Cellular and Molecular Life Sciences

, Volume 71, Issue 14, pp 2747–2758 | Cite as

Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10

  • So Young Lee
  • Juanma Ramirez
  • Maribel Franco
  • Benoît Lectez
  • Monika Gonzalez
  • Rosa Barrio
  • Ugo Mayor
Research Article


Ubiquitination, the covalent attachment of ubiquitin to a target protein, regulates most cellular processes and is involved in several neurological disorders. In particular, Angelman syndrome and one of the most common genomic forms of autism, dup15q, are caused respectively by lack of or excess of UBE3A, a ubiquitin E3 ligase. Its Drosophila orthologue, Ube3a, is also active during brain development. We have now devised a protocol to screen for substrates of this particular ubiquitin ligase. In a neuronal cell system, we find direct ubiquitination by Ube3a of three proteasome-related proteins Rpn10, Uch-L5, and CG8209, as well as of the ribosomal protein Rps10b. Only one of these, Rpn10, is targeted for degradation upon ubiquitination by Ube3a, indicating that degradation might not be the only effect of Ube3a on its substrates. Furthermore, we report the genetic interaction in vivo between Ube3a and the C-terminal part of Rpn10. Overexpression of these proteins leads to an enhanced accumulation of ubiquitinated proteins, further supporting the biochemical evidence of interaction obtained in neuronal cells.


Ube3a Ubiquitin Angelman syndrome Autism Proteasome Rpn10 



We would like to thank Janice Fischer, Fen-Biao Gao, Zoltán Lipinszki, Bloomington Stock Center, the DRSC, and The Developmental Studies Hybridoma Bank-DSHB (University of Iowa) for flies, cells, dsRNA templates, and antibodies, and David Gubb for helpful advice and support. We thank J. D. Sutherland for his suggestion to use the anti-GFP beads. We would also like to thank Larry Reiter and Catherine Lindon for critical reading and comments on the manuscript. We acknowledge the CIC bioGUNE Gene Silencing Platform for support. This work was supported by a Basque Government research grant (PI2011-24) and a March of Dimes Basil O′Connor Starter Scholar Research Award (5-FY12-16) to U.M. RB thanks the Spanish MICINN (grants BFU2008-01884, BFU2011-25986) and the Consolider Program (CSD2007-008-25120), the Basque Government (PI2009-16 and PI2012/42), and the Bizkaia County.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

18_2013_1526_MOESM1_ESM.tif (7 mb)
Supplementary material 1 (TIFF 7174 kb)
18_2013_1526_MOESM2_ESM.tif (26.3 mb)
Supplementary material 2 (TIFF 26918 kb)
18_2013_1526_MOESM3_ESM.tif (26.3 mb)
Supplementary material 3 (TIFF 26917 kb)
18_2013_1526_MOESM4_ESM.doc (103 kb)
Supplementary material 4 (DOC 103 kb)


  1. 1.
    Williams CA (2005) Neurological aspects of the Angelman syndrome. Brain Dev 27:88PubMedCrossRefGoogle Scholar
  2. 2.
    Kishino T et al (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:70PubMedCrossRefGoogle Scholar
  3. 3.
    Matsuura T et al (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15:74PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang YH et al (2004) A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 131:1PubMedCrossRefGoogle Scholar
  5. 5.
    Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15(Spec no 2):R138–R150PubMedCrossRefGoogle Scholar
  6. 6.
    Glessner JT et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Urraca N et al (2013) The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res 6(4):268–279PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hutsler JJ et al (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83PubMedCrossRefGoogle Scholar
  9. 9.
    Dindot SV et al (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17:111PubMedCrossRefGoogle Scholar
  10. 10.
    Sato M et al (2010) Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci USA 107:5611PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Smith SE et al (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 3:103ra97PubMedCentralPubMedGoogle Scholar
  12. 12.
    Groothuis TA et al (2006) Ubiquitin crosstalk connecting cellular processes. Cell Div 1:21PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Greer PL et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:704PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mishra A et al (2009) UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 36:26PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang YH et al (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:799PubMedCrossRefGoogle Scholar
  16. 16.
    Reiter LT et al (2006) Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Hum Mol Genet 15:2825PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Margolis SS et al (2010) EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143:442PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kuhnle S et al (2013) Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci USA 110:8888PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Greer PL et al (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846PubMedCrossRefGoogle Scholar
  20. 20.
    Jensen L et al (2013) Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 8:e61952PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Low Hai Loon C-F, Chi-Chen Kevin Chen JC, Tew Wai Loon, Hew Choy Sin, Ken-Shiung Chen (2012) In: Ken-Shiung Chen (ed) Advanced topics in neurological disorders (InTech 2012)Google Scholar
  22. 22.
    Wu Y et al (2008) A Drosophila model for Angelman syndrome. Proc Natl Acad Sci USA 105:12399PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lu Y et al (2009) The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 18:454PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Franco M et al (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10:M110002188CrossRefGoogle Scholar
  25. 25.
    Takagi Y et al (1998) Laminin-dependent integrin clustering with tyrosine-phosphorylated molecules in a Drosophila neuronal cell line. Neurosci Lett 244:149PubMedCrossRefGoogle Scholar
  26. 26.
    Min M et al (2013) Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Open Bio 3:130097CrossRefGoogle Scholar
  27. 27.
    Wang M et al (2005) Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J 24:4324PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lipinszki Z et al (2009) Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster. J Cell Sci 122:3083PubMedCrossRefGoogle Scholar
  29. 29.
    Tai HC et al (2010) Characterization of the brain 26S proteasome and its interacting proteins. Front Mol Neurosci. doi: 10.3389/fnmol.2010.00012 PubMedCentralPubMedGoogle Scholar
  30. 30.
    Martinez-Noel G et al (2012) Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol 32:3095PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wang X et al (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46:3553PubMedCrossRefGoogle Scholar
  32. 32.
    Scanlon TC et al (2009) Isolation of human proteasomes and putative proteasome-interacting proteins using a novel affinity chromatography method. Exp Cell Res 315:176PubMedCrossRefGoogle Scholar
  33. 33.
    Kleijnen MF et al (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409PubMedCrossRefGoogle Scholar
  34. 34.
    Besche HC et al (2009) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48:2538PubMedCrossRefGoogle Scholar
  35. 35.
    Bingol B et al (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:1144PubMedCrossRefGoogle Scholar
  36. 36.
    Bingol B et al (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567PubMedCrossRefGoogle Scholar
  37. 37.
    Shen H et al (2007) NAC1 regulates the recruitment of the proteasome complex into dendritic spines. J Neurosci 27:8903PubMedCrossRefGoogle Scholar
  38. 38.
    Hamilton AM et al (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74:1023PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Puram SV et al (2013) The ubiquitin receptor s5a/rpn10 links centrosomal proteasomes with dendrite development in the Mammalian brain. Cell Rep 4:19PubMedCrossRefGoogle Scholar
  40. 40.
    Szlanka T et al (2003) Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes in Drosophila melanogaster. J Cell Sci 116:1023PubMedCrossRefGoogle Scholar
  41. 41.
    Hamazaki J et al (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27:6629PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bowden NA et al (2006) Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res 82:175PubMedCrossRefGoogle Scholar
  43. 43.
    Martins-de-Souza D et al (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116:275PubMedCrossRefGoogle Scholar
  44. 44.
    Yao T et al (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8:994PubMedCrossRefGoogle Scholar
  45. 45.
    Hjerpe R et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10:1250PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ui K et al (1994) Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol Anim 30A:209PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • So Young Lee
    • 1
  • Juanma Ramirez
    • 1
  • Maribel Franco
    • 1
    • 3
  • Benoît Lectez
    • 1
  • Monika Gonzalez
    • 1
  • Rosa Barrio
    • 1
  • Ugo Mayor
    • 1
    • 2
  1. 1.CIC bioGUNE, Bizkaia Teknologia ParkeaDerioSpain
  2. 2.Ikerbasque, Basque Foundation for ScienceBilbaoSpain
  3. 3.Instituto de Neurociencias CSIC/UMHSant Joan d’AlacantSpain

Personalised recommendations