Cellular and Molecular Life Sciences

, Volume 71, Issue 14, pp 2625–2639

Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome

  • Sanjay Kumar Bharti
  • Irfan Khan
  • Taraswi Banerjee
  • Joshua A. Sommers
  • Yuliang Wu
  • Robert M. BroshJr.


In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron–Sulfur (Fe–S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe–S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.


ChlR1 DDX11 Warsaw breakage syndrome Cohesinopathy Helicase Genomic instability Genetic disease 


  1. 1.
    van der Lelij P, Chrzanowska KH, Godthelp BC, Rooimans MA, Oostra AB, Stumm M, Zdzienicka MZ, Joenje H, De Winter JP (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86:262–266PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hirota Y, Lahti JM (2000) Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase. Nucleic Acids Res 28:917–924PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Skibbens RV (2004) Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166:33–42PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wu Y, Sommers JA, Khan I, De Winter JP, Brosh RM Jr (2012) Biochemical characterization of Warsaw breakage syndrome helicase. J Biol Chem 287:1007–1021PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    van der Lelij P, Oostra A.B, Rooimans M.A, Joenje H, De Winter J.P (2010) Diagnostic overlap between Fanconi Anemia and the cohesinopathies: Roberts syndrome and Warsaw breakage syndrome. Anemia, Article ID 565268Google Scholar
  6. 6.
    Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF (2006) The DNA repair helicases XPD and FancJ have essential Iron–Sulfur domains. Mol Cell 23:801–808PubMedCrossRefGoogle Scholar
  7. 7.
    Wu Y, Brosh RM Jr (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron–sulfur cluster. Nucleic Acids Res 40:4247–4260PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Digiovanna JJ, Kraemer KH (2012) Shining a light on Xeroderma pigmentosum. J Invest Dermatol 132:785–796PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Egly JM, Coin F (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 10:714–721CrossRefGoogle Scholar
  10. 10.
    Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G, Arwert F, Mathew CG, Zdzienicka MZ, Hiom K, De Winter JP, Joenje H (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J Nat Genet 37:934–935CrossRefGoogle Scholar
  11. 11.
    Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, Batish SD, Kalb R, Velleuer E, Barral S, Ott J, Petrini J, Schindler D, Hanenberg H, Auerbach AD (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37:931–933PubMedCrossRefGoogle Scholar
  12. 12.
    Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreasse PR, Cantor SB (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8:255–265PubMedCrossRefGoogle Scholar
  13. 13.
    Cantor SB, Bell DW, Ganesan S, Kas EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA, Livingston DM (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160PubMedCrossRefGoogle Scholar
  14. 14.
    Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, Jonasdottir A, Besenbacher S, Lundin P, Stacey SN, Gudmundsson J et al (2011) Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet 43:1104–1107PubMedCrossRefGoogle Scholar
  15. 15.
    Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241PubMedCrossRefGoogle Scholar
  16. 16.
    Greenberg RA, Sobhia B, Pathania S, Cantor SB, Nakatani Y, Livingston DM (2006) Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20:34–46PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G, North PS, Cantor SB, Hickson ID, Brosh RM Jr (2011) Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom’s syndrome. EMBO J 30:692–705PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Peng M, Litman R, Xie J, Sharma S, Brosh RM Jr, Cantor SB (2007) The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J 26:3238–3249PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, Alter BP, Savage SA (2013) Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet 132:473–480PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ballew BJ, Joseph V, De S, Sarek G, Vannier JB, Stracker T, Schrader KA, Small TN, O’Reilly R, Manschreck C et al (2013) A recessive founder mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson Syndrome. PLoS Genet 9:e1003695PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Deng Z, Glousker G, Molczan A, Fox AJ, Lamm N, Dheekollu J, Weizman OE, Schertzer M, Wang Z, Vladimirova O et al (2013) Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci USA 110:E3408–E3416PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Le GT, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G et al (2013) Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet 22:3239–3249CrossRefGoogle Scholar
  23. 23.
    Lee J (2013) Telomere shortening by mutations in the RTEL1 helicase cause severe form of Dyskeratosis Congenita, Hoyerall-Hreidarsson syndrome. Clin Genet 84:210PubMedCrossRefGoogle Scholar
  24. 24.
    Walne AJ, Vulliamy T, Kirwan M, Plagnol V, Dokal I (2013) Constitutional mutations in RTEL1 cause severe Dyskeratosis congenita. Am J Hum Genet 92:448–453PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806PubMedCrossRefGoogle Scholar
  26. 26.
    Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E, Tam PP, Nagy A, Lansdorp PM (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117:873–886PubMedCrossRefGoogle Scholar
  27. 27.
    Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z, Ding H, Boulton SJ (2013) RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342:239–242PubMedCrossRefGoogle Scholar
  28. 28.
    Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679PubMedCrossRefGoogle Scholar
  29. 29.
    Brosh RM Jr (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13:542–558PubMedCrossRefGoogle Scholar
