Cellular and Molecular Life Sciences

, Volume 71, Issue 9, pp 1703–1721 | Cite as

Small Rho GTPases in the control of cell shape and mobility

Review

Abstract

Rho GTPases are a class of evolutionarily conserved proteins comprising 20 members, which are predominantly known for their role in regulating the actin cytoskeleton. They are primarily regulated by binding of GTP/GDP, which is again controlled by regulators like GEFs, GAPs, and RhoGDIs. Rho GTPases are thus far well known for their role in the regulation of actin cytoskeleton and migration. Here we present an overview on the role of Rho GTPases in regulating cell shape and plasticity of cell migration. Finally, we discuss the emerging roles of ubiquitination and sumoylation in regulating Rho GTPases and cell migration.

Keywords

Rac1 RhoA Cdc42 Rho GTPases Cell shape Cell migration Plasticity Amoeboid Mesenchymal Metastases 

References

  1. 1.
    Valencia A, Chardin P, Wittinghofer A, Sander C (1991) The Ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30:4637–4648PubMedGoogle Scholar
  2. 2.
    Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142PubMedGoogle Scholar
  3. 3.
    Jaiswal M, Fansa EK, Dvorsky R, Ahmadian MR (2013) New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol Chem 394:89–95PubMedGoogle Scholar
  4. 4.
    Aspenstrom P, Ruusala A, Pacholsky D (2007) Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 313:3673–3679PubMedGoogle Scholar
  5. 5.
    Chardin P (2006) Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol 7:54–62PubMedGoogle Scholar
  6. 6.
    Wherlock M, Mellor H (2002) The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115:239–240PubMedGoogle Scholar
  7. 7.
    Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA, Lee SW (2006) RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol 16:2466–2472PubMedCentralPubMedGoogle Scholar
  8. 8.
    Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15:1796–1807PubMedCentralPubMedGoogle Scholar
  9. 9.
    Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedGoogle Scholar
  10. 10.
    Boureux A, Vignal E, Faure S, Fort P (2007) Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol Biol Evol 24:203–216PubMedCentralPubMedGoogle Scholar
  11. 11.
    Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793PubMedGoogle Scholar
  12. 12.
    Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103PubMedCentralPubMedGoogle Scholar
  13. 13.
    Thiel DA, Reeder MK, Pfaff A, Coleman TR, Sells MA, Chernoff J (2002) Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr Biol 12:1227–1232PubMedGoogle Scholar
  14. 14.
    Wells CM, Walmsley M, Ooi S, Tybulewicz V, Ridley AJ (2004) Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J Cell Sci 117:1259–1268PubMedGoogle Scholar
  15. 15.
    Wu YI, Wang X, He L, Montell D, Hahn KM (2011) Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol 497:393–407PubMedCentralPubMedGoogle Scholar
  16. 16.
    Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108PubMedCentralPubMedGoogle Scholar
  17. 17.
    Wang X, He L, Wu YI, Hahn KM, Montell DJ (2010) Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12:591–597PubMedCentralPubMedGoogle Scholar
  18. 18.
    Zhang Y, Rivera Rosado LA, Moon SY, Zhang B (2009) Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by activation of Rac-dependent p38 and JNK signaling. J Biol Chem 284:12956–12965PubMedCentralPubMedGoogle Scholar
  19. 19.
    Chen L, Zhang JJ, Huang XY (2008) cAMP inhibits cell migration by interfering with Rac-induced lamellipodium formation. J Biol Chem 283:13799–13805PubMedCentralPubMedGoogle Scholar
  20. 20.
    Sala G, Dituri F, Raimondi C, Previdi S, Maffucci T, Mazzoletti M, Rossi C, Iezzi M, Lattanzio R, Piantelli M, Iacobelli S, Broggini M, Falasca M (2008) Phospholipase Cgamma1 is required for metastasis development and progression. Cancer Res 68:10187–10196PubMedGoogle Scholar
  21. 21.
    Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186PubMedCentralPubMedGoogle Scholar
  22. 22.
    Bokoch GM (2000) Regulation of cell function by Rho family GTPases. Immunol Res 21:139–148PubMedGoogle Scholar
  23. 23.
    Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259PubMedGoogle Scholar
  24. 24.
    Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R (2004) p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5:154–160PubMedCentralPubMedGoogle Scholar
  25. 25.
    Ong CC, Jubb AM, Zhou W, Haverty PM, Harris AL, Belvin M, Friedman LS, Koeppen H, Hoeflich KP (2011) p21-activated kinase 1: PAK’ed with potential. Oncotarget 2:491–496PubMedCentralPubMedGoogle Scholar
  26. 26.
    Rayala SK, Molli PR, Kumar R (2006) Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Res 66:5985–5988PubMedGoogle Scholar
  27. 27.
    Sugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, Otani H, Sakagami H, Kondo H, Nozawa S, Aiba A, Katsuki M (1998) Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17:3427–3433PubMedGoogle Scholar
  28. 28.
    Benninger Y, Thurnherr T, Pereira JA, Krause S, Wu X, Chrostek-Grashoff A, Herzog D, Nave KA, Franklin RJ, Meijer D, Brakebusch C, Suter U, Relvas JB (2007) Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. J Cell Biol 177:1051–1061PubMedCentralPubMedGoogle Scholar
  29. 29.
    Guo F, Cancelas JA, Hildeman D, Williams DA, Zheng Y (2008) Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood 112:1767–1775PubMedCentralPubMedGoogle Scholar
  30. 30.
    Walmsley MJ, Ooi SK, Reynolds LF, Smith SH, Ruf S, Mathiot A, Vanes L, Williams DA, Cancro MP, Tybulewicz VL (2003) Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302:459–462PubMedGoogle Scholar
  31. 31.
    Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701PubMedGoogle Scholar
  32. 32.
    Corbetta S, Gualdoni S, Albertinazzi C, Paris S, Croci L, Consalez GG, de Curtis I (2005) Generation and characterization of Rac3 knockout mice. Mol Cell Biol 25:5763–5776PubMedCentralPubMedGoogle Scholar
  33. 33.
    Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150:251–263PubMedCentralPubMedGoogle Scholar
  34. 34.
    Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44:1006–1014PubMedCentralPubMedGoogle Scholar
  35. 35.
    Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E (1999) Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18:6835–6839PubMedGoogle Scholar
  36. 36.
    Matos P, Collard JG, Jordan P (2003) Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling. J Biol Chem 278:50442–50448PubMedGoogle Scholar
  37. 37.
    Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ (2004) Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 23:9369–9380PubMedGoogle Scholar
  38. 38.
    Visvikis O, Lores P, Boyer L, Chardin P, Lemichez E, Gacon G (2008) Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process. FEBS J 275:386–396PubMedGoogle Scholar
  39. 39.
    Ladd PD, Butler JS, Skalnik DG (2004) Identification of a genomic fragment that directs hematopoietic-specific expression of Rac2 and analysis of the DNA methylation profile of the gene locus. Gene 341:323–333PubMedGoogle Scholar
  40. 40.
    Haataja L, Groffen J, Heisterkamp N (1997) Characterization of RAC3, a novel member of the Rho family. J Biol Chem 272:20384–20388PubMedGoogle Scholar
  41. 41.
    Van Hennik PB, Hordijk PL (2005) Rho GTPases in hematopoietic cells. Antioxid Redox Signal 7:1440–1455PubMedGoogle Scholar
  42. 42.
    Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10:183–196PubMedGoogle Scholar
  43. 43.
    Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654PubMedGoogle Scholar
  44. 44.
    Yamauchi A, Kim C, Li S, Marchal CC, Towe J, Atkinson SJ, Dinauer MC (2004) Rac2-deficient murine macrophages have selective defects in superoxide production and phagocytosis of opsonized particles. J Immunol 173:5971–5979PubMedGoogle Scholar
  45. 45.
    Dinauer MC (2003) Regulation of neutrophil function by Rac GTPases. Curr Opin Hematol 10:8–15PubMedGoogle Scholar
  46. 46.
