Cellular and Molecular Life Sciences

, Volume 71, Issue 19, pp 3841–3857

Cell surface antigen profiling using a novel type of antibody array immobilised to plasma ion-implanted polycarbonate

  • Heather Main
  • Jelena Radenkovic
  • Elena Kosobrodova
  • David McKenzie
  • Marcela Bilek
  • Urban Lendahl
Research Article


To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.


Antibody array Plasma ion immersion implantation (PIII) Cluster of differentiation (CD) Embryonic stem (ES) cell Cell capture profiling Neural differentiation 

Supplementary material

18_2014_1595_MOESM1_ESM.pdf (74 kb)
Supplementary material 1 (PDF 74 kb)


  1. 1.
    Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  3. 3.
    Tehranchi R, Woll PS, Anderson K, Buza-Vidas N, Mizukami T et al (2010) Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med 363:1025–1037PubMedCrossRefGoogle Scholar
  4. 4.
    Hao J, Li W, Dan J, Ye X, Wang F et al (2013) Reprogramming- and pluripotency-associated membrane proteins in mouse stem cells revealed by label-free quantitative proteomics. J Proteomics 86:70–84PubMedCrossRefGoogle Scholar
  5. 5.
    Nunomura K, Nagano K, Itagaki C, Taoka M, Okamura N et al (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4:1968–1976PubMedCrossRefGoogle Scholar
  6. 6.
    Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rugg-Gunn PJ, Cox BJ, Lanner F, Sharma P, Ignatchenko V et al (2012) Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell 22:887–901PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sukhdeo K, Paramban RI, Vidal JG, Elia J, Martin J et al (2013) Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines. PLoS ONE 8:e53015PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yuan SH, Martin J, Elia J, Flippin J, Paramban RI et al (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE 6:e17540PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Zola H, Swart B, Banham A, Barry S, Beare A et al (2007) CD molecules 2006–human cell differentiation molecules. J Immunol Methods 319:1–5PubMedCrossRefGoogle Scholar
  11. 11.
    Rahman W, Huang P, Belov L, Chrisp JS, Christopherson RI et al (2012) Analysis of human liver disease using a cluster of differentiation (CD) antibody microarray. Liver Int 32:1527–1534PubMedCrossRefGoogle Scholar
  12. 12.
    Kaufman KL, Belov L, Huang P, Mactier S, Scolyer RA et al (2010) An extended antibody microarray for surface profiling metastatic melanoma. J Immunol Methods 358:23–34PubMedCrossRefGoogle Scholar
  13. 13.
    Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI (2001) Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res 61:4483–4489PubMedGoogle Scholar
  14. 14.
    Jung SH, Son HY, Yuk JS, Jung JW, Kim KH et al (2006) Oriented immobilization of antibodies by a self-assembled monolayer of 2-(biotinamido)ethanethiol for immunoarray preparation. Colloids Surf B Biointerfaces 47:107–111PubMedCrossRefGoogle Scholar
  15. 15.
    Bonroy K, Frederix F, Reekmans G, Dewolf E, De Palma R et al (2006) Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J Immunol Methods 312:167–181PubMedCrossRefGoogle Scholar
  16. 16.
    Fleminger G, Hadas E, Wolf T, Solomon B (1990) Oriented immobilization of periodate-oxidized monoclonal antibodies on amino and hydrazide derivatives of Eupergit C. Appl Biochem Biotechnol 23:123–137PubMedCrossRefGoogle Scholar
  17. 17.
    Starodub NF, Pirogova LV, Demchenko A, Nabok AV (2005) Antibody immobilisation on the metal and silicon surfaces. The use of self-assembled layers and specific receptors. Bioelectrochemistry 66:111–115PubMedCrossRefGoogle Scholar
  18. 18.
    Fujii Y, Anderson JM, Matsuda T (2008) Antibody-bound cell microarray for immunophenotyping: surface modification and lymphocyte subpopulations. J Biomed Mater Res B 87:525–537CrossRefGoogle Scholar
  19. 19.
    Bilek MM, Bax DV, Kondyurin A, Yin Y, Nosworthy NJ et al (2011) Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc Natl Acad Sci USA 108:14405–14410PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gan BK, Kondyurin A, Bilek MM (2007) Comparison of protein surface attachment on untreated and plasma immersion ion implantation treated polystyrene: protein islands and carpet. Langmuir 23:2741–2746PubMedCrossRefGoogle Scholar
  21. 21.
    Bax DV, McKenzie DR, Weiss AS, Bilek MM (2010) The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials 31:2526–2534PubMedCrossRefGoogle Scholar
  22. 22.
    Nosworthy NJ, McKenzie DR, Bilek MM (2009) A new surface for immobilizing and maintaining the function of enzymes in a freeze-dried state. Biomacromolecules 10:2577–2583PubMedCrossRefGoogle Scholar
  23. 23.
    Bilek M, McKenzie D (2010) Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys Rev 2:55–65CrossRefGoogle Scholar
  24. 24.
    Niehage C, Steenblock C, Pursche T, Bornhauser M, Corbeil D et al (2011) The cell surface proteome of human mesenchymal stromal cells. PLoS ONE 6:e20399PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Liu AY, True LD (2002) Characterization of prostate cell types by CD cell surface molecules. Am J Pathol 160:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341PubMedCrossRefGoogle Scholar
  27. 27.
    Main H, Radenkovic J, Jin SB, Lendahl U, Andersson ER (2013) Notch signaling maintains neural rosette polarity. PLoS ONE 8:e62959PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Martini S, Bernoth K, Main H, Ortega GD, Lendahl U et al (2012) A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance. Stem Cells 31:741–751CrossRefGoogle Scholar