  30. 30.
    Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 14:813–825PubMedCrossRefGoogle Scholar
  31. 31.
    Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE (2013) Cohesinopathies of a feather flock together. PLoS Genet 9:e1004036PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Capo-chichi J-M, Bharti SK, Sommers JA, Yammine T, Chouery E, Patry L, Rouleau GA, Samuels ME, Hamdan FF, Michaud JL, Brosh RM Jr, Megarbae A, Kibar Z (2012) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome. Human Mutat 334:103–107Google Scholar
  33. 33.
    Suhasini AN, Brosh RM Jr (2012) Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 752:138–152PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Botta E, Nardo T, Lehmann AR, Egly JM, Pedrini AM, Stefanini M (2002) Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum Mol Genet 11:2919–2928PubMedCrossRefGoogle Scholar
  35. 35.
    Dubaele S, De Proietti SL, Bienstock RJ, Keriel A, Stefanini M, Van HB, Egly JM (2003) Basal transcription defect discriminates between Xeroderma pigmentosum and Trichothiodystrophy in XPD patients. Mol Cell 11:1635–1646PubMedCrossRefGoogle Scholar
  36. 36.
    Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ (2006) The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 119:4857–4865PubMedCrossRefGoogle Scholar
  37. 37.
    Leman AR, Noguchi C, Lee CY, Noguchi E (2010) Human timeless and tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123:660–670PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Shah N, Inoue A, Woo LS, Beishline K, Lahti JM, Noguchi E (2013) Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res 319:2244–2253PubMedCrossRefGoogle Scholar
  39. 39.
    Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320:1507–1510PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Holloway L (2000) CHL1 is a nuclear protein with an essential ATP binding site that exhibits a size-dependent effect on chromosome segregation. Nucleic Acids Res 28:3056–3064PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rudra S, Skibbens RV (2013) Cohesin codes—interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126:31–41PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W, Deutschbauer AM, Davis RW, Watanabe Y, Nasmyth K (2004) Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117:3547–3559PubMedCrossRefGoogle Scholar
  43. 43.
    Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, Noguchi E (2008) RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol Biol Cell 19:595–607PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Mayer ML, Pot I, Chang M, Xu H, Aneliunas V, Kwok T, Newitt R, Aebersold R, Boone C, Brown GW, Hieter P (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15:1736–1745PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Rudra S, Skibbens RV (2012) Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 11:2114–2121PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Borges V, Smith DJ, Whitehouse I, Uhlmann F (2013) An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122:121–134PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Rudra S, Skibbens RV (2013) Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS ONE 8:e75435PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Inoue A, Li T, Roby SK, Valentine MB, Inoue M, Boyd K, Kidd VJ, Lahti JM (2007) Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle 6:1646–1654PubMedCrossRefGoogle Scholar
  49. 49.
    Cota CD, Garcia-Garcia MJ (2012) The ENU-induced cetus mutation reveals an essential role of the DNA helicase DDX11 for mesoderm development during early mouse embryogenesis. Dev Dyn 241:1249–1259PubMedCrossRefGoogle Scholar
  50. 50.
    Chung G, O’Neil NJ, Rose AM (2011) CHL-1 provides an essential function affecting cell proliferation and chromosome stability in Caenorhabditis elegans. DNA Repair (Amst) 10:1174–1182CrossRefGoogle Scholar
  51. 51.
    Cheung I, Schertzer M, Rose A, Lansdorp PM (2002) Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet 31:405–409PubMedGoogle Scholar
  52. 52.
    Youds JL, O’Neil NJ, Rose AM (2006) Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans. Genetics 173:697–708PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65:169–214PubMedCrossRefGoogle Scholar
  54. 54.
    Farina A, Shin JH, Kim DH, Bermudez VP, Kelman Z, Seo YS, Hurwitz J (2008) Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem 283:20925–20936PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Kuper J, Wolski SC, Michels G, Kisker C (2012) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 31:494–502PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Pugh RA, Wu CG, Spies M (2011) Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J 31:503–514PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Wu Y, Sommers JA, Loiland JA, Kitao H, Kuper J, Kisker C, Brosh RM (2012) The Q motif of FANCJ DNA helicase regulates its dimerization, DNA binding, and DNA repair function. J Biol Chem 287:21699–21716PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IK, Spies M (2008) The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction. J Biol Chem 283:1732–1743PubMedCrossRefGoogle Scholar
  59. 59.
    Qi Z, Pugh RA, Spies M, Chemla YR (2013) Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. Elife 2:e00334PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510PubMedCrossRefGoogle Scholar
  61. 61.