    Werner E (2004) GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117:143–153PubMedGoogle Scholar
  47. 47.
    Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG (2000) Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97:185–189PubMedCentralPubMedGoogle Scholar
  48. 48.
    Morris CM, Haataja L, McDonald M, Gough S, Markie D, Groffen J, Heisterkamp N (2000) The small GTPase RAC3 gene is located within chromosome band 17q25.3 outside and telomeric of a region commonly deleted in breast and ovarian tumours. Cytogenet Cell Genet 89:18–23PubMedGoogle Scholar
  49. 49.
    Katoh H, Hiramoto K, Negishi M (2006) Activation of Rac1 by RhoG regulates cell migration. J Cell Sci 119:56–65PubMedGoogle Scholar
  50. 50.
    Patel JC, Galan JE (2008) Investigating the function of Rho family GTPases during Salmonella/host cell interactions. Methods Enzymol 439:145–158PubMedCentralPubMedGoogle Scholar
  51. 51.
    Roppenser B, Roder A, Hentschke M, Ruckdeschel K, Aepfelbacher M (2009) Yersinia enterocolitica differentially modulates RhoG activity in host cells. J Cell Sci 122:696–705PubMedGoogle Scholar
  52. 52.
    Samson T, Welch C, Monaghan-Benson E, Hahn KM, Burridge K (2010) Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell 21:1629–1642PubMedCentralPubMedGoogle Scholar
  53. 53.
    Yang HW, Shin MG, Lee S, Kim JR, Park WS, Cho KH, Meyer T, Do Heo W (2012) Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell 47:281–290PubMedCentralPubMedGoogle Scholar
  54. 54.
    Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC (2005) Rho GTPase expression in tumourigenesis: evidence for a significant link. BioEssays 27:602–613PubMedGoogle Scholar
  55. 55.
    Huang M, Prendergast GC (2006) RhoB in cancer suppression. Histol Histopathol 21:213–218PubMedGoogle Scholar
  56. 56.
    Ridley AJ (2013) RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc 251:242–249PubMedGoogle Scholar
  57. 57.
    Braga VM, Yap AS (2005) The challenges of abundance: epithelial junctions and small GTPase signalling. Curr Opin Cell Biol 17:466–474PubMedGoogle Scholar
  58. 58.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMedGoogle Scholar
  59. 59.
    Merajver SD, Usmani SZ (2005) Multifaceted role of Rho proteins in angiogenesis. J Mammary Gland Biol Neoplasia 10:291–298PubMedGoogle Scholar
  60. 60.
    Wang W, Wu F, Fang F, Tao Y, Yang L (2008) RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci 99:2012–2018PubMedGoogle Scholar
  61. 61.
    Dietrich KA, Schwarz R, Liska M, Grass S, Menke A, Meister M, Kierschke G, Langle C, Genze F, Giehl K (2009) Specific induction of migration and invasion of pancreatic carcinoma cells by RhoC, which differs from RhoA in its localisation and activity. Biol Chem 390:1063–1077PubMedGoogle Scholar
  62. 62.
    Ellis S, Mellor H (2000) Regulation of endocytic traffic by rho family GTPases. Trends Cell Biol 10:85–88PubMedGoogle Scholar
  63. 63.
    Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529PubMedGoogle Scholar
  64. 64.
    Liu AX, Rane N, Liu JP, Prendergast GC (2001) RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol 21:6906–6912PubMedCentralPubMedGoogle Scholar
  65. 65.
    Ho TT, Merajver SD, Lapiere CM, Nusgens BV, Deroanne CF (2008) RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem 283:21588–21598PubMedGoogle Scholar
  66. 66.
    Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193:655–665PubMedCentralPubMedGoogle Scholar
  67. 67.
    Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–519PubMedCentralPubMedGoogle Scholar
  68. 68.
    Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275:21722–21729PubMedGoogle Scholar
  69. 69.
    Savoia C, Tabet F, Yao G, Schiffrin EL, Touyz RM (2005) Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J Hypertens 23:1037–1045PubMedGoogle Scholar
  70. 70.
