Cellular and Molecular Life Sciences

, Volume 71, Issue 12, pp 2289–2297 | Cite as

The nuclear γ-H2AX apoptotic ring: implications for cancers and autoimmune diseases

  • Stéphanie Solier
  • Yves PommierEmail author


Apoptosis is a fundamental process for metazoan development. It is also relevant to the pathophysiology of immune diseases and cancers and to the outcome of cancer chemotherapies, as well as being a target for cancer therapies. Apoptosis involves intrinsic pathways typically initiated by DNA damaging agents and engaging mitochondria, and extrinsic pathways typically initiated by “death receptors” and their ligands TRAIL and TNF at the cell surface. Recently, we discovered the apoptotic ring, which microscopically looks like a nuclear annular staining early in apoptosis. This ring is, in three-dimensional space, a thick intranuclear shell consisting of epigenetic modifications including histone H2AX and DNA damage response (DDR) proteins. It excludes the DNA repair factors usually associated with γ-H2AX in the DDR nuclear foci. Here, we summarize our knowledge of the apoptotic ring, and discuss its biological and pathophysiological relevance, as well as its value as a potential pharmacodynamic biomarker for anticancer therapies.


Chromatin Epigenetics Biomarkers 



We wish to thank our close laboratory colleagues for their commitment to γ-H2AX basic research: Dr. William Bonner, Dr. Christophe Redon, Dr. James H. Doroshow, and Dr. Kurt W. Kohn. We also wish to thank our NCI colleagues from the DCTD, PADIS, for the development of γ-H2AX pharmacodynamics biomarker assays: Dr. James H. Doroshow, Dr. Joseph E. Tomaszewski, Dr. Raph E. Parchment, and Dr. Robert Kinders. Our studies are supported by the NCI Intramural Program, Center for Cancer Research, NIH.