    Inoue A, Hyle J, Lechner MS, Lahti JM (2011) Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 317:2522–2535PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Bhattacharya C, Wang X, Becker D (2012) The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas. Mol Cancer 11:82PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Wu Y, Brosh RM Jr (2010) G-quadruplex nucleic acids and human disease. FEBS J 277:3470–3488PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    London TB, Barber LJ, Mosedale G, Kelly GP, Balasubramanian S, Hickson ID, Boulton SJ, Hiom K (2008) FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J Biol Chem 283:36132–36139PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Wu Y, Shin-Ya K, Brosh RM Jr (2008) FANCJ helicase defective in Fanconia Anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28:4116–4128PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Bharti SK, Sommers JA, George F, Kuper J, Hamon F, Shin-Ya K, Teulade-Fichou MP, Kisker C, Brosh RM Jr (2013) Specialization among iron–sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J Biol Chem 288:28217–28229PubMedCrossRefGoogle Scholar
  68. 68.
    Sun H, Karow JK, Hickson ID, Maizels N (1998) The Bloom’s syndrome helicase unwinds G4 DNA. J Biol Chem 273:27587–27592PubMedCrossRefGoogle Scholar
  69. 69.
    Jones M, Rose A (2012) A DOG’s view of Fanconi Anemia: insights from C. elegans. Anemia 2012:323721PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Bridge WL, Vandenberg CJ, Franklin RJ, Hiom K (2005) The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet 37:953–957PubMedCrossRefGoogle Scholar
  71. 71.
    Hiom K (2010) FANCJ: solving problems in DNA replication. DNA Repair (Amst) 9:250–256CrossRefGoogle Scholar
  72. 72.
    Garner TP, Williams HE, Gluszyk KI, Roe S, Oldham NJ, Stevens MF, Moses JE, Searle MS (2009) Selectivity of small molecule ligands for parallel and anti-parallel DNA G-quadruplex structures. Org Biomol Chem 7:4194–4200PubMedCrossRefGoogle Scholar
  73. 73.
    Henderson A, Wu Y, Huang YC, Chavez EA, Platt J, Johnson FB, Brosh RM Jr, Sen D, Lansdorp PM (2013) Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res, PMID 24163102Google Scholar
  74. 74.
    Lam EY, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM Jr (2009) FANCJ uses its motor ATPase to disrupt protein-DNA complexes, unwind triplexes, and inhibit rad51 strand exchange. J Biol Chem 284:7505–7517PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Wu Y, Sommers JA, Suhasini AN, Leonard T, Deakyne JS, Mazin AV, Shin-Ya K, Kitao H, Brosh RM Jr (2010) Fanconi anemia Group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. Blood 116:3780–3791PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Doherty KM, Sommers JA, Gray MD, Lee JW, von Kobbe C, Thoma NH, Kureekattil RP, Kenny MK, Brosh RM Jr (2005) Physical and functional mapping of the RPA interaction domain of the Werner and Bloom syndrome helicases. J Biol Chem 280:29494–29505PubMedCrossRefGoogle Scholar
  78. 78.
    Sharma S, Doherty KM, Brosh RM (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–337PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM Jr (2007) FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 110:2390–2398PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Horsfield JA, Print CG, Monnich M (2012) Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Front Genet 3:171PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van GD, Kayserili H, Xu C, Ozono K et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470PubMedCrossRefGoogle Scholar
  82. 82.
    Bharti SK, Banerjee T, Brosh RM Jr (2012) Setting the stage for cohesion establishment by the replication fork. Cell Cycle 11:2228PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Sakakibara N, Chen D, McBride AA (2013) Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 9:e1003321PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Parish JL, Bean AM, Park RB, Androphy EJ (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24:867–876PubMedCrossRefGoogle Scholar
  85. 85.
    Feeney KM, Saade A, Okrasa K, Parish JL (2011) In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology 414:1–9PubMedCrossRefGoogle Scholar
  86. 86.
    Romick-Rosendale LE, Lui VW, Grandis JR, Wells SI (2013) The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 743–744:78–88PubMedCrossRefGoogle Scholar
  87. 87.
    Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF (2010) Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–9968PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Perez-Benavente B, Garcia JL, Rodriguez MS, Pineda-Lucena A, Piechaczyk M, de Font MJ, Farras R (2013) GSK3-SCF(FBXW7) targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase. Oncogene 32:2189–2199PubMedCrossRefGoogle Scholar
  89. 89.
    Mussolin L, Pillon M, Bonato P, Leszl A, Franceschetto G, Di MA, d’Amore ES, Sainati L, Rosolen A (2010) Cytogenetic analysis of pediatric anaplastic large cell lymphoma. Pediatr Blood Cancer 55:446–451PubMedCrossRefGoogle Scholar
  90. 90.
    Frank S, Werner S (1996) The human homologue of the yeast CHL1 gene is a novel keratinocyte growth factor-regulated gene. J Biol Chem 271:24337–24340PubMedCrossRefGoogle Scholar
  91. 91.
    Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11:467–480PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Egan KM, Thompson RC, Nabors LB, Olson JJ, Brat DJ, Larocca RV, Brem S, Moots PL, Madden MH, Browning JE, Ann CY (2011) Cancer susceptibility variants and the risk of adult glioma in a US case-control study. J Neurooncol 104:535–542PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41:899–904PubMedCrossRefGoogle Scholar
  94. 94.
    Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41:905–908PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Sanjay Kumar Bharti
    • 1
  • Irfan Khan
    • 1
  • Taraswi Banerjee
    • 1
  • Joshua A. Sommers
    • 1
  • Yuliang Wu
    • 2
  • Robert M. BroshJr.
    • 1
  1. 1.Laboratory of Molecular GerontologyNational Institute on Aging, National Institutes of Health, NIH Biomedical Research CenterBaltimoreUSA
  2. 2.Department of BiochemistryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations