Cellular and Molecular Life Sciences

, Volume 71, Issue 14, pp 2707–2715 | Cite as

Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos

Review

Abstract

Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.

Keywords

Single cells Transcriptome RNA-seq Cancer stem cells Embryonic stem cells 

References

  1. 1.
    Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6(2):146–155PubMedCrossRefGoogle Scholar
  2. 2.
    Graf T, Stadtfeld M (2008) Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3(5):480–483PubMedCrossRefGoogle Scholar
  3. 3.
    Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136(23):3853–3862PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Shackleton M et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829PubMedCrossRefGoogle Scholar
  5. 5.
    Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13(4):e178–e185PubMedCrossRefGoogle Scholar
  6. 6.
    Clarke MF et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344PubMedCrossRefGoogle Scholar
  7. 7.
    Buganim Y et al (2012) Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150(6):1209–1222PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28(6):281–290PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–11PubMedCentralPubMedGoogle Scholar
  10. 10.
    Tang F et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382PubMedCrossRefGoogle Scholar
  11. 11.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Warren L et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 103(47):17807–17812PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Raj A et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10):877–879PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wang F et al (2013) Robust measurement of telomere length in single cells. Proc Natl Acad Sci USA 110(21):E1906–E1912PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hou Y et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885PubMedCrossRefGoogle Scholar
  16. 16.
    Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94PubMedCrossRefGoogle Scholar
  17. 17.
    Xu X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895PubMedCrossRefGoogle Scholar
  18. 18.
    Islam S et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kurimoto K et al (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34(5):e42PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418(6895):293–300PubMedCrossRefGoogle Scholar
  21. 21.
    Tang F et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5(3):516–535PubMedCrossRefGoogle Scholar
  22. 22.
    Tougan T, Okuzaki D, Nojima H (2008) Chum-RNA allows preparation of a high-quality cDNA library from a single-cell quantity of mRNA without PCR amplification. Nucleic Acids Res 36(15):e92PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545PubMedCrossRefGoogle Scholar
  24. 24.
    Hood L et al (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643PubMedCrossRefGoogle Scholar
  25. 25.
    Velculescu VE et al (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251PubMedCrossRefGoogle Scholar
  26. 26.
    Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35(15):e99PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bainbridge MN et al (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genom 7:246CrossRefGoogle Scholar
  28. 28.
    Morin R et al (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45(1):81–94PubMedCrossRefGoogle Scholar
  29. 29.
    Sultan M et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321(5891):956–960PubMedCrossRefGoogle Scholar
  30. 30.
    Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628PubMedCrossRefGoogle Scholar
  32. 32.
    Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Eberwine J et al (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89(7):3010–3014PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Van Gelder RN et al (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 87(5):1663–1667PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Brady G, Iscove NN (1993) Construction of cDNA libraries from single cells. Methods Enzymol 225:611–623PubMedCrossRefGoogle Scholar
  36. 36.
    Dixon AK et al (1998) Expression profiling of single cells using 3 prime end amplification (TPEA) PCR. Nucleic Acids Res 26(19):4426–4431PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Islam S et al (2012) Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc 7(5):813–828PubMedCrossRefGoogle Scholar
  38. 38.
    Pan X et al (2013) Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci USA 110(2):594–599PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Iscove NN et al (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20(9):940–943PubMedCrossRefGoogle Scholar
  40. 40.
    Matz M et al (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 27(6):1558–1560PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Zhu YY et al (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30(4):892–897PubMedGoogle Scholar
  42. 42.
    Kurimoto K et al (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2(3):739–752PubMedCrossRefGoogle Scholar
  43. 43.
    Tang F et al (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6(5):468–478PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lecault V et al (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16(3–4):381–390PubMedCrossRefGoogle Scholar
  45. 45.
    Hebenstreit D (2012) Methods, challenges and potentials of single Cell RNA-seq. Biology 1(3):658–667PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ramskold D et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Qiu S et al (2012) Single-neuron RNA-Seq: technical feasibility and reproducibility. Front Genet 3:124PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Picelli S et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098PubMedCrossRefGoogle Scholar
  49. 49.
    Patel OV et al (2005) Validation and application of a high-fidelity mRNA linear amplification procedure for profiling gene expression. Vet Immunol Immunopathol 105(3–4):331–342PubMedCrossRefGoogle Scholar
  50. 50.
    Hashimshony T et al (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2(3):666–673PubMedCrossRefGoogle Scholar
  51. 51.
    Sasagawa Y et al (2013) Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14(4):R31PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Blanco L, Salas M (1984) Characterization and purification of a phage phi 29-encoded DNA polymerase required for the initiation of replication. Proc Natl Acad Sci USA 81(17):5325–5329PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Dean FB et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kang Y et al (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21(6):925–935PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Dalerba P et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Toloudi M et al (2011) Correlation between cancer stem cells and circulating tumor cells and their value. Case Rep Oncol 4(1):44–54PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Cann GM et al (2012) mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One 7(11):e49144PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Xue Z et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593–597PubMedCrossRefGoogle Scholar
  59. 59.
    Aghajanova L et al (2012) Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation. Biol Reprod 86(1):1–21PubMedCrossRefGoogle Scholar
  60. 60.
    Dobson AT et al (2004) The unique transcriptome through day 3 of human preimplantation development. Hum Mol Genet 13(14):1461–1470PubMedCrossRefGoogle Scholar
  61. 61.
    Guo G et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–685PubMedCrossRefGoogle Scholar
  62. 62.
    Tang F et al (2011) Deterministic and stochastic allele-specific gene expression in single mouse blastomeres. PLoS One 6(6):e21208PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Yan L et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139PubMedCrossRefGoogle Scholar
  64. 64.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCrossRefGoogle Scholar
  65. 65.
    Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646PubMedCrossRefGoogle Scholar
  66. 66.
    Zong C et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Moroz LL, Kohn AB (2013) Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging. Methods Mol Biol 1048:323–352PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life ScienceNankai UniversityTianjinChina
  2. 2.Department of Genetics, Yale School of MedicineYale UniversityNew HavenUSA

Personalised recommendations