  1. 1.
    Zhivotovsky B, Kroemer G (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol 5:752–762PubMedCrossRefGoogle Scholar
  2. 2.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Enari M, Shahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50PubMedCrossRefGoogle Scholar
  4. 4.
    Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171PubMedCrossRefGoogle Scholar
  6. 6.
    Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  7. 7.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  8. 8.
    Hockenbery D, Nunez G, Milliman C et al (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336PubMedCrossRefGoogle Scholar
  9. 9.
    Horvitz HR (2003) Worms, life, and death (Nobel lecture). Chembiochem 4:697–711PubMedCrossRefGoogle Scholar
  10. 10.
    Bonner WM, Redon CE, Dickey JS et al (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868PubMedCrossRefGoogle Scholar
  12. 12.
    Rogakou EP, Boon C, Redon C et al (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Rogakou EP, Nieves-Neira W, Boon C et al (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390–9395PubMedCrossRefGoogle Scholar
  14. 14.
    Solier S, Pommier Y (2009) The apoptotic ring: a novel entity with phosphorylated histones H2AX and H2B and activated DNA damage response kinases. Cell Cycle 8:1853–1859PubMedCrossRefGoogle Scholar
  15. 15.
    Solier S, Sordet O, Kohn KW et al (2009) Death receptor-induced activation of the Chk2- and histone H2AX-associated DNA damage response pathways. Mol Cell Biol 29:68–82PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Taieb J, Chaput N, Menard C et al (2006) A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12:214–219PubMedCrossRefGoogle Scholar
  17. 17.
    Wang S (2008) The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 27:6207–6215PubMedCrossRefGoogle Scholar
  18. 18.
    Yagita H, Takeda K, Hayakawa Y et al (2004) TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95:777–783PubMedCrossRefGoogle Scholar
  19. 19.
    Solier S, Kohn KW, Scroggins B et al (2012) Feature Article: heat shock protein 90alpha (HSP90alpha), a substrate and chaperone of DNA-PK necessary for the apoptotic response. Proc Natl Acad Sci USA 109:12866–12872PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Mukherjee B, Kessinger C, Kobayashi J et al (2006) DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair (Amst) 5:575–590CrossRefGoogle Scholar
  21. 21.
    Tanaka T, Huang X, Halicka HD et al (2007) Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry Part A 71:648–661CrossRefGoogle Scholar
  22. 22.
    Bertrand R, Solary E, Kohn KW et al (1994) Induction of a common pathway to apoptosis by staurosporine. Exp Cell Res 211:314–321PubMedCrossRefGoogle Scholar
  23. 23.
    Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13:1899–1910PubMedCentralPubMedGoogle Scholar
  24. 24.
    Solier S, Pommier Y (2011) MDC1 cleavage by caspase-3: a novel mechanism for inactivating the DNA damage response during apoptosis. Cancer Res 71:906–913PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Stucki M, Clapperton JA, Mohammad D et al (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226PubMedCrossRefGoogle Scholar
  26. 26.
    Eliezer Y, Argaman L, Rhie A et al (2009) The direct interaction between 53BP1 and MDC1 Is required for the recruitment of 53BP1 to sites of damage. J Biol Chem 284:426–435PubMedCrossRefGoogle Scholar
  27. 27.
    Stewart GS, Wang B, Bignell CR et al (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966PubMedCrossRefGoogle Scholar
  28. 28.
    Xie A, Hartlerode A, Stucki M et al (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell 28:1045–1057PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lou Z, Minter-Dykhouse K, Franco S et al (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21:187–200PubMedCrossRefGoogle Scholar
  30. 30.
    Dimitrova N, De Lange T (2006) MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes Dev 20:3238–3243PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lazebnik YA, Kaufmann SH, Desnoyers S et al (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347PubMedCrossRefGoogle Scholar
  32. 32.
    Song Q, Lees-Miller SP, Kumar S et al (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238–3246PubMedCentralPubMedGoogle Scholar
  33. 33.
    Yim H, Hwang IS, Choi J-S et al (2006) Cleavage of Cdc6 by caspase-3 promotes ATM/ATR kinase, Äìmediated apoptosis of HeLa cells. J Cell Biol 174:77–88PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka T, Halicka HD, Traganos F et al (2007) Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: relation to cell cycle phase. Cell Cycle 6:371–376PubMedCrossRefGoogle Scholar
  35. 35.
    Marti TM, Hefner E, Feeney L et al (2006) H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci USA 103:9891–9896PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    De Feraudy S, Revet I, Bezrookove V et al (2010) A minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks. Proc Natl Acad Sci USA 107:6870–6875PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lu C, Zhu F, Cho YY et al (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23:121–132PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Karreman MA, Agronskaia AV, Verkleij AJ et al (2009) Discovery of a new RNA-containing nuclear structure in UVC-induced apoptotic cells by integrated laser electron microscopy. Biol Cell 101:287–299PubMedCrossRefGoogle Scholar
  39. 39.
    Chiodi I, Biggiogera M, Denegri M et al (2000) Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J Cell Sci 113(Pt 22):4043–4053PubMedGoogle Scholar
  40. 40.
    Murga M, Bunting S, Montana MF et al (2009) A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 41:891–898PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Neelsen KJ, Zanini IM, Herrador R et al (2013) Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J Cell Biol 200:699–708PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–1248PubMedCrossRefGoogle Scholar
  43. 43.
    Baure J, Izadi A, Suarez V et al (2009) Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis 24:161–167PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506PubMedCrossRefGoogle Scholar
  45. 45.
    Huang X, Kurose A, Tanaka T et al (2006) Sequential phosphorylation of Ser-10 on histone H3 and ser-139 on histone H2AX and ATM activation during premature chromosome condensation: relationship to cell-cycle phase and apoptosis. Cytometry Part A 69:222–229CrossRefGoogle Scholar
  46. 46.
    Zhang YW, Ghosh AK, Pommier Y (2012) Lasonolide A, a potent and reversible inducer of chromosome condensation. Cell Cycle 11:4424–4435PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Meyer B, Voss KO, Tobias F et al (2013) Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Nucl Acids Res 41:6109–6118PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Sokolov MV, Smilenov LB, Hall EJ et al (2005) Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene 24:7257–7265PubMedCrossRefGoogle Scholar
  49. 49.
    Quanz M, Chassoux D, Berthault N et al (2009) Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response. PLoS ONE 4:e6298PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Devun F, Bousquet G, Biau J et al (2012) Preclinical study of the DNA repair inhibitor Dbait in combination with chemotherapy in colorectal cancer. J Gastroenterol 47:266–275PubMedCrossRefGoogle Scholar
  51. 51.
    Fragkos M, Breuleux M, Clement N et al (2008) Recombinant adeno-associated viral vectors are deficient in provoking a DNA damage response. J Virol 82:7379–7387PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Schwartz RA, Carson CT, Schuberth C et al (2009) Adeno-associated virus replication induces a DNA damage response coordinated by DNA-dependent protein kinase. J Virol 83:6269–6278PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14:19–26PubMedCrossRefGoogle Scholar
  54. 54.
    Migliorini A, Anders HJ (2012) A novel pathogenetic concept-antiviral immunity in lupus nephritis. Nature reviews. Nephrology 8:183–189PubMedGoogle Scholar
  55. 55.
    Shero JH, Bordwell B, Rothfield NF et al (1986) High titers of autoantibodies to topoisomerase I (Scl-70) in sera from scleroderma patients. Science 231:737–740PubMedCrossRefGoogle Scholar
  56. 56.
    Sordet O, Liao Z, Liu H et al (2004) Topoisomerase I-DNA complexes contribute to arsenic trioxide-induced apoptosis. J Biol Chem 279:33968–33975PubMedCrossRefGoogle Scholar
  57. 57.
    Sordet O, Goldman A, Redon C et al (2008) Topoisomerase I requirement for death receptor-induced apoptotic nuclear fission. J Biol Chem 34:23200–23208CrossRefGoogle Scholar
  58. 58.
    Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802PubMedCrossRefGoogle Scholar
  59. 59.
    Ivashkevich A, Redon CE, Nakamura AJ et al (2012) Use of the gamma-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 327:123–133PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Wang LH, Pfister TD, Parchment RE et al (2010) Monitoring drug-induced gammaH2AX as a pharmacodynamic biomarker in individual circulating tumor cells. Clin Cancer Res 16:1073–1084PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Redon CE, Nakamura AJ, Sordet O et al (2011) gamma-H2AX detection in peripheral blood lymphocytes, splenocytes, bone marrow, xenografts, and skin. Meth Mol Biol 682:249–270CrossRefGoogle Scholar
  62. 62.
    Redon CE, Nakamura AJ, Zhang YW et al (2010) Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 16:4532–4542PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8:82–95PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Kummar S, Kinders R, Rubinstein L et al (2007) Compressing drug development timelines in oncology using phase ‘0’ trials. Nat Rev Cancer 7:131–139PubMedCrossRefGoogle Scholar
  65. 65.
    Kummar S, Kinders R, Gutierrez ME et al (2009) Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 27:2705–2711PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Earnshaw WC (1995) Nuclear changes in apoptosis. Curr Opin Cell Biol 7:337–343PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshida A, Pourquier P, Pommier Y (1998) Purification and characterization of a Mg2 + -dependent endonuclease (AN34) from etoposide-treated human leukemia HL-60 cells undergoing apoptosis. Cancer Res 58:2576–2582PubMedGoogle Scholar
  68. 68.
    Zhivotovsky B, Wade D, Nicotera P et al (1994) Role of nucleases in apoptosis. Int Arch All Immunol 105:333–338CrossRefGoogle Scholar
  69. 69.
    Falsone SF, Gesslbauer B, Tirk F et al (2005) A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 579:6350–6354PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel (outside the USA) 2014

Authors and Affiliations

  1. 1.Laboratory of Molecular Pharmacology, Center for Cancer ResearchNational Cancer InstituteBethesdaUSA
  2. 2.INSERM UMR1009, Gustave RoussyVillejuifFrance

Personalised recommendations