Cellular and Molecular Life Sciences

, Volume 71, Issue 9, pp 1623–1639

In vitro neurogenesis: development and functional implications of iPSC technology

  • Claudia Compagnucci
  • Monica Nizzardo
  • Stefania Corti
  • Ginevra Zanni
  • Enrico Bertini
Review

Abstract

Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.

Keywords

iPSCs Neurogenesis Neurological disease modeling 

References

  1. 1.
    Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379 Google Scholar
  2. 2.
    Spemann H (1938) Embryonic development and induction. Yale University Press, New HavenGoogle Scholar
  3. 3.
    Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430PubMedGoogle Scholar
  4. 4.
    Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121(12):3923–3933PubMedGoogle Scholar
  5. 5.
    Niehrs C (1999) Head in the WNT: the molecular nature of Spemann’s head organizer. Trends Genet 15(8):314–319PubMedGoogle Scholar
  6. 6.
    Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96(2):195–209PubMedGoogle Scholar
  7. 7.
    Jessel TM, Sanes JR (2000) The induction and patterning of the nervous system. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science. McGraw-Hill, New York, pp 1019–1040Google Scholar
  8. 8.
    Marin O, Anderson SA, Rubenstein JL (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20(16):6063–6076PubMedGoogle Scholar
  9. 9.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedGoogle Scholar
  10. 10.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMedCentralPubMedGoogle Scholar
  11. 11.
    Meyers RA (2013) Stem cells: from biology to therapy, vol 1. Wiley-Blackwell, HobokenGoogle Scholar
  12. 12.
    Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10):1129–1155PubMedGoogle Scholar
  13. 13.
    Inokuchi K (2011) Adult neurogenesis and modulation of neural circuit function. Curr Opin Neurobiol 21(2):360–364PubMedGoogle Scholar
  14. 14.
    Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634PubMedGoogle Scholar
  15. 15.
    Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435(4):406–417PubMedGoogle Scholar
  16. 16.
    Fernandez Vallone VB, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA (2013) Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 85(1–2):1–10PubMedGoogle Scholar
  17. 17.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97(26):14720–14725PubMedCentralPubMedGoogle Scholar
  18. 18.
    Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175(1):1–13PubMedGoogle Scholar
  19. 19.
    Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19(9):387–393PubMedGoogle Scholar
  20. 20.
    Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158(2):265–278PubMedGoogle Scholar
  21. 21.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedGoogle Scholar
  22. 22.
    Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284PubMedGoogle Scholar
  23. 23.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMedCentralPubMedGoogle Scholar
  25. 25.
    Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41(9):968–976PubMedPubMedCentralGoogle Scholar
  26. 26.
    Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148PubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010) Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51(5):1810–1819PubMedCentralPubMedGoogle Scholar
  28. 28.
    Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, Yu H, Jin S, Wei Z, Chen F, Jin Y (2009) Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet 18(22):4340–4349PubMedGoogle Scholar
  29. 29.
    Zhao HX, Li Y, Jin HF, Xie L, Liu C, Jiang F, Luo YN, Yin GW, Wang J, Li LS, Yao YQ, Wang XH (2010) Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 80(2–3):123–129PubMedGoogle Scholar
  30. 30.
    Beltrao-Braga PC, Pignatari GC, Maiorka PC, Oliveira NA, Lizier NF, Wenceslau CV, Miglino MA, Muotri AR, Kerkis I (2011) Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transpl 20(11–12):1707–1719Google Scholar
  31. 31.
    Petit I, Kesner NS, Karry R, Robicsek O, Aberdam E, Muller FJ, Aberdam D, Ben-Shachar D (2012) Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders. Stem Cell Res 8(1):134–140PubMedGoogle Scholar
  32. 32.
    Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, Lutz MK, Berggren WT, Izpisua Belmonte JC, Evans RM (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci USA 107(8):3558–3563PubMedCentralPubMedGoogle Scholar
  33. 33.
    Aoki T, Ohnishi H, Oda Y, Tadokoro M, Sasao M, Kato H, Hattori K, Ohgushi H (2010) Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Eng Part A 16(7):2197–2206PubMedGoogle Scholar
  34. 34.
    Tat PA, Sumer H, Jones KL, Upton K, Verma PJ (2010) The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transpl 19(5):525–536Google Scholar
  35. 35.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801PubMedCentralPubMedGoogle Scholar
  36. 36.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMedCentralPubMedGoogle Scholar
  37. 37.
    Okuyama M, Laman H, Kingsbury SR, Visintin C, Leo E, Eward KL, Stoeber K, Boshoff C, Williams GH, Selwood DL (2007) Small-molecule mimics of an alpha-helix for efficient transport of proteins into cells. Nat Methods 4(2):153–159PubMedGoogle Scholar
  38. 38.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384PubMedGoogle Scholar
  39. 39.
    Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10(12):915–929PubMedGoogle Scholar
  40. 40.
    Maury Y, Gauthier M, Peschanski M, Martinat C (2011) Human pluripotent stem cells for disease modelling and drug screening. BioEssays 34(1):61–71PubMedGoogle Scholar
  41. 41.
    Chetty S, Pagliuca FW, Honore C, Kweudjeu A, Rezania A, Melton DA (2013) A simple tool to improve pluripotent stem cell differentiation. Nat Methods 10(6):553–556 Google Scholar
  42. 42.
    Theus MH, Wei L, Francis K, Yu SP (2006) Critical roles of Src family tyrosine kinases in excitatory neuronal differentiation of cultured embryonic stem cells. Exp Cell Res 312(16):3096–3107PubMedGoogle Scholar
  43. 43.
    Bibel M, Richter J, Lacroix E, Barde YA (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc 2(5):1034–1043PubMedGoogle Scholar
  44. 44.
    Farra N, Zhang WB, Pasceri P, Eubanks JH, Salter MW, Ellis J (2012) Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neurophysiological alterations. Mol Psychiatry 17(12):1261–1271PubMedCentralPubMedGoogle Scholar
  45. 45.
    Li XJ, Zhang X, Johnson MA, Wang ZB, Lavaute T, Zhang SC (2009) Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136(23):4055–4063PubMedCentralPubMedGoogle Scholar
  46. 46.
    Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW, Zhan S, Kronenberg MS, Lichtler A, Liu HX, Chen FP, Yue L, Li XJ, Xu RH (2010) Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE 5(7):e11853PubMedCentralPubMedGoogle Scholar
  47. 47.
    Reyes JH, O’Shea KS, Wys NL, Velkey JM, Prieskorn DM, Wesolowski K, Miller JM, Altschuler RA (2008) Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. J Neurosci 28(48):12622–12631PubMedCentralPubMedGoogle Scholar
  48. 48.
    Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A, Bonnefont J, Bali C, Orduz D, Bilheu A, Herpoel A, Lambert N, Gaspard N, Peron S, Schiffmann SN, Giugliano M, Gaillard A, Vanderhaeghen P (2013) Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77(3):440–456PubMedGoogle Scholar
  49. 49.
    Erceg S, Lukovic D, Moreno-Manzano V, Stojkovic M, Bhattacharya SS (2012) Derivation of cerebellar neurons from human pluripotent stem cells. Curr Protoc Stem Cell Biol Chapter 1:Unit 1H 5Google Scholar
  50. 50.
    Salero E, Hatten ME (2007) Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci USA 104(8):2997–3002PubMedCentralPubMedGoogle Scholar
  51. 51.
    Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23(6):781–790PubMedCentralPubMedGoogle Scholar
  52. 52.
    Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, Joers V, Swanson C, Holden JE, Zhang SC (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3(3):646–650PubMedCentralPubMedGoogle Scholar
  53. 53.
    Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207PubMedGoogle Scholar
  54. 54.
    Shimada T, Takai Y, Shinohara K, Yamasaki A, Tominaga-Yoshino K, Ogura A, Toi A, Asano K, Shintani N, Hayata-Takano A, Baba A, Hashimoto H (2012) A simplified method to generate serotonergic neurons from mouse embryonic stem and induced pluripotent stem cells. J Neurochem 122(1):81–93PubMedGoogle Scholar
  55. 55.
    Addae C, Yi X, Gernapudi R, Cheng H, Musto A, Martinez-Ceballos E (2012) All-trans-retinoid acid induces the differentiation of encapsulated mouse embryonic stem cells into GABAergic neurons. Differentiation 83(5):233–241PubMedCentralPubMedGoogle Scholar
  56. 56.
    Corti S, Nizzardo M, Simone C, Falcone M, Nardini M, Ronchi D, Donadoni C, Salani S, Riboldi G, Magri F, Menozzi G, Bonaglia C, Rizzo F, Bresolin N, Comi GP (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 4 (165):165ra162Google Scholar
  57. 57.
    Gupta N, Henry RG, Strober J, Kang SM, Lim DA, Bucci M, Caverzasi E, Gaetano L, Mandelli ML, Ryan T, Perry R, Farrell J, Jeremy RJ, Ulman M, Huhn SL, Barkovich AJ, Rowitch DH (2012) Neural stem cell engraftment and myelination in the human brain. Sci Transl Med 4 (155):155ra137Google Scholar
  58. 58.
    Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4(11):1614–1622PubMedCentralPubMedGoogle Scholar
  59. 59.
    Ebert AD, Shelley BC, Hurley AM, Onorati M, Castiglioni V, Patitucci TN, Svendsen SP, Mattis VB, McGivern JV, Schwab AJ, Sareen D, Kim HW, Cattaneo E, Svendsen CN (2013) EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs. Stem Cell Res 10(3):417–427PubMedCentralPubMedGoogle Scholar
  60. 60.
    Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30(1):65–78PubMedGoogle Scholar
  61. 61.
    Fico A, Manganelli G, Simeone M, Guido S, Minchiotti G, Filosa S (2008) High-throughput screening-compatible single-step protocol to differentiate embryonic stem cells in neurons. Stem Cells Dev 17(3):573–584PubMedGoogle Scholar
  62. 62.
    Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Sudhof TC (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798PubMedCentralPubMedGoogle Scholar
  63. 63.
    Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G, Comi GP, Corti S (2010) Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci 67(22):3837–3847PubMedGoogle Scholar
  64. 64.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041PubMedCentralPubMedGoogle Scholar
  65. 65.
    Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–526PubMedGoogle Scholar
  66. 66.
    Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti WB, Moreno H, Abeliovich A (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146(3):359–371PubMedCentralPubMedGoogle Scholar
  67. 67.
    Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280PubMedCentralPubMedGoogle Scholar
  68. 68.
    Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411PubMedCentralPubMedGoogle Scholar
  69. 69.
    Marchetto MC, Winner B, Gage FH (2010) Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 19(R1):R71–R76PubMedCentralPubMedGoogle Scholar
  70. 70.
    Ebert AD, Svendsen CN (2010) Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov 9(5):367–372PubMedGoogle Scholar
  71. 71.
    Seifinejad A, Tabebordbar M, Baharvand H, Boyer LA, Salekdeh GH (2010) Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev 6(2):297–306PubMedGoogle Scholar
  72. 72.
    Ramia M, Musharrafieh U, Khaddage W, Sabri A (2013) Revisiting Down syndrome from the ENT perspective: review of literature and recommendations. Eur Arch Otorhinolaryngol [Epub ahead of print] Google Scholar
  73. 73.
    Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359(9303):310–315PubMedGoogle Scholar
  74. 74.
    Bhattacharyya A, McMillan E, Chen SI, Wallace K, Svendsen CN (2009) A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells. Dev Neurosci 31(6):497–510PubMedCentralPubMedGoogle Scholar
  75. 75.
    Biancotti JC, Narwani K, Buehler N, Mandefro B, Golan-Lev T, Yanuka O, Clark A, Hill D, Benvenisty N, Lavon N (2010) Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28(9):1530–1540PubMedGoogle Scholar
  76. 76.
    Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146PubMedGoogle Scholar
  77. 77.
    Mattis VB, Svendsen CN (2011) Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 10(4):383–394PubMedGoogle Scholar
  78. 78.
    Hagerman PJ, Hagerman RJ (2004) The fragile-X premutation: a maturing perspective. Am J Hum Genet 74(5):805–816PubMedCentralPubMedGoogle Scholar
  79. 79.
    Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, Grigsby J, Gage B, Hagerman PJ (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57(1):127–130PubMedGoogle Scholar
  80. 80.
    Oostra BA, Willemsen R (2009) FMR1: a gene with three faces. Biochim Biophys Acta 1790(6):467–477PubMedCentralPubMedGoogle Scholar
  81. 81.
    Jacquemont S, Hagerman RJ, Leehey M, Grigsby J, Zhang L, Brunberg JA, Greco C, Des Portes V, Jardini T, Levine R, Berry-Kravis E, Brown WT, Schaeffer S, Kissel J, Tassone F, Hagerman PJ (2003) Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 72(4):869–878PubMedCentralPubMedGoogle Scholar
  82. 82.
    Crawford DC, Acuna JM, Sherman SL (2001) FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 3(5):359–371PubMedGoogle Scholar
  83. 83.
    Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1(5):568–577PubMedGoogle Scholar
  84. 84.
    Bar-Nur O, Caspi I, Benvenisty N (2021) Molecular analysis of FMR1 reactivation in fragile-X-induced pluripotent stem cells and their neuronal derivatives. J Mol Cell Biol 4 (3):180–183Google Scholar
  85. 85.
    Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229PubMedCentralPubMedGoogle Scholar
  86. 86.
    Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X (2007) Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 27(1):77–89PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371(9630):2120–2133PubMedGoogle Scholar
  88. 88.
    Burglen L, Lefebvre S, Clermont O, Burlet P, Viollet L, Cruaud C, Munnich A, Melki J (1996) Structure and organization of the human survival motor neurone (SMN) gene. Genomics 32(3):479–482PubMedGoogle Scholar
  89. 89.
    Lorson CL, Androphy EJ (1998) The domain encoded by exon 2 of the survival motor neuron protein mediates nucleic acid binding. Hum Mol Genet 7(8):1269–1275PubMedGoogle Scholar
  90. 90.
    Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96(11):6307–6311PubMedCentralPubMedGoogle Scholar
  91. 91.
    Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19(1):63–66PubMedGoogle Scholar
  92. 92.
    Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24(1):66–70PubMedGoogle Scholar
  93. 93.
    Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, Morris GE, Burghes AH (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9(3):333–339PubMedGoogle Scholar
  94. 94.
    Gogliotti RG, Hammond SM, Lutz C, Didonato CJ (2009) Molecular and phenotypic reassessment of an infrequently used mouse model for spinal muscular atrophy. Biochem Biophys Res Commun 391(1):517–522PubMedCentralPubMedGoogle Scholar
  95. 95.
    Michaud M, Arnoux T, Bielli S, Durand E, Rotrou Y, Jablonka S, Robert F, Giraudon-Paoli M, Riessland M, Mattei MG, Andriambeloson E, Wirth B, Sendtner M, Gallego J, Pruss RM, Bordet T (2010) Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 38(1):125–135PubMedGoogle Scholar
  96. 96.
    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Saladino F, Bordoni A, Fortunato F, Del Bo R, Papadimitriou D, Locatelli F, Menozzi G, Strazzer S, Bresolin N, Comi GP (2008) Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 118(10):3316–3330PubMedCentralPubMedGoogle Scholar
  97. 97.
    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Simone C, Falcone M, Papadimitriou D, Locatelli F, Mezzina N, Gianni F, Bresolin N, Comi GP (2010) Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 133(Pt 2):465–481PubMedGoogle Scholar
  98. 98.
    Blanchet PJ, Normandeau L, Rompre PH (2012) Comparing three screening tools for drug-induced parkinsonism in patients with advanced schizophrenia: a pilot study. Schizophr Res 137(1–3):230–233PubMedGoogle Scholar
  99. 99.
    Dawson TM (2007) Unraveling the role of defective genes in Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl 3):S248–S249PubMedGoogle Scholar
  100. 100.
    Baker R, Barasi S, Neal MJ (2003) Neuroscience at a Glance. In: Publishing B (ed). Oxford, UKGoogle Scholar
  101. 101.
    Parish CL, Castelo-Branco G, Rawal N, Tonnesen J, Sorensen AT, Salto C, Kokaia M, Lindvall O, Arenