M, Ginzburg I, Ponstingl H (1986) Common and distinct tubulin binding sites for microtubule-associated proteins. Proc Natl Acad Sci USA 83(19):7162–7166PubMedCentralPubMedGoogle Scholar
  66. 66.
    Lu H, Ali MY, Bookwalter CS, Warshaw DM, Trybus KM (2009) Diffusive movement of processive kinesin-1 on microtubules. Traffic 10(10):1429–1438 (Epub 2009 Jun 21)PubMedCentralPubMedGoogle Scholar
  67. 67.
    Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26(21):4546–4554PubMedCentralPubMedGoogle Scholar
  68. 68.
    Makrides V, Massie MR, Feinstein SC, Lew J (2004) Evidence for two distinct binding sites for tau on microtubules. Proc Natl Acad Sci USA 101(17):6746–6751PubMedCentralPubMedGoogle Scholar
  69. 69.
    Makrides V, Shen TE, Bhatia R, Smith BL, Thimm J, Lal R, Feinstein SC (2003) Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J Biol Chem 278(35):33298–33304PubMedGoogle Scholar
  70. 70.
    Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247. doi: 10.1101/cshperspect.a006247 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Mandell JW, Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16(18):5727–5740PubMedGoogle Scholar
  72. 72.
    Marya PK, Syed Z, Fraylich PE, Eagles PA (1994) Kinesin and tau bind to distinct sites on microtubules. J Cell Sci 107(Pt 1):339–344PubMedGoogle Scholar
  73. 73.
    McVicker DP, Chrin LR, Berger CL (2011) The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. J Biol Chem 286(50):42873–42880 (Epub 2011 Oct 27)PubMedCentralPubMedGoogle Scholar
  74. 74.
    Mercken M, Fischer I, Kosik KS, Nixon RA (1995) Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo. J Neurosci 15(12):8259–8267PubMedGoogle Scholar
  75. 75.
    Migheli A, Butler M, Brown K, Shelanski ML (1988) Light and electron microscope localization of the microtubule-associated tau protein in rat brain. J Neurosci 8(6):1846–1851PubMedGoogle Scholar
  76. 76.
    Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady ST (2007) Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res 85(12):2620–2630PubMedGoogle Scholar
  77. 77.
    Morishima-Kawashima M, Kosik KS (1996) The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 7(6):893–905PubMedCentralPubMedGoogle Scholar
  78. 78.
    Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426. doi: 10.1016/j.neuron.2011.04.009 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104(Pt 3):917–927PubMedGoogle Scholar
  80. 80.
    Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7(2):e34PubMedGoogle Scholar
  81. 81.
    Nakata T, Sato-Yoshitake R, Okada Y, Noda Y, Hirokawa N (1993) Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins. Biophys J 65(6):2504–2510PubMedCentralPubMedGoogle Scholar
  82. 82.
    Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res 387(3):271–280PubMedGoogle Scholar
  83. 83.
    Panda D, Goode BL, Feinstein SC, Wilson L (1995) Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Biochemistry 34(35):11117–11127PubMedGoogle Scholar
  84. 84.
    Peck A, Sargin ME, LaPointe NE, Rose K, Manjunath BS, Feinstein SC, Wilson L (2011) Tau isoform-specific modulation of kinesin-driven microtubule gliding rates and trajectories as determined with tau-stabilized microtubules. Cytoskeleton 68(1):44–55. doi: 10.1002/cm.20494 PubMedGoogle Scholar
  85. 85.
    Perez M, Santa-Maria I, Gomez de Barreda E, Zhu X, Cuadros R, Cabrero JR, Sanchez-Madrid F, Dawson HN, Vitek MP, Perry G, Smith MA, Avila J (2009) Tau–an inhibitor of deacetylase HDAC6 function. J Neurochem 109(6):1756–1766. doi: 10.1111/j.1471-4159.2009.06102.x PubMedGoogle Scholar
  86. 86.
    Pfister KK (1999) Cytoplasmic dynein and microtubule transport in the axon: the action connection. Mol Neurobiol 20(2–3):81–91PubMedGoogle Scholar
  87. 87.
    Preuss U, Biernat J, Mandelkow EM, Mandelkow E (1997) The ‘jaws’ model of tau-microtubule interaction examined in CHO cells. J Cell Sci 110(Pt 6):789–800PubMedGoogle Scholar
  88. 88.
    Rodionov VI, Gyoeva FK, Kashina AS, Kuznetsov SA, Gelfand VI (1990) Microtubule-associated proteins and microtubule-based translocators have different binding sites on tubulin molecule. J Biol Chem 265(10):5702–5707PubMedGoogle Scholar
  89. 89.
    Rodriguez-Martin T, Cuchillo-Ibanez I, Noble W, Nyenya F, Anderton BH, Hanger DP (2013) Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 34(9):2146–2157. doi: 10.1016/j.neurobiolaging.2013.03.015 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Sabry J, O’Connor TP, Kirschner MW (1995) Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron 14(6):1247–1256PubMedGoogle Scholar
  91. 91.
    Samsonov A, Yu JZ, Rasenick M, Popov SV (2004) Tau interaction with microtubules in vivo. J Cell Sci 117(Pt 25):6129–6141PubMedGoogle Scholar
  92. 92.
