Cellular and Molecular Life Sciences

, Volume 71, Issue 13, pp 2467–2481 | Cite as

Role of p75 neurotrophin receptor in stem cell biology: more than just a marker

  • Elisa Tomellini
  • Chann Lagadec
  • Renata Polakowska
  • Xuefen Le BourhisEmail author


p75NTR, the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75NTR expression and pluripotency has been described. p75NTR was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75NTR in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75NTR signaling in different models are also highlighted. p75NTR-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75NTR can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75NTR activity as well as the underlying molecular mechanisms of p75NTR will shed new light on the biology of both normal and cancer stem cells.


p75NTR Neurotrophins Signaling pathways Stem cells Cancer stem cells 



This research was supported by the Institut National de la Santé et de la Recherche Médicale (Inserm), The Université de Lille 1.


  1. 1.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCentralPubMedGoogle Scholar
  2. 2.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedGoogle Scholar
  3. 3.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedGoogle Scholar
  4. 4.
    Chen Y, Zeng J, Cen L, Chen Y, Wang X, Yao G, Wang W, Qi W, Kong K (2009) Multiple roles of the p75 neurotrophin receptor in the nervous system. J Int Med Res 37:281–288PubMedGoogle Scholar
  5. 5.
    Schor NF (2005) The p75 neurotrophin receptor in human development and disease. Prog Neurobiol 77:201–214PubMedGoogle Scholar
  6. 6.
    Jiang X, Gwye Y, McKeown SJ, Bronner-Fraser M, Lutzko C, Lawlor ER (2009) Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev 18:1059–1070PubMedGoogle Scholar
  7. 7.
    Xiong J, Zhou L, Yang M, Lim Y, Zhu Y, Fu D, Li Z, Zhong J, Xiao Z, Zhou X-F (2013) ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol 15:990–1007PubMedGoogle Scholar
  8. 8.
    Guo J, Wang J, Liang C, Yan J, Wang Y, Liu G, Jiang Z, Zhang L, Wang X, Wang Y et al (2013) proNGF inhibits proliferation and oligodendrogenesis of postnatal hippocampal neural stem/progenitor cells through p75NTR in vitro. Stem Cell Res 11:874–887PubMedGoogle Scholar
  9. 9.
    Bartkowska K, Turlejski K, Djavadian RL (2010) Neurotrophins and their receptors in early development of the mammalian nervous system. Acta Neurobiol Exp (Wars) 70:454–467Google Scholar
  10. 10.
    He X-L, Garcia KC (2004) Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304:870–875PubMedGoogle Scholar
  11. 11.
    Large TH, Weskamp G, Helder JC, Radeke MJ, Misko TP, Shooter EM, Reichardt LF (1989) Structure and developmental expression of the nerve growth factor receptor in the chicken central nervous system. Neuron 2:1123–1134PubMedGoogle Scholar
  12. 12.
    Vilar M, Charalampopoulos I, Kenchappa RS, Simi A, Karaca E, Reversi A, Choi S, Bothwell M, Mingarro I, Friedman WJ et al (2009) Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron 62:72–83PubMedCentralPubMedGoogle Scholar
  13. 13.
    Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF (2004) The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog Brain Res 146:41–62PubMedGoogle Scholar
  14. 14.
    Barker PA, Barbee G, Misko TP, Shooter EM (1994) The low affinity neurotrophin receptor, p75LNTR, is palmitoylated by thioester formation through cysteine 279. J Biol Chem 269:30645–30650PubMedGoogle Scholar
  15. 15.
    Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling?: neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). BioEssays 33:614–625PubMedGoogle Scholar
  16. 16.
    Underwood CK, Coulson EJ (2008) The p75 neurotrophin receptor. Int J Biochem Cell Biol 40:1664–1668PubMedGoogle Scholar
  17. 17.
    Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614PubMedGoogle Scholar
  18. 18.
    Gentry JJ, Casaccia-Bonnefil P, Carter BD (2000) Nerve growth factor activation of nuclear factor kappaB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J Biol Chem 275:7558–7565PubMedGoogle Scholar
  19. 19.
    Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM, Butcher LL, Bredesen DE (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261:345–348PubMedGoogle Scholar
  20. 20.
    Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593PubMedGoogle Scholar
  21. 21.
    Notterpek L (2003) Neurotrophins in myelination: a new role for a puzzling receptor. Trends Neurosci 26:232–234PubMedGoogle Scholar
  22. 22.
    Chittka A, Arevalo JC, Rodriguez-Guzman M, Pérez P, Chao MV, Sendtner M (2004) The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. J Cell Biol 164:985–996PubMedCentralPubMedGoogle Scholar
  23. 23.
    Herrmann JL, Menter DG, Hamada J, Marchetti D, Nakajima M, Nicolson GL (1993) Mediation of NGF-stimulated extracellular matrix invasion by the human melanoma low-affinity p75 neurotrophin receptor: melanoma p75 functions independently of trkA. Mol Biol Cell 4:1205–1216PubMedCentralPubMedGoogle Scholar
  24. 24.
    Johnston ALM, Lun X, Rahn JJ, Liacini A, Wang L, Hamilton MG, Parney IF, Hempstead BL, Robbins SM, Forsyth PA et al (2007) The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol 5:e212PubMedCentralPubMedGoogle Scholar
  25. 25.
    Nakamura T, Endo K, Kinoshita S (2007) Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 25:628–638PubMedGoogle Scholar
  26. 26.
    Vilar M, Charalampopoulos I, Kenchappa RS, Reversi A, Klos-Applequist JM, Karaca E, Simi A, Spuch C, Choi S, Friedman WJ et al (2009) Ligand-independent signaling by disulfide-crosslinked dimers of the p75 neurotrophin receptor. J Cell Sci 122:3351–3357PubMedCentralPubMedGoogle Scholar
  27. 27.
    Barker PA (2004) p75NTR is positively promiscuous: novel partners and new insights. Neuron 42:529–533PubMedGoogle Scholar
  28. 28.
    Bronfman FC, Fainzilber M (2004) Multi-tasking by the p75 neurotrophin receptor: sortilin things out? EMBO Rep 5:867–871PubMedCentralPubMedGoogle Scholar
  29. 29.
    Teng KK, Hempstead BL (2004) Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol Life Sci 61:35–48PubMedGoogle Scholar
  30. 30.
    Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, Hempstead BL (2001) The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695PubMedGoogle Scholar
  31. 31.
    Iacaruso MF, Galli S, Martí M, Villalta JI, Estrin DA, Jares-Erijman EA, Pietrasanta LI (2011) Structural model for p75(NTR)-TrkA intracellular domain interaction: a combined FRET and bioinformatics study. J Mol Biol 414:681–698PubMedGoogle Scholar
  32. 32.
    Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848PubMedGoogle Scholar
  33. 33.
    Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen Z-Y, Lee FS et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463PubMedGoogle Scholar
  34. 34.
    Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78PubMedGoogle Scholar
  35. 35.
    Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228PubMedGoogle Scholar
  36. 36.
    Niederöst B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22:10368–10376PubMedGoogle Scholar
  37. 37.
    Bertrand MJM, Kenchappa RS, Andrieu D, Leclercq-Smekens M, Nguyen HNT, Carter BD, Muscatelli F, Barker PA, De Backer O (2008) NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ 15:1921–1929PubMedCentralPubMedGoogle Scholar
  38. 38.
    Mukai J, Hachiya T, Shoji-Hoshino S, Kimura MT, Nadano D, Suvanto P, Hanaoka T, Li Y, Irie S, Greene LA et al (2000) NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J Biol Chem 275:17566–17570PubMedGoogle Scholar
  39. 39.
    Linggi MS, Burke TL, Williams BB, Harrington A, Kraemer R, Hempstead BL, Yoon SO, Carter BD (2005) Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J Biol Chem 280:13801–13808PubMedGoogle Scholar
  40. 40.
    Geetha T, Zheng C, McGregor WC, Douglas White B, Diaz-Meco MT, Moscat J, Babu JR (2012) TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor. Neurochem Int 61:1289–1293PubMedCentralPubMedGoogle Scholar
  41. 41.
    Ye X, Mehlen P, Rabizadeh S, VanArsdale T, Zhang H, Shin H, Wang JJ, Leo E, Zapata J, Hauser CA et al (1999) TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem 274:30202–30208PubMedGoogle Scholar
  42. 42.
    Khursigara G, Bertin J, Yano H, Moffett H, DiStefano PS, Chao MV (2001) A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J Neurosci 21:5854–5863PubMedGoogle Scholar
  43. 43.
    Irie S, Hachiya T, Rabizadeh S, Maruyama W, Mukai J, Li Y, Reed JC, Bredesen DE, Sato TA (1999) Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Lett 460:191–198PubMedGoogle Scholar
  44. 44.
    Sole C, Dolcet X, Segura MF, Gutierrez H, Diaz-Meco M-T, Gozzelino R, Sanchis D, Bayascas JR, Gallego C, Moscat J et al (2004) The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-kappa B signaling. J Cell Biol 167:479–492PubMedCentralPubMedGoogle Scholar
  45. 45.
    El Yazidi-Belkoura I, Adriaenssens E, Dollé L, Descamps S, Hondermarck H (2003) Tumor necrosis factor receptor-associated death domain protein is involved in the neurotrophin receptor-mediated antiapoptotic activity of nerve growth factor in breast cancer cells. J Biol Chem 278:16952–16956PubMedGoogle Scholar
  46. 46.
    Chan JR, Jolicoeur C, Yamauchi J, Elliott J, Fawcett JP, Ng BK, Cayouette M (2006) The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314:832–836PubMedGoogle Scholar
  47. 47.
    Sachs BD, Baillie GS, McCall JR, Passino MA, Schachtrup C, Wallace DA, Dunlop AJ, MacKenzie KF, Klussmann E, Lynch MJ et al (2007) p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. J Cell Biol 177:1119–1132PubMedCentralPubMedGoogle Scholar
  48. 48.
    Ito H, Morishita R, Iwamoto I, Mizuno M, Nagata K-I (2013) MAGI-1 acts as a scaffolding molecule for NGF receptor-mediated signaling pathway. Biochim Biophys Acta 1833:2302–2310PubMedGoogle Scholar
  49. 49.
    Epa WR, Markovska K, Barrett GL (2004) The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J Neurochem 89:344–353PubMedGoogle Scholar
  50. 50.
    Underwood CK, Reid K, May LM, Bartlett PF, Coulson EJ (2008) Palmitoylation of the C-terminal fragment of p75(NTR) regulates death signaling and is required for subsequent cleavage by gamma-secretase. Mol Cell Neurosci 37:346–358PubMedGoogle Scholar
  51. 51.
    Kommaddi RP, Thomas R, Ceni C, Daigneault K, Barker PA (2011) Trk-dependent ADAM17 activation facilitates neurotrophin survival signaling. FASEB J 25:2061–2070PubMedGoogle Scholar
  52. 52.
    Wang L, Rahn JJ, Lun X, Sun B, Kelly JJP, Weiss S, Robbins SM, Forsyth PA, Senger DL (2008) Gamma-secretase represents a therapeutic target for the treatment of invasive glioma mediated by the p75 neurotrophin receptor. PLoS Biol 6:e289PubMedCentralPubMedGoogle Scholar
  53. 53.
    Urra S, Escudero CA, Ramos P, Lisbona F, Allende E, Covarrubias P, Parraguez JI, Zampieri N, Chao MV, Annaert W et al (2007) TrkA receptor activation by nerve growth factor induces shedding of the p75 neurotrophin receptor followed by endosomal gamma-secretase-mediated release of the p75 intracellular domain. J Biol Chem 282:7606–7615PubMedGoogle Scholar
  54. 54.
    Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci 23:5425–5436PubMedGoogle Scholar
  55. 55.
    Parkhurst CN, Zampieri N, Chao MV (2010) Nuclear localization of the p75 neurotrophin receptor intracellular domain. J Biol Chem 285:5361–5368PubMedCentralPubMedGoogle Scholar
  56. 56.
    Verbeke S, Tomellini E, Dhamani F, Meignan S, Adriaenssens E, Bourhis XL (2013) Extracellular cleavage of the p75 neurotrophin receptor is implicated in its pro-survival effect in breast cancer cells. FEBS Lett 587(16):2591–2596PubMedGoogle Scholar
  57. 57.
    Salama-Cohen P, Arévalo M-A, Meier J, Grantyn R, Rodríguez-Tébar A (2005) NGF controls dendrite development in hippocampal neurons by binding to p75NTR and modulating the cellular targets of Notch. Mol Biol Cell 16:339–347PubMedCentralPubMedGoogle Scholar
  58. 58.
    Zhou F-Q, Zhou J, Dedhar S, Wu Y-H, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42:897–912PubMedGoogle Scholar
  59. 59.
    Arévalo JC, Chao MV (2005) Axonal growth: where neurotrophins meet Wnts. Curr Opin Cell Biol 17:112–115PubMedGoogle Scholar
  60. 60.
    David MD, Yeramian A, Duñach M, Llovera M, Cantí C, de Herreros AG, Comella JX, Herreros J (2008) Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J Cell Sci 121:2718–2730PubMedGoogle Scholar
  61. 61.
    Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487PubMedCentralPubMedGoogle Scholar
  62. 62.
    Chen B-Y, Wang X, Wang Z-Y, Wang Y-Z, Chen L-W, Luo Z-J (2013) Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J Neurosci Res 91:30–41PubMedGoogle Scholar
  63. 63.
    Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312PubMedCentralPubMedGoogle Scholar
  64. 64.
    Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24:344–350PubMedGoogle Scholar
  65. 65.
    Moscatelli I, Pierantozzi E, Camaioni A, Siracusa G, Campagnolo L (2009) p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Exp Cell Res 315:3220–3232PubMedGoogle Scholar
  66. 66.
    Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T (2009) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology 150:3774–3782PubMedGoogle Scholar
  67. 67.
    Betters E, Liu Y, Kjaeldgaard A, Sundström E, García-Castro MI (2010) Analysis of early human neural crest development. Dev Biol 344:578–592PubMedCentralPubMedGoogle Scholar
  68. 68.
    Crane JF, Trainor PA (2006) Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol 22:267–286PubMedGoogle Scholar
  69. 69.
    Le Douarin NM, Calloni GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7:1013–1019PubMedGoogle Scholar
  70. 70.
    Delfino-Machín M, Chipperfield TR, Rodrigues FSLM, Kelsh RN (2007) The proliferating field of neural crest stem cells. Dev Dyn 236:3242–3254PubMedGoogle Scholar
  71. 71.
    Dupin E, Sommer L (2012) Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 366:83–95PubMedGoogle Scholar
  72. 72.
    Morrison SJ, White PM, Zock C, Anderson DJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96:737–749PubMedGoogle Scholar
  73. 73.
    Kléber M, Lee H-Y, Wurdak H, Buchstaller J, Riccomagno MM, Ittner LM, Suter U, Epstein DJ, Sommer L (2005) Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J Cell Biol 169:309–320PubMedCentralPubMedGoogle Scholar
  74. 74.
    Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985PubMedGoogle Scholar
  75. 75.
    Sieber-Blum M (1998) Growth factor synergism and antagonism in early neural crest development. Biochem Cell Biol 76:1039–1050PubMedGoogle Scholar
  76. 76.
    Li H-Y, Say EHM, Zhou X-F (2007) Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells 25:2053–2065PubMedGoogle Scholar
  77. 77.
    Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35:657–669PubMedCentralPubMedGoogle Scholar
  78. 78.
    Becker L, Kulkarni S, Tiwari G, Micci M-A, Pasricha PJ (2012) Divergent fate and origin of neurosphere-like bodies from different layers of the gut. Am J Physiol Gastrointest Liver Physiol 302:G958–G965PubMedCentralPubMedGoogle Scholar
  79. 79.
    Chalazonitis A (2004) Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 146:243–263PubMedGoogle Scholar
  80. 80.
    Okumura T, Shimada Y, Imamura M, Yasumoto S (2003) Neurotrophin receptor p75(NTR) characterizes human esophageal keratinocyte stem cells in vitro. Oncogene 22:4017–4026PubMedGoogle Scholar
  81. 81.
    Li X, Shen Y, Di B, Li J, Geng J, Lu X, He Z (2012) Biological and clinical significance of p75NTR expression in laryngeal squamous epithelia and laryngocarcinoma. Acta Otolaryngol 132:314–324PubMedGoogle Scholar
  82. 82.
    Truzzi F, Marconi A, Atzei P, Panza MC, Lotti R, Dallaglio K, Tiberio R, Palazzo E, Vaschieri C, Pincelli C (2011) p75 neurotrophin receptor mediates apoptosis in transit-amplifying cells and its overexpression restores cell death in psoriatic keratinocytes. Cell Death Differ 18:948–958PubMedCentralPubMedGoogle Scholar
  83. 83.
    Di Girolamo N, Sarris M, Chui J, Cheema H, Coroneo MT, Wakefield D (2008) Localization of the low-affinity nerve growth factor receptor p75 in human limbal epithelial cells. J Cell Mol Med 12:2799–2811PubMedGoogle Scholar
  84. 84.
    Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen MA, Pitaru S (2010) The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 28:984–995PubMedGoogle Scholar
  85. 85.
    Botchkarev VA, Botchkareva NV, Albers KM, Chen LH, Welker P, Paus R (2000) A role for p75 neurotrophin receptor in the control of apoptosis-driven hair follicle regression. FASEB J 14:1931–1942PubMedGoogle Scholar
  86. 86.
    Botchkarev VA, Yaar M, Gilchrest BA, Paus R (2003) p75 Neurotrophin receptor antagonist retards apoptosis-driven hair follicle involution (catagen). J Invest Dermatol 120:168–169PubMedGoogle Scholar
  87. 87.
    Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, Zimmermann DR, Dufour S, Thiery JP, Meijer D et al (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lambiase A, Aloe L, Mantelli F, Sacchetti M, Perrella E, Bianchi P, Rocco ML, Bonini S (2012) Capsaicin-induced corneal sensory denervation and healing impairment are reversed by NGF treatment. Invest Ophthalmol Vis Sci 53:8280–8287PubMedGoogle Scholar
  89. 89.
    Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I (2012) Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs 196(6):490–500PubMedGoogle Scholar
  90. 90.
    Mikami Y, Ishii Y, Watanabe N, Shirakawa T, Suzuki S, Irie S, Isokawa K, Honda MJ (2011) CD271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev 20:901–913PubMedGoogle Scholar
  91. 91.
    Wen X, Liu L, Deng M, Zhang L, Liu R, Xing Y, Zhou X, Nie X (2012) Characterization of p75(+) ectomesenchymal stem cells from rat embryonic facial process tissue. Biochem Biophys Res Commun 427:5–10PubMedGoogle Scholar
  92. 92.
    Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR (2008) Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17:1175–1184PubMedGoogle Scholar
  93. 93.
    Luukko K, Moshnyakov M, Sainio K, Saarma M, Sariola H, Thesleff I (1996) Expression of neurotrophin receptors during rat tooth development is developmentally regulated, independent of innervation, and suggests functions in the regulation of morphogenesis and innervation. Dev Dyn 206:87–99PubMedGoogle Scholar
  94. 94.
    Mitsiadis TA, Couble P, Dicou E, Rudkin BB, Magloire H (1993) Patterns of nerve growth factor (NGF), proNGF, and p75 NGF receptor expression in the rat incisor: comparison with expression in the molar. Differentiation 54:161–175PubMedGoogle Scholar
  95. 95.
    Cragnolini AB, Huang Y, Gokina P, Friedman WJ (2009) Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. Glia 57:1386–1392PubMedCentralPubMedGoogle Scholar
  96. 96.
    Ibáñez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35:431–440PubMedGoogle Scholar
  97. 97.
    Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF (2007) p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci 27:5146–5155PubMedGoogle Scholar
  98. 98.
    Du Y, Fischer TZ, Clinton-Luke P, Lercher LD, Dreyfus CF (2006) Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes. Mol Cell Neurosci 31:366–375PubMedGoogle Scholar
  99. 99.
    Hapner SJ, Boeshore KL, Large TH, Lefcort F (1998) Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR). Dev Biol 201:90–100PubMedGoogle Scholar
  100. 100.
    Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde Y-A (2004) Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 7:1003–1009PubMedGoogle Scholar
  101. 101.
    Nikoletopoulou V, Plachta N, Allen ND, Pinto L, Götz M, Barde Y-A (2007) Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell 1:529–540PubMedGoogle Scholar
  102. 102.
    Kendall SE, Ryczko MC, Mehan M, Verdi JM (2003) Characterization of NADE, NRIF and SC-1 gene expression during mouse neurogenesis. Brain Res Dev Brain Res 144:151–158PubMedGoogle Scholar
  103. 103.
    Lu J, Frerich JM, Turtzo LC, Li S, Chiang J, Yang C, Wang X, Zhang C, Wu C, Sun Z et al (2013) Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci USA 110:10747–10752PubMedCentralPubMedGoogle Scholar
  104. 104.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedGoogle Scholar
  105. 105.
    Thomson TM, Rettig WJ, Chesa PG, Green SH, Mena AC, Old LJ (1988) Expression of human nerve growth factor receptor on cells derived from all three germ layers. Exp Cell Res 174:533–539PubMedGoogle Scholar
  106. 106.
    Maeda S, Nobukuni T, Shimo-Onoda K, Hayashi K, Yone K, Komiya S, Inoue I (2002) Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization. J Cell Physiol 193:73–79PubMedGoogle Scholar
  107. 107.
    Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791PubMedGoogle Scholar
  108. 108.
    Yuan J, Huang G, Xiao Z, Lin L, Han T (2013) Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway. Mol Cell Biochem 383(1–2):201–211PubMedGoogle Scholar
  109. 109.
    Yamamoto N, Akamatsu H, Hasegawa S, Yamada T, Nakata S, Ohkuma M, Miyachi E-I, Marunouchi T, Matsunaga K (2007) Isolation of multipotent stem cells from mouse adipose tissue. J Dermatol Sci 48:43–52PubMedGoogle Scholar
  110. 110.
    Rada T, Reis RL, Gomes ME (2011) Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential. Stem Cell Rev 7:64–76PubMedGoogle Scholar
  111. 111.
    Russo MA, Giustizieri ML, Favale A, Fantini MC, Campagnolo L, Konda D, Germano F, Farini D, Manna C, Siracusa G (1999) Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis. Biol Reprod 61:1123–1132PubMedGoogle Scholar
  112. 112.
    Russo MA, Giustizieri ML, Farini D, Campagnolo L, De Felici M, Siracusa G (1996) Expression of the p75 neurotrophin receptor in the developing and adult testis of the rat. Int J Dev Biol Suppl 1:227S–228SGoogle Scholar
  113. 113.
    Zhang L, Wang H, Yang Y, Liu H, Zhang Q, Xiang Q, Ge R, Su Z, Huang Y (2013) NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration. Biochem Biophys Res Commun 436:300–305PubMedGoogle Scholar
  114. 114.
    Colombo E, Romaggi S, Medico E, Menon R, Mora M, Falcone C, Lochmüller H, Confalonieri P, Mantegazza R, Morandi L et al (2011) Human neurotrophin receptor p75NTR defines differentiation-oriented skeletal muscle precursor cells: implications for muscle regeneration. J Neuropathol Exp Neurol 70:133–142PubMedGoogle Scholar
  115. 115.
    Colombo E, Bedogni F, Lorenzetti I, Landsberger N, Previtali SC, Farina C (2013) Autocrine and immune cell-derived BDNF in human skeletal muscle: implications for myogenesis and tissue regeneration. J Pathol 231:190–198PubMedGoogle Scholar
  116. 116.
    Mousavi K, Jasmin BJ (2006) BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci 26:5739–5749PubMedGoogle Scholar
  117. 117.
    Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BLM (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106:12771–12775PubMedCentralPubMedGoogle Scholar
  118. 118.
    Geerts A (2004) On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J Hepatol 40:331–334PubMedGoogle Scholar
  119. 119.
    Zaret KS (2001) Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 11:568–574PubMedGoogle Scholar
  120. 120.
    Cassiman D, Denef C, Desmet VJ, Roskams T (2001) Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33:148–158PubMedGoogle Scholar
  121. 121.
    Kendall TJ, Hennedige S, Aucott RL, Hartland SN, Vernon MA, Benyon RC, Iredale JP (2009) p75 Neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology 49:901–910PubMedGoogle Scholar
  122. 122.
    Passino MA, Adams RA, Sikorski SL, Akassoglou K (2007) Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 315:1853–1856PubMedGoogle Scholar
  123. 123.
    Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337PubMedGoogle Scholar
  124. 124.
    Dirks P (2010) Cancer stem cells: invitation to a second round. Nature 466:40–41PubMedGoogle Scholar
  125. 125.
    Truzzi F, Marconi A, Lotti R, Dallaglio K, French LE, Hempstead BL, Pincelli C (2008) Neurotrophins and their receptors stimulate melanoma cell proliferation and migration. J Invest Dermatol 128:2031–2040PubMedGoogle Scholar
  126. 126.
    Denkins Y, Reiland J, Roy M, Sinnappah-Kang ND, Galjour J, Murry BP, Blust J, Aucoin R, Marchetti D (2004) Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 6:154–165PubMedCentralPubMedGoogle Scholar
  127. 127.
    Marchetti D, McQuillan DJ, Spohn WC, Carson DD, Nicolson GL (1996) Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Res 56:2856–2863PubMedGoogle Scholar
  128. 128.
    Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137PubMedCentralPubMedGoogle Scholar
  129. 129.
    Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M, Kriegl L, Kirchner T, Larue L, Dummer R et al (2011) Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res 24:631–642PubMedGoogle Scholar
  130. 130.
    Touil Y, Zuliani T, Wolowczuk I, Kuranda K, Prochazkova J, Andrieux J, Le Roy H, Mortier L, Vandomme J, Jouy N et al (2012) The PI3K/AKT signaling pathway controls the quiescence of the low-Rhodamine123-retention cell compartment enriched for melanoma stem cell activity. Stem Cells 31:641–651Google Scholar
  131. 131.
    Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594PubMedCentralPubMedGoogle Scholar
  132. 132.
    Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M et al (2011) Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 71:3098–3109PubMedGoogle Scholar
  133. 133.
    Søland TM, Brusevold IJ, Koppang HS, Schenck K, Bryne M (2008) Nerve growth factor receptor (p75 NTR) and pattern of invasion predict poor prognosis in oral squamous cell carcinoma. Histopathology 53:62–72PubMedGoogle Scholar
  134. 134.
    Kiyosue T, Kawano S, Matsubara R, Goto Y, Hirano M, Jinno T, Toyoshima T, Kitamura R, Oobu K, Nakamura S (2011) Immunohistochemical location of the p75 neurotrophin receptor (p75NTR) in oral leukoplakia and oral squamous cell carcinoma. Int J Clin Oncol 18(1):154–163PubMedGoogle Scholar
  135. 135.
    Lewis Kelso R, Colome-Grimmer MI, Uchida T, Wang HQ, Wagner RF Jr (2006) p75(NGFR) immunostaining for the detection of perineural invasion by cutaneous squamous cell carcinoma. Dermatol Surg 32:177–183PubMedGoogle Scholar
  136. 136.
    Okumura T, Tsunoda S, Mori Y, Ito T, Kikuchi K, Wang TC, Yasumoto S, Shimada Y (2006) The biological role of the low-affinity p75 neurotrophin receptor in esophageal squamous cell carcinoma. Clin Cancer Res 12:5096–5103PubMedGoogle Scholar
  137. 137.
    Huang S-D, Yuan Y, Liu X-H, Gong D-J, Bai C-G, Wang F, Luo J-H, Xu Z-Y (2009) Self-renewal and chemotherapy resistance of p75NTR-positive cells in esophageal squamous cell carcinomas. BMC Cancer 9:9PubMedCentralPubMedGoogle Scholar
  138. 138.
    Demont Y, Corbet C, Page A, Ataman-Önal Y, Choquet-Kastylevsky G, Fliniaux I, Le Bourhis X, Toillon R-A, Bradshaw RA, Hondermarck H (2012) Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein. J Biol Chem 287:1923–1931PubMedCentralPubMedGoogle Scholar
  139. 139.
    Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X, Hondermarck H (2011) Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res 17:1741–1752PubMedGoogle Scholar
  140. 140.
    Descamps S, Pawlowski V, Révillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP (2001) Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61:4337–4340PubMedGoogle Scholar
  141. 141.
    Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H (1998) Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273:16659–16662PubMedGoogle Scholar
  142. 142.
    Dollé L, Oliveira M-J, Bruyneel E, Hondermarck H, Bracke M (2005) Nerve growth factor mediates its pro-invasive effect in parallel with the release of a soluble E-cadherin fragment from breast cancer MCF-7/AZ cells. J Dairy Res 72 Spec No: 20–26Google Scholar
  143. 143.
    Popnikolov NK, Cavone SM, Schultz PM, Garcia FU (2005) Diagnostic utility of p75 neurotrophin receptor (p75NTR) as a marker of breast myoepithelial cells. Mod Pathol 18:1535–1541PubMedGoogle Scholar
  144. 144.
    Verbeke S, Meignan S, Lagadec C, Germain E, Hondermarck H, Adriaenssens E, Le Bourhis X (2010) Overexpression of p75(NTR) increases survival of breast cancer cells through p21(waf1). Cell Signal 22:1864–1873PubMedGoogle Scholar
  145. 145.
    Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H (2001) Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276:17864–17870PubMedGoogle Scholar
  146. 146.
    Kim J, Villadsen R, Sørlie T, Fogh L, Grønlund SZ, Fridriksdottir AJ, Kuhn I, Rank F, Wielenga VT, Solvang H et al (2012) Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci USA 109:6124–6129PubMedCentralPubMedGoogle Scholar
  147. 147.
    Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ (2007) A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev 21:3238–3243PubMedCentralPubMedGoogle Scholar
  148. 148.
    Imai T, Tamai K, Oizumi S, Oyama K, Yamaguchi K, Sato I, Satoh K, Matsuura K, Saijo S, Sugamura K et al (2013) CD271 defines a stem cell-like population in hypopharyngeal cancer. PLoS ONE 8:e62002PubMedCentralPubMedGoogle Scholar
  149. 149.
    Biagiotti T, D’Amico M, Marzi I, Di Gennaro P, Arcangeli A, Wanke E, Olivotto M (2006) Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells 24:443–453PubMedGoogle Scholar
  150. 150.
    Higuchi H, Yamashita T, Yoshikawa H, Tohyama M (2003) PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts. EMBO J 22:1790–1800PubMedCentralPubMedGoogle Scholar
  151. 151.
    Lee MY, Ryu JM, Lee SH, Park JH, Han HJ (2010) Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res 51:2082–2089PubMedCentralPubMedGoogle Scholar
  152. 152.
    Yamazaki S, Iwama A, Morita Y, Eto K, Ema H, Nakauchi H (2007) Cytokine signaling, lipid raft clustering, and HSC hibernation. Ann N Y Acad Sci 1106:54–63PubMedGoogle Scholar
  153. 153.
    Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129PubMedGoogle Scholar
  154. 154.
    Campagnolo L, Russo MA, Puglianiello A, Favale A, Siracusa G (2001) Mesenchymal cell precursors of peritubular smooth muscle cells of the mouse testis can be identified by the presence of the p75 neurotrophin receptor. Biol Reprod 64:464–472PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Elisa Tomellini
    • 1
    • 2
    • 5
  • Chann Lagadec
    • 1
    • 2
    • 5
  • Renata Polakowska
    • 3
    • 5
  • Xuefen Le Bourhis
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Université Lille 1Villeneuve d’AscqFrance
  2. 2.Inserm U908Villeneuve d’AscqFrance
  3. 3.Inserm U837 Jean-Pierre Aubert Research CenterInstitut pour la Recherche sur le Cancer de Lille (IRCL)LilleFrance
  4. 4.Inserm U908Université Lille 1Villeneuve d’AscqFrance
  5. 5.SIRIC ONCOLilleLilleFrance

Personalised recommendations