    Sloan CM, Quinn CV, Peters JP, Farley J, Goetzinger C, Wernli M, DeMali KA, Ellerbroek SM (2012) Divergence of Rho residue 43 impacts GEF activity. Small GTPases 3:15–22PubMedCentralPubMedGoogle Scholar
  71. 71.
    Garvalov BK, Flynn KC, Neukirchen D, Meyn L, Teusch N, Wu X, Brakebusch C, Bamburg JR, Bradke F (2007) Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci 27:13117–13129PubMedGoogle Scholar
  72. 72.
    Thurnherr T, Benninger Y, Wu X, Chrostek A, Krause SM, Nave KA, Franklin RJ, Brakebusch C, Suter U, Relvas JB (2006) Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci 26:10110–10119PubMedGoogle Scholar
  73. 73.
    Lee K, Boyd KL, Parekh DV, Kehl-Fie TE, Baldwin HS, Brakebusch C, Skaar EP, Boothby M, Zent R (2013) Cdc42 promotes host defenses against fatal infection. Infect Immun 81:2714–2723PubMedCentralPubMedGoogle Scholar
  74. 74.
    Yang L, Wang L, Zheng Y (2006) Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts. Mol Biol Cell 17:4675–4685PubMedCentralPubMedGoogle Scholar
  75. 75.
    Czuchra A, Wu X, Meyer H, van Hengel J, Schroeder T, Geffers R, Rottner K, Brakebusch C (2005) Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol Biol Cell 16:4473–4484PubMedCentralPubMedGoogle Scholar
  76. 76.
    Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948PubMedGoogle Scholar
  77. 77.
    Kawase K, Nakamura T, Takaya A, Aoki K, Namikawa K, Kiyama H, Inagaki S, Takemoto H, Saltiel AR, Matsuda M (2006) GTP hydrolysis by the Rho family GTPase TC10 promotes exocytic vesicle fusion. Dev Cell 11:411–421PubMedGoogle Scholar
  78. 78.
    Abe T, Kato M, Miki H, Takenawa T, Endo T (2003) Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J Cell Sci 116:155–168PubMedGoogle Scholar
  79. 79.
    Doyle AD, Petrie RJ, Kutys ML, Yamada KM (2013) Dimensions in cell migration. Curr Opin Cell Biol 25:642–649PubMedGoogle Scholar
  80. 80.
    Petrie RJ, Yamada KM (2012) At the leading edge of three-dimensional cell migration. J Cell Sci 125:5917–5926PubMedGoogle Scholar
  81. 81.
    Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–369PubMedCentralPubMedGoogle Scholar
  82. 82.
    Linder S, Wiesner C, Himmel M (2011) Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 27:185–211PubMedGoogle Scholar
  83. 83.
    Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ (2008) Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J 95:5374–5384PubMedCentralPubMedGoogle Scholar
  84. 84.
    Sidani M, Wyckoff J, Xue C, Segall JE, Condeelis J (2006) Probing the microenvironment of mammary tumors using multiphoton microscopy. J Mammary Gland Biol Neoplasia 11:151–163PubMedGoogle Scholar
  85. 85.
    Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024PubMedCentralPubMedGoogle Scholar
  86. 86.
    Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287–1296PubMedCentralPubMedGoogle Scholar
  87. 87.
    Grinnell F (2008) Fibroblast mechanics in three-dimensional collagen matrices. J Bodyw Mov Ther 12:191–193PubMedCentralPubMedGoogle Scholar
  88. 88.
    Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–523PubMedGoogle Scholar
  89. 89.
    Lee HH, Tien SC, Jou TS, Chang YC, Jhong JG, Chang ZF (2010) Src-dependent phosphorylation of ROCK participates in regulation of focal adhesion dynamics. J Cell Sci 123:3368–3377PubMedGoogle Scholar
  90. 90.
    Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498PubMedGoogle Scholar
  91. 91.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709PubMedGoogle Scholar
  92. 92.
    Yui Y, Itoh K, Yoshioka K, Naka N, Watanabe M, Hiraumi Y, Matsubara H, Watanabe K, Sano K, Nakahata T, Adachi S (2010) Mesenchymal mode of migration participates in pulmonary metastasis of mouse osteosarcoma LM8. Clin Exp Metastasis 27:619–630PubMedGoogle Scholar
  93. 93.
    Block J, Breitsprecher D, Kuhn S, Winterhoff M, Kage F, Geffers R, Duwe P, Rohn JL, Baum B, Brakebusch C, Geyer M, Stradal TE, Faix J, Rottner K (2012) FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr Biol 22:1005–1012PubMedCentralPubMedGoogle Scholar
  94. 94.
    Alblas J, Ulfman L, Hordijk P, Koenderman L (2001) Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell 12:2137–2145PubMedCentralPubMedGoogle Scholar
  95. 95.
    Kurokawa K, Matsuda M (2005) Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 16:4294–4303PubMedCentralPubMedGoogle Scholar
  96. 96.
    Bachy S, Letourneur F, Rousselle P (2008) Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J Cell Physiol 214:238–249PubMedGoogle Scholar
  97. 97.
    Gonzalo P, Guadamillas MC, Hernandez-Riquer MV, Pollan A, Grande-Garcia A, Bartolome RA, Vasanji A, Ambrogio C, Chiarle R, Teixido J, Risteli J, Apte SS, del Pozo MA, Arroyo AG (2010) MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Dev Cell 18:77–89PubMedCentralPubMedGoogle Scholar
  98. 98.
    Kheradmand F, Werner E, Tremble P, Symons M, Werb Z (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280:898–902PubMedGoogle Scholar
  99. 99.
    Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J 13:781–792PubMedGoogle Scholar
  100. 100.
    Yamagata K, Li X, Ikegaki S, Oneyama C, Okada M, Nishita M, Minami Y (2012) Dissection of Wnt5a-Ror2 signaling leading to matrix metalloproteinase (MMP-13) expression. J Biol Chem 287:1588–1599PubMedCentralPubMedGoogle Scholar
  101. 101.
    Jeong KJ, Park SY, Cho KH, Sohn JS, Lee J, Kim YK, Kang J, Park CG, Han JW, Lee HY (2012) The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene 31:4279–4289PubMedGoogle Scholar
  102. 102.
    Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60:2504–2511PubMedGoogle Scholar
  103. 103.
    Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim HD, Giampieri S, Wang Y, Goswami S, Wyckoff JB, Lauffenburger DA, Sahai E, Condeelis JS, Gertler FB (2008) A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell 15:813–828PubMedCentralPubMedGoogle Scholar
  104. 104.
    Sahai E, Wyckoff J, Philippar U, Segall JE, Gertler F, Condeelis J (2005) Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 5:14PubMedCentralPubMedGoogle Scholar
  105. 105.
    Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai KL, Zhang ZY, Sahai E, Condeelis J, Segall JE (2006) Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66:192–197PubMedGoogle Scholar
  106. 106.
    Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884PubMedCentralPubMedGoogle Scholar
  107. 107.
    Keller HU, Bebie H (1996) Protrusive activity quantitatively determines the rate and direction of cell locomotion. Cell Motil Cytoskelet 33:241–251Google Scholar
  108. 108.
    Yoshida K, Soldati T (2006) Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119:3833–3844PubMedGoogle Scholar
  109. 109.
    Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188:11–19PubMedCentralPubMedGoogle Scholar
  110. 110.
    Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719PubMedGoogle Scholar
  111. 111.
    Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55PubMedGoogle Scholar
  112. 112.
    Pinner S, Sahai E (2008) PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 10:127–137PubMedGoogle Scholar
  113. 113.
    Eisenmann KM, Harris ES, Kitchen SM, Holman HA, Higgs HN, Alberts AS (2007) Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17:579–591PubMedGoogle Scholar
  114. 114.
    Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B (2008) Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 95:1428–1438PubMedCentralPubMedGoogle Scholar
  115. 115.
    Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19PubMedCentralPubMedGoogle Scholar
  116. 116.
    Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904PubMedGoogle Scholar
  117. 117.
    Gadea G, Sanz-Moreno V, Self A, Godi A, Marshall CJ (2008) DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Curr Biol 18:1456–1465PubMedGoogle Scholar
  118. 118.
    Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ (2011) An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells. J Cell Sci 124:1256–1267PubMedGoogle Scholar
  119. 119.
    Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449PubMedGoogle Scholar
  120. 120.
    Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, Black M, Zanker KS (1995) Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 55:4557–4560PubMedGoogle Scholar
  121. 121.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457PubMedGoogle Scholar
  122. 122.
    Garcia GL, Rericha EC, Heger CD, Goldsmith PK, Parent CA (2009) The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation. Mol Biol Cell 20:3295–3304PubMedCentralPubMedGoogle Scholar
  123. 123.
    Rieger S, Senghaas N, Walch A, Koster RW (2009) Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 7:e1000240PubMedCentralPubMedGoogle Scholar
  124. 124.
    Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23PubMedCentralPubMedGoogle Scholar
  125. 125.
    Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581PubMedCentralPubMedGoogle Scholar
  126. 126.
    Gray RS, Cheung KJ, Ewald AJ (2010) Cellular mechanisms regulating epithelial morphogenesis and cancer invasion. Curr Opin Cell Biol 22:640–650PubMedCentralPubMedGoogle Scholar
  127. 127.
    Scholl FG, Gamallo C, Vilaro S, Quintanilla M (1999) Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci 112(Pt 24):4601–4613PubMedGoogle Scholar
  128. 128.
    Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial–mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272PubMedGoogle Scholar
  129. 129.
    Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E (2011) Collective cell migration requires suppression of actomyosin at cell–cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13:49–58PubMedCentralPubMedGoogle Scholar
  130. 130.
    Levayer R, Pelissier-Monier A, Lecuit T (2011) Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 13:529–540PubMedGoogle Scholar
  131. 131.
    Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR (2008) Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol 180:1277–1289PubMedCentralPubMedGoogle Scholar
  132. 132.
    Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19:39–53PubMedCentralPubMedGoogle Scholar
  133. 133.
    Theveneau E, Mayor R (2010) Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work. Small GTPases 1:113–117PubMedCentralPubMedGoogle Scholar
  134. 134.
    Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci USA 104:15988–15993PubMedCentralPubMedGoogle Scholar
  135. 135.
    Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400PubMedGoogle Scholar
  136. 136.
    Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Feral CC, Cook M, Larkin J, Marais R, Meneguzzi G, Sahai E, Marshall CJ (2011) ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 20:229–245PubMedGoogle Scholar
  137. 137.
    Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83PubMedGoogle Scholar
  138. 138.
    Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo K, Nakajima K, Nabeshima Y, Hoshino M (2010) Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67:588–602PubMedGoogle Scholar
  139. 139.
    Shikanai M, Nakajima K, Kawauchi T (2011) N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol 4:326–330PubMedCentralPubMedGoogle Scholar
  140. 140.
    Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419PubMedCentralPubMedGoogle Scholar
  141. 141.
    Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T (2008) The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544PubMedGoogle Scholar
  142. 142.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939PubMedGoogle Scholar
  143. 143.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139:871–890PubMedGoogle Scholar
  144. 144.
    Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedCentralPubMedGoogle Scholar
  145. 145.
    Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG (1997) Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278:1464–1466PubMedGoogle Scholar
  146. 146.
    Malliri A, van Es S, Huveneers S, Collard JG (2004) The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J Biol Chem 279:30092–30098PubMedGoogle Scholar
  147. 147.
    Ahn J, Sanz-Moreno V, Marshall CJ (2012) The metastasis gene NEDD9 product acts through integrin beta3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J Cell Sci 125:1814–1826PubMedGoogle Scholar
  148. 148.
    Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P (2009) EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res 69:2072–2081PubMedGoogle Scholar
  149. 149.
    Yamazaki D, Kurisu S, Takenawa T (2009) Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28:1570–1583PubMedGoogle Scholar
  150. 150.
    Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134:135–147PubMedGoogle Scholar
  151. 151.
    Sahai E, Garcia-Medina R, Pouyssegur J, Vial E (2007) Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176:35–42PubMedCentralPubMedGoogle Scholar
  152. 152.
    Oberoi TK, Dogan T, Hocking JC, Scholz RP, Mooz J, Anderson CL, Karreman C, Meyer zu Heringdorf D, Schmidt G, Ruonala M, Namikawa K, Harms GS, Carpy A, Macek B, Koster RW, Rajalingam K (2012) IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. Embo J 31:14–28PubMedCentralPubMedGoogle Scholar
  153. 153.
    Oberoi-Khanuja TK, Rajalingam K (2012) IAPs as E3 ligases of Rac1: shaping the move. Small GTPases 3:131–136PubMedCentralPubMedGoogle Scholar
  154. 154.
    Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341PubMedGoogle Scholar
  155. 155.
    Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V, Siavoshian S, Maucuer A, Sobel A (1999) Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 24:345–357PubMedGoogle Scholar
  156. 156.
    Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K, Canzonieri V, D’Andrea S, Zucchetto A, Friedl P, Colombatti A, Baldassarre G (2008) Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell 19:2003–2013PubMedCentralPubMedGoogle Scholar
  157. 157.
    Li N, Jiang P, Du W, Wu Z, Li C, Qiao M, Yang X, Wu M (2011) Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules. Proc Natl Acad Sci USA 108:12851–12856PubMedCentralPubMedGoogle Scholar
  158. 158.
    Belletti B, Baldassarre G (2011) Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 15:1249–1266PubMedGoogle Scholar
  159. 159.
    Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277PubMedCentralPubMedGoogle Scholar
  160. 160.
    Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16:14–23PubMedGoogle Scholar
  161. 161.
    Belgiovine C, Frapolli R, Bonezzi K, Chiodi I, Favero F, Mello-Grand M, Dei Tos AP, Giulotto E, Taraboletti G, D’Incalci M, Mondello C (2010) Reduced expression of the ROCK inhibitor Rnd3 is associated with increased invasiveness and metastatic potential in mesenchymal tumor cells. PLoS ONE 5:e14154PubMedCentralPubMedGoogle Scholar
  162. 162.
    Grise F, Sena S, Bidaud-Meynard A, Baud J, Hiriart JB, Makki K, Dugot-Senant N, Staedel C, Bioulac-Sage P, Zucman-Rossi J, Rosenbaum J, Moreau V (2012) Rnd3/RhoE Is down-regulated in hepatocellular carcinoma and controls cellular invasion. Hepatology 55:1766–1775PubMedGoogle Scholar
  163. 163.
    Luo H, Dong Z, Zou J, Zeng Q, Wu D, Liu L (2012) Down-regulation of RhoE is associated with progression and poor prognosis in hepatocellular carcinoma. J Surg Oncol 105:699–704PubMedGoogle Scholar
  164. 164.
    Zhou J, Li K, Gu Y, Feng B, Ren G, Zhang L, Wang Y, Nie Y, Fan D (2011) Transcriptional up-regulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia. Biochem Biophys Res Commun 415:348–354PubMedGoogle Scholar
  165. 165.
    Petrie RJ, Gavara N, Chadwick RS, Yamada KM (2012) Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol 197:439–455PubMedCentralPubMedGoogle Scholar
  166. 166.
    Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009PubMedGoogle Scholar
  167. 167.
    Hegerfeldt Y, Tusch M, Brocker EB, Friedl P (2002) Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, beta1-integrin function, and migration strategies. Cancer Res 62:2125–2130PubMedGoogle Scholar
  168. 168.
    Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029PubMedGoogle Scholar
  169. 169.
    Zhao J, Mialki RK, Wei J, Coon TA, Zou C, Chen BB, Mallampalli RK, Zhao Y (2013) SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. Faseb J 27:2611–2619PubMedGoogle Scholar
  170. 170.
    Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733PubMedGoogle Scholar
  171. 171.
    Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729PubMedGoogle Scholar
  172. 172.
    Lerm M, Pop M, Fritz G, Aktories K, Schmidt G (2002) Proteasomal degradation of cytotoxic necrotizing factor 1-activated rac. Infect Immun 70:4053–4058PubMedCentralPubMedGoogle Scholar
  173. 173.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609PubMedGoogle Scholar
  174. 174.
    Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003) Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302:1775–1779PubMedGoogle Scholar
  175. 175.
    Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M (2005) Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett 579:1015–1019PubMedGoogle Scholar
  176. 176.
    Zimmerman ES, Schulman BA, Zheng N (2010) Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 20:714–721PubMedCentralPubMedGoogle Scholar
  177. 177.
    Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F (2009) Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35:841–855PubMedGoogle Scholar
  178. 178.
    Wei J, Mialki RK, Dong S, Khoo A, Mallampalli RK, Zhao Y, Zhao J (2013) A new mechanism of RhoA ubiquitination and degradation: roles of SCF E3 ligase and Erk2. Biochim Biophys Acta 1833:2757–2764PubMedGoogle Scholar
  179. 179.
    Torrino S, Visvikis O, Doye A, Boyer L, Stefani C, Munro P, Bertoglio J, Gacon G, Mettouchi A, Lemichez E (2011) The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev Cell 21:959–965PubMedGoogle Scholar
  180. 180.
    Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT, Malliri A (2010) SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 12:1078–1085PubMedCentralPubMedGoogle Scholar
  181. 181.
    Yu J, Zhang D, Liu J, Li J, Yu Y, Wu XR, Huang C (2012) RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J Biol Chem 287:13752–13760PubMedCentralPubMedGoogle Scholar
  182. 182.
    Liu J, Zhang D, Luo W, Yu Y, Yu J, Li J, Zhang X, Zhang B, Chen J, Wu XR, Rosas-Acosta G, Huang C (2011) X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J Biol Chem 286:15630–15640PubMedCentralPubMedGoogle Scholar
  183. 183.
    DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363PubMedGoogle Scholar
  184. 184.
    Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5:1321–1328PubMedGoogle Scholar
  185. 185.
    Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, Cerione RA (1992) The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J Biol Chem 267:22860–22868PubMedGoogle Scholar
  186. 186.
    Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ, Burridge K (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12:477–483PubMedCentralPubMedGoogle Scholar
  187. 187.
    Bielek H, Anselmo A, Dermardirossian C (2009) Morphological and proliferative abnormalities in renal mesangial cells lacking RhoGDI. Cell Signal 21:1974–1983PubMedCentralPubMedGoogle Scholar
  188. 188.
    Liu M, Bi F, Zhou X, Zheng Y (2012) Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol 22:365–373PubMedCentralPubMedGoogle Scholar
  189. 189.
    Ispanovic E, Serio D, Haas TL (2008) Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation. Am J Physiol Cell Physiol 295:C600–C610PubMedGoogle Scholar
  190. 190.
    Saito K, Ozawa Y, Hibino K, Ohta Y (2012) FilGAP, a Rho/Rho-associated protein kinase-regulated GTPase-activating protein for Rac, controls tumor cell migration. Mol Biol Cell 23:4739–4750Google Scholar
  191. 191.
    Noguchi F, Inui S, Nakajima T, Itami S (2012) Hic-5 affects proliferation, migration and invasion of B16 murine melanoma cells. Pigment Cell Melanoma Res 25:773–782PubMedGoogle Scholar
  192. 192.
    Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C, Giannoni E, Raugei G, Bologna M, Calorini L, Chiarugi P (2011) EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res 9:149–160PubMedGoogle Scholar
  193. 193.
    Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R (2010) Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC. Oncogene 29:2441–2448PubMedGoogle Scholar
  194. 194.
    Omelchenko T, Hall A (2012) Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell–cell junctions. Curr Biol 22:278–288PubMedCentralPubMedGoogle Scholar
  195. 195.
    Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Cell Death Signaling Group, Institute of Biochemistry IIGoethe University Medical SchoolFrankfurtGermany

Personalised recommendations