    Santarella RA, Skiniotis G, Goldie KN, Tittmann P, Gross H, Mandelkow EM, Mandelkow E, Hoenger A (2004) Surface-decoration of microtubules by human tau. J Mol Biol 339(3):539–553PubMedGoogle Scholar
  93. 93.
    Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125(Pt 9):2095–2104. doi: 10.1242/jcs.053850 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Schaap IA, Hoffmann B, Carrasco C, Merkel R, Schmidt CF (2007) Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules. J Struct Biol 158(3):282–292 (Epub 2007 Jan 12)PubMedGoogle Scholar
  95. 95.
    Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269(39):24290–24297PubMedGoogle Scholar
  96. 96.
    Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 21(18):4896–4905PubMedCentralPubMedGoogle Scholar
  97. 97.
    Serrano L, Montejo de Garcini E, Hernandez MA, Avila J (1985) Localization of the tubulin binding site for tau protein. Eur J Biochem 153(3):595–600PubMedGoogle Scholar
  98. 98.
    Shahani N, Brandt R (2002) Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59(10):1668–1680PubMedGoogle Scholar
  99. 99.
    Sharp DJ, Kuriyama R, Essner R, Baas PW (1997) Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation. J Cell Sci 110(Pt 19):2373–2380PubMedGoogle Scholar
  100. 100.
    Sontag E, Nunbhakdi-Craig V, Lee G, Brandt R, Kamibayashi C, Kuret J, White CL 3rd, Mumby MC, Bloom GS (1999) Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274(36):25490–25498PubMedGoogle Scholar
  101. 101.
    Sotelo-Silveira JR, Calliari A, Kun A, Koenig E, Sotelo JR (2006) RNA trafficking in axons. Traffic 7(5):508–515Google Scholar
  102. 102.
    Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156(6):1051–1063PubMedCentralPubMedGoogle Scholar
  103. 103.
    Stoothoff W, Jones PB, Spires-Jones TL, Joyner D, Chhabra E, Bercury K, Fan Z, Xie H, Bacskai B, Edd J, Irimia D, Hyman BT (2009) Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport. J Neurochem 111(2):417–427 (Epub 2009 Aug 3)PubMedCentralPubMedGoogle Scholar
  104. 104.
    Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739(2–3):280–297PubMedGoogle Scholar
  105. 105.
    Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol 233(1):364–372. doi: 10.1016/j.expneurol.2011.10.030 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Terwel D, Dewachter I, Van Leuven F (2002) Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Neuromolecular Med 2(2):151–165PubMedGoogle Scholar
  107. 107.
    Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27(11):2896–2907PubMedGoogle Scholar
  108. 108.
    Tien NW, Wu GH, Hsu CC, Chang CY, Wagner OI (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. elegans neurons. Neurobiol Dis 43(2):495–506. doi: 10.1016/j.nbd.2011.04.023 (Epub 2011 May 14)PubMedGoogle Scholar
  109. 109.
    Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(Pt 14):2355–2367PubMedGoogle Scholar
  110. 110.
    Utton MA, Connell J, Asuni AA, van Slegtenhorst M, Hutton M, de Silva R, Lees AJ, Miller CC, Anderton BH (2002) The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J Neurosci 22(15):6394–6400PubMedGoogle Scholar
  111. 111.
    Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP (2005) Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci 118(Pt 20):4645–4654 (Epub 2005 Sep 21)PubMedGoogle Scholar
  112. 112.
    Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP (2007) Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci USA 104(1):87–92PubMedCentralPubMedGoogle Scholar
  113. 113.
    Vershinin M, Xu J, Razafsky DS, King SJ, Gross SP (2008) Tuning microtubule-based transport through filamentous MAPs: the problem of dynein. Traffic 9(6):882–892PubMedCentralPubMedGoogle Scholar
  114. 114.
    von Bergen M, Barghorn S, Muller SA, Pickhardt M, Biernat J, Mandelkow EM, Davies P, Aebi U, Mandelkow E (2006) The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. Biochemistry 45(20):6446–6457Google Scholar
  115. 115.
    von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. J Biol Chem 264(2):675–678Google Scholar
  116. 116.
    Wang L, Brown A (2002) Rapid movement of microtubules in axons. Curr Biol 12(17):1496–1501PubMedGoogle Scholar
  117. 117.
    Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72(5):1858–1862PubMedCentralPubMedGoogle Scholar
  118. 118.
    Weissmann C, Reyher HJ, Gauthier A, Steinhoff HJ, Junge W, Brandt R (2009) Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons. Traffic 10(11):1655–1668 (Epub 2009 Aug 13)PubMedGoogle Scholar
  119. 119.
    Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci USA 83(11):4040–4043PubMedCentralPubMedGoogle Scholar
  120. 120.
    Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM (2013) Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32(22):2920–2937. doi: 10.1038/emboj.2013.207 Google Scholar
  121. 121.
    Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2 +) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950. doi: 10.1523/JNEUROSCI.2357-10.2010 PubMedGoogle Scholar
  122. 122.
    Zhang B, Higuchi M, Yoshiyama Y, Ishihara T, Forman MS, Martinez D, Joyce S, Trojanowski JQ, Lee VM (2004) Retarded axonal transport of R406 W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24(19):4657–4667PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Institute for Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
  2. 2.DZNE, German Center for Neurodegenerative DiseasesBonnGermany
  3. 3.CAESAR Research CenterBonnGermany

Personalised recommendations