  29. 29.
    Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O (2009) CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27:2928–2940PubMedPubMedCentralGoogle Scholar
  30. 30.
    Harkness L, Christiansen H, Nehlin J, Barington T, Andersen JS et al (2008) Identification of a membrane proteomic signature for human embryonic stem cells independent of culture conditions. Stem Cell Res 1:219–227PubMedCrossRefGoogle Scholar
  31. 31.
    Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L et al (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106:262–271PubMedCrossRefGoogle Scholar
  32. 32.
    Sundberg M, Jansson L, Ketolainen J, Pihlajamaki H, Suuronen R et al (2009) CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res 2:113–124PubMedCrossRefGoogle Scholar
  33. 33.
    Gil M, McCormack FX, Levine AM (2009) Surfactant protein A modulates cell surface expression of CR3 on alveolar macrophages and enhances CR3-mediated phagocytosis. J Biol Chem 284:7495–7504PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gerli R, Bertotto A, Agea E, Lanfrancone L, Cernetti C et al (1990) Basis for defective proliferation of peripheral blood T cells to anti-CD2 antibodies in primary Sjogren’s syndrome. J Clin Invest 86:1870–1877PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Pinchuk LM, Filipov NM (2008) Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun Ageing 5:1PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Acharya M, Borland G, Edkins AL, Maclellan LM, Matheson J et al (2010) CD23/FcepsilonRII: molecular multi-tasking. Clin Exp Immunol 162:12–23PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fecteau JF, Cote G, Neron S (2006) A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J Immunol 177:3728–3736PubMedCrossRefGoogle Scholar
  38. 38.
    Bjorkdahl O, Barber KA, Brett SJ, Daly MG, Plumpton C et al (2003) Characterization of CC-chemokine receptor 7 expression on murine T cells in lymphoid tissues. Immunology 110:170–179PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Miyake K, Yamashita Y, Ogata M, Sudo T, Kimoto M (1995) RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 154:3333–3340PubMedGoogle Scholar
  40. 40.
    Zhao W, Ji X, Zhang F, Li L, Ma L (2012) Embryonic stem cell markers. Molecules 17:6196–6236PubMedCrossRefGoogle Scholar
  41. 41.
    Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M et al (2005) CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci USA 102:355–360PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Oka M, Tagoku K, Russell TL, Nakano Y, Hamazaki T et al (2002) CD9 is associated with leukemia inhibitory factor-mediated maintenance of embryonic stem cells. Mol Biol Cell 13:1274–1281PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Fassler R, Pfaff M, Murphy J, Noegel AA, Johansson S et al (1995) Lack of beta 1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J Cell Biol 128:979–988PubMedCrossRefGoogle Scholar
  44. 44.
    Tian L, Catt JW, O’Neill C, King NJ (1997) Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod 57:561–568PubMedCrossRefGoogle Scholar
  45. 45.
    Lu M, Glover CH, Tien AH, Humphries RK, Piret JM et al (2007) Involvement of tyrosine kinase signaling in maintaining murine embryonic stem cell functionality. Exp Hematol 35:1293–1302PubMedCrossRefGoogle Scholar
  46. 46.
    Gonzalez B, Denzel S, Mack B, Conrad M, Gires O (2009) EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells 27:1782–1791PubMedCrossRefGoogle Scholar
  47. 47.
    Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595PubMedCrossRefGoogle Scholar
  48. 48.
    Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C et al (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121:3291–3301PubMedGoogle Scholar
  49. 49.
    Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612PubMedCrossRefGoogle Scholar
  50. 50.
    Main H, Lee KL, Yang H, Haapa-Paananen S, Edgren H et al (2010) Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells. Exp Cell Res 316:1610–1624PubMedCrossRefGoogle Scholar
  51. 51.
    Klassen H, Schwartz MR, Bailey AH, Young MJ (2001) Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neurosci Lett 312:180–182PubMedCrossRefGoogle Scholar
  52. 52.
    Sergent-Tanguy S, Veziers J, Bonnamain V, Boudin H, Neveu I et al (2006) Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (−) cell populations. Differentiation 74:530–541PubMedCrossRefGoogle Scholar
  53. 53.
    Marthiens V, ffrench-Constant C (2009) Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep 10:515–520PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Baudoux B, Castanares-Zapatero D, Leclercq-Smekens M, Berna N, Poumay Y (2000) The tetraspanin CD9 associates with the integrin alpha6beta4 in cultured human epidermal keratinocytes and is involved in cell motility. Eur J Cell Biol 79:41–51PubMedCrossRefGoogle Scholar
  55. 55.
    Manova K, Bachvarova RF (1991) Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev Biol 146:312–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Heather Main
    • 1
    • 2
  • Jelena Radenkovic
    • 1
  • Elena Kosobrodova
    • 2
  • David McKenzie
    • 2
  • Marcela Bilek
    • 2
  • Urban Lendahl
    • 1
  1. 1.Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
  2. 2.Applied and Plasma Physics (A28)University of SydneySydneyAustralia

Personalised recommendations