Advertisement

Cellular and Molecular Life Sciences

, Volume 71, Issue 4, pp 541–547 | Cite as

Urocanate as a potential signaling molecule for bacterial recognition of eukaryotic hosts

  • Xue-Xian Zhang
  • Stephen R. Ritchie
  • Paul B. Rainey
Visions and reflections

Abstract

Host recognition is the crucial first step in infectious disease pathogenesis. Recognition allows pathogenic bacteria to identify suitable niches and deploy appropriate phenotypes for successful colonization and immune evasion. However, the mechanisms underlying host recognition remain largely unknown. Mounting evidence suggests that urocanate—an intermediate of the histidine degradation pathway—accumulates in tissues, such as skin, and acts as a molecule that promotes bacterial infection via molecular interaction with the bacterial regulatory protein HutC. In Gram-negative bacteria, HutC has long been known as a transcriptional repressor of hut genes for the utilization of histidine (and urocanate) as sources of carbon and nitrogen. Recent work on the opportunistic human pathogen Pseudomonas aeruginosa and zoonotic pathogen Brucella abortus shows that urocanate, in conjunction with HutC, plays a significant role in the global control of cellular metabolism, cell motility, and expression of virulence factors. We suggest that in addition to being a valuable source of carbon and nitrogen, urocanate may be central to the elicitation of bacterial pathogenesis.

Keywords

Urocanic acid Host perception Infectious diseases Histidine utilization HutC Pseudomonas 

Notes

Acknowledgments

We would like to thank our laboratory colleagues for helpful discussions and the Massey University Research Foundation (MURF) for financial support.

References

  1. 1.
    Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6:53–66PubMedCrossRefGoogle Scholar
  2. 2.
    Breidenstein EB, de la Fuente-Nunez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426PubMedCrossRefGoogle Scholar
  3. 3.
    Yeung AT, Torfs EC, Jamshidi F, Bains M, Wiegand I et al (2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 191:5592–5602PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66:493–520PubMedCrossRefGoogle Scholar
  6. 6.
    Kohler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Dasgupta N, Ashare A, Hunninghake GW, Yahr TL (2006) Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect Immun 74:3334–3341PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Miller SI, Hoffman LR, Sanowar S (2007) Did bacterial sensing of host environments evolve from sensing within microbial communities? Cell Host Microbe 1:85–87PubMedCrossRefGoogle Scholar
  9. 9.
    Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341–348PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Galletti R, De Lorenzo G, Ferrari S (2009) Host-derived signals activate plant innate immunity. Plant Signal Behav 4:33–34PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95PubMedCrossRefGoogle Scholar
  12. 12.
    Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE et al (2007) A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1:109–119PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Groisman EA, Mouslim C (2006) Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol 4:705–709PubMedCrossRefGoogle Scholar
  14. 14.
    Wu L, Estrada O, Zaborina O, Bains M, Shen L et al (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science 309:774–777PubMedCrossRefGoogle Scholar
  15. 15.
    Roux A, Payne SM, Gilmore MS (2009) Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6:115–124PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Nikolaus T, Deiwick J, Rappl C, Freeman JA, Schroder W et al (2001) SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol 183:6036–6045PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Itoh Y, Nishijyo T, Nakada Y (2007) Histidine catabolism and catabolite regulation. In: Ramos H-L, Fillous A (eds) Pseudomonas. Springer, Berlin Heidelberg New York, pp 371–395Google Scholar
  18. 18.
    Bender RA (2012) Regulation of the histidine utilization (hut) system in bacteria. Microbiol Mol Biol Rev 76:565–584PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Retey J (1994) The urocanase story: a novel role of NAD+ as electrophile. Arch Biochem Biophys 314:1–16PubMedCrossRefGoogle Scholar
  20. 20.
    Jaffé M (1874) Concerning a new constituent in the urine of dogs. Ber Deut Chem Ges. 7:1669–1673CrossRefGoogle Scholar
  21. 21.
    Hunter A (1912) On urocanic acid. J Biol Chem 11:537–545Google Scholar
  22. 22.
    Gibbs NK, Norval M (2011) Urocanic acid in the skin: a mixed blessing? J Invest Dermatol 131:14–17PubMedCrossRefGoogle Scholar
  23. 23.
    Tiwari S, Chand Mishra P (2011) Urocanic acid as an efficient hydroxyl radical scavenger: a quantum theoretical study. J Mol Model 17:59–72PubMedCrossRefGoogle Scholar
  24. 24.
    Gibbs NK, Tye J, Norval M (2008) Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci 7:655–667PubMedCrossRefGoogle Scholar
  25. 25.
    Laihia JK, Kallio JP, Taimen P, Kujari H, Kahari VM et al (2010) Protodynamic intracellular acidification by cis-urocanic acid promotes apoptosis of melanoma cells in vitro and in vivo. J Invest Dermatol 130:2431–2439PubMedCrossRefGoogle Scholar
  26. 26.
    Moraes EP, Ruperez FJ, Plaza M, Herrero M, Barbas C (2011) Metabolomic assessment with CE-MS of the nutraceutical effect of Cystoseira spp extracts in an animal model. Electrophoresis 32:2055–2062PubMedCrossRefGoogle Scholar
  27. 27.
    Mattarucchi E, Baraldi E, Guillou C (2012) Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomed Chromatogr 26:89–94PubMedCrossRefGoogle Scholar
  28. 28.
    Chanarin I (1963) Urocanic acid and formimino-glutamic acid excretion in megaloblastic anaemia and other conditions: the effect of specific therapy. Br J Haematol 9:141–157PubMedCrossRefGoogle Scholar
  29. 29.
    Spector I, Falcke HC, Yoffe Y, Metz J (1966) Observations on urocanic acid and formiminoglutamic acid excretion in infants with protein malnutrition. Am J Clin Nutr 18:426–436PubMedGoogle Scholar
  30. 30.
    Hug DH, Dunkerson DD, Hunter JK (1999) The degradation of l-histidine and trans- and cis-urocanic acid by bacteria from skin and the role of bacterial cis-urocanic acid isomerase. J Photochem Photobiol B 50:66–73PubMedCrossRefGoogle Scholar
  31. 31.
    Schlesinger S, Magasanik B (1965) Imidazolepropionate, a nonmetabolizable inducer for the histidine-degrading enzymes in Aerobacter aerogenes. J Biol Chem 240:4325–4330PubMedGoogle Scholar
  32. 32.
    Zhang XX, Chang H, Tran SL, Gauntlett JC, Cook GM et al (2012) Variation in transport explains polymorphism of histidine and urocanate utilization in a natural Pseudomonas population. Environ Microbiol 14:1941–1951PubMedCrossRefGoogle Scholar
  33. 33.
    Hu L, Allison SL, Phillips AT (1989) Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida. J Bacteriol 171:4189–4195PubMedCentralPubMedGoogle Scholar
  34. 34.
    Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Zhang XX, Rainey PB (2007) Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Genetics 176:2165–2176PubMedCrossRefGoogle Scholar
  36. 36.
    Allison SL, Phillips AT (1990) Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J Bacteriol 172:5470–5476PubMedCentralPubMedGoogle Scholar
  37. 37.
    Bowden G, Mothibeli MA, Robb FT, Woods DR (1982) Regulation of hut enzymes and intracellular protease activities in Vibrio alginolyticus hut mutants. J Gen Microbiol 128:2041–2045PubMedGoogle Scholar
  38. 38.
    Rietsch A, Wolfgang MC, Mekalanos JJ (2004) Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa. Infect Immun 72:1383–1390PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sieira R, Arocena GM, Bukata L, Comerci DJ, Ugalde RA (2010) Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J Bacteriol 192:217–224PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Cabral MP, Soares NC, Aranda J, Parreira JR, Rumbo C et al (2011) Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J Proteome Res 10:3399–3417PubMedCrossRefGoogle Scholar
  41. 41.
    Tremblay J, Deziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 11:587PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Patell S, Gu M, Davenport P, Givskov M, Waite RD et al (2010) Comparative microarray analysis reveals that the core biofilm-associated transcriptome of Pseudomonas aeruginosa comprises relatively few genes. Environ Microbiol Rep 2:440–448PubMedCrossRefGoogle Scholar
  43. 43.
    Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V et al (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7:e31092PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chugani S, Greenberg EP (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 42:29–35PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Arocena GM, Zorreguieta A, Sieira R (2012) Expression of VjbR under nutrient limitation conditions is regulated at the post-transcriptional level by specific acidic pH values and urocanic acid. PLoS One 7:e35394PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Safer D, Brenes M, Dunipace S, Schad G (2007) Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis. Proc Natl Acad Sci USA 104:1627–1630PubMedCrossRefGoogle Scholar
  47. 47.
    Koberstaedt A, Lenz M, Retey J (1992) Isolation, sequencing and expression in E. coli of the urocanase gene from white clover (Trifolium repens). FEBS Lett 311:206–208PubMedCrossRefGoogle Scholar
  48. 48.
    Hellio C, Veron B, Le Gal Y (2004) Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine. Plant Physiol Biochem 42:257–264PubMedCrossRefGoogle Scholar
  49. 49.
    Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedCrossRefGoogle Scholar
  50. 50.
    Schroder J, Maus I, Ostermann AL, Kogler AC, Tauch A (2012) Binding of the IclR-type regulator HutR in the histidine utilization (hut) gene cluster of the human pathogen Corynebacterium resistens DSM 45100. FEMS Microbiol Lett 331:136–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Xue-Xian Zhang
    • 1
  • Stephen R. Ritchie
    • 2
  • Paul B. Rainey
    • 3
    • 4
  1. 1.Institute of Natural and Mathematical SciencesMassey University at AlbanyAucklandNew Zealand
  2. 2.Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
  3. 3.NZ Institute for Advanced StudyMassey University at AlbanyAucklandNew Zealand
  4. 4.Max Planck Institute for Evolutionary BiologyPlönGermany

Personalised recommendations