Cellular and Molecular Life Sciences

, Volume 71, Issue 15, pp 2947–2955 | Cite as

Choroid plexus implants rescue Alzheimer’s disease-like pathologies by modulating amyloid-β degradation

  • Marta Bolos
  • Desireé Antequera
  • Jesús Aldudo
  • Henrike Kristen
  • María Jesús Bullido
  • Eva Carro
Research Article

Abstract

The choroid plexuses (CP) release numerous biologically active enzymes and neurotrophic factors, and contain a subpopulation of neural progenitor cells providing the capacity to proliferate and differentiate into other types of cells. These characteristics make CP epithelial cells (CPECs) excellent candidates for cell therapy aiming at restoring brain tissue in neurodegenerative illnesses, including Alzheimer’s disease (AD). In the present study, using in vitro approaches, we demonstrated that CP were able to diminish amyloid-β (Aβ) levels in cell cultures, reducing Aβ-induced neurotoxicity. For in vivo studies, CPECs were transplanted into the brain of the APP/PS1 murine model of AD that exhibits advanced Aβ accumulation and memory impairment. Brain examination after cell implantation revealed a significant reduction in brain Aβ deposits, hyperphosphorylation of tau, and astrocytic reactivity. Remarkably, the transplantation of CPECs was accompanied by a total behavioral recovery in APP/PS1 mice, improving spatial and non-spatial memory. These findings reinforce the neuroprotective potential of CPECs and the use of cell therapies as useful tools in AD.

Keywords

Choroid plexus Alzheimer’s disease Transgenic mice Cell implants Amyloidosis Memory 

References

  1. 1.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedCrossRefGoogle Scholar
  3. 3.
    Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen EY et al (1997) Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 386:395–399PubMedCrossRefGoogle Scholar
  4. 4.
    Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O et al (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 4:e262PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Garcia P, Youssef I, Utvik JK, Florent-Bechard S, Barthelemy V et al (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 30:7516–7527PubMedCrossRefGoogle Scholar
  6. 6.
    Spuch C, Antequera D, Portero A, Orive G, Hernandez RM et al (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31:5608–5618PubMedCrossRefGoogle Scholar
  7. 7.
    Tuszynski MH, Thal L, Pay M, Salmon DP, U HS et al (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555PubMedCrossRefGoogle Scholar
  8. 8.
    Eriksdotter-Jonhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O et al (2012) Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 33:18–28PubMedCrossRefGoogle Scholar
  9. 9.
    Wahlberg LU, Lind G, Almqvist PM, Kusk P, Tornoe J et al (2012) Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J Neurosurg 117:340–347PubMedCrossRefGoogle Scholar
  10. 10.
    Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V et al (2001) Human choroid plexus growth factors: what are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol 167:40–47PubMedCrossRefGoogle Scholar
  11. 11.
    Alvira-Botero X, Carro EM (2010) Clearance of amyloid-beta peptide across the choroid plexus in Alzheimer’s disease. Curr Aging Sci 3:219–229PubMedCrossRefGoogle Scholar
  12. 12.
    Crossgrove JS, Smith EL, Zheng W (2007) Macromolecules involved in production and metabolism of beta-amyloid at the brain barriers. Brain Res 1138:187–195PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B et al (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552PubMedCrossRefGoogle Scholar
  14. 14.
    Leissring MA, Farris W, Chang AY, Walsh DM, Wu X et al (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093PubMedCrossRefGoogle Scholar
  15. 15.
    Borlongan CV, Thanos CG, Skinner SJ, Geaney M, Emerich DF (2008) Transplants of encapsulated rat choroid plexus cells exert neuroprotection in a rodent model of Huntington’s disease. Cell Transpl 16:987–992CrossRefGoogle Scholar
  16. 16.
    Emerich DF, Thanos CG, Goddard M, Skinner SJ, Geany MS et al (2006) Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis 23:471–480PubMedCrossRefGoogle Scholar
  17. 17.
    Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB et al (2004) Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35:2206–2210PubMedCrossRefGoogle Scholar
  18. 18.
    Wise AK, Fallon JB, Neil AJ, Pettingill LN, Geaney MS et al (2011) Combining cell-based therapies and neural prostheses to promote neural survival. Neurotherapeutics 8:774–787PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Bolos M, Spuch C, Ordonez-Gutierrez L, Wandosell F, Ferrer I et al (2013) Neurogenic effects of beta-amyloid in the choroid plexus epithelial cells in Alzheimer’s disease. Cell Mol Life Sci 70:10CrossRefGoogle Scholar
  20. 20.
    Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397PubMedCrossRefGoogle Scholar
  21. 21.
    Bartek J, Bartkova J, Kyprianou N, Lalani EN, Staskova Z et al (1991) Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of simian virus 40 large tumor antigen with a recombinant retrovirus. Proc Natl Acad Sci USA 88:3520–3524PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Alvira-Botero X, Perez-Gonzalez R, Spuch C, Vargas T, Antequera D et al (2010) Megalin interacts with APP and the intracellular adapter protein FE65 in neurons. Mol Cell Neurosci 45:306–315PubMedCrossRefGoogle Scholar
  23. 23.
    Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM et al (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 55:801–814PubMedCrossRefGoogle Scholar
  24. 24.
    Antequera D, Vargas T, Ugalde C, Spuch C, Molina JA et al (2009) Cytoplasmic gelsolin increases mitochondrial activity and reduces Abeta burden in a mouse model of Alzheimer’s disease. Neurobiol Dis 36:42–50PubMedCrossRefGoogle Scholar
  25. 25.
    Emerich DF, Schneider P, Bintz B, Hudak J, Thanos CG (2007) Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells. Cell Transplant 16:697–705PubMedGoogle Scholar
  26. 26.
    Vargas T, Ugalde C, Spuch C, Antequera D, Moran MJ et al (2010) Abeta accumulation in choroid plexus is associated with mitochondrial-induced apoptosis. Neurobiol Aging 31:1569–1581PubMedCrossRefGoogle Scholar
  27. 27.
    Ghersi-Egea JF, Strazielle N (2002) Choroid plexus transporters for drugs and other xenobiotics. J Drug Target 10:353–357PubMedCrossRefGoogle Scholar
  28. 28.
    de Lange EC (2004) Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 56:1793–1809PubMedCrossRefGoogle Scholar
  29. 29.
    Bhongsatiern J, Ohtsuki S, Tachikawa M, Hori S, Terasaki T (2005) Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. J Neurochem 92:1277–1280PubMedCrossRefGoogle Scholar
  30. 30.
    Fujiyoshi M, Ohtsuki S, Hori S, Tachikawa M, Terasaki T (2007) 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. J Neurochem 100:968–978PubMedCrossRefGoogle Scholar
  31. 31.
    Hama E, Shirotani K, Iwata N, Saido TC (2004) Effects of neprilysin chimeric proteins targeted to subcellular compartments on amyloid beta peptide clearance in primary neurons. J Biol Chem 279:30259–30264PubMedCrossRefGoogle Scholar
  32. 32.
    Wilcock DM, Gharkholonarehe N, Van Nostrand WE, Davis J, Vitek MP et al (2009) Amyloid reduction by amyloid-beta vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J Neurosci 29:7957–7965PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Huang HC, Jiang ZF (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16:15–27PubMedGoogle Scholar
  34. 34.
    Rebeck GW, Hoe HS, Moussa CE (2010) Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem 285:7440–7446PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C et al (2001) Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 158:1345–1354PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Rozemuller AJ, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer’s disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233PubMedCrossRefGoogle Scholar
  37. 37.
    Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177PubMedCrossRefGoogle Scholar
  38. 38.
    Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF et al (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570PubMedGoogle Scholar
  39. 39.
    Matsumoto N, Taguchi A, Kitayama H, Watanabe Y, Ohta M et al (2010) Transplantation of cultured choroid plexus epithelial cells via cerebrospinal fluid shows prominent neuroprotective effects against acute ischemic brain injury in the rat. Neurosci Lett 469:283–288PubMedCrossRefGoogle Scholar
  40. 40.
    Chen G, Chen KS, Knox J, Inglis J, Bernard A et al (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979PubMedCrossRefGoogle Scholar
  41. 41.
    Itokazu Y, Kitada M, Dezawa M, Mizoguchi A, Matsumoto N et al (2006) Choroid plexus ependymal cells host neural progenitor cells in the rat. Glia 53:32–42PubMedCrossRefGoogle Scholar
  42. 42.
    Capsoni S, Giannotta S, Cattaneo A (2002) Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc Natl Acad Sci USA 99:12432–12437PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Marta Bolos
    • 1
    • 2
  • Desireé Antequera
    • 1
    • 2
  • Jesús Aldudo
    • 2
    • 3
  • Henrike Kristen
    • 3
  • María Jesús Bullido
    • 2
    • 3
  • Eva Carro
    • 1
    • 2
  1. 1.Neuroscience GroupInstituto de Investigacion Hospital 12 de Octubre (i+12)MadridSpain
  2. 2.Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
  3. 3.Centro de Biología Molecular Severo Ochoa, CBM (UAM/CSIC)MadridSpain

Personalised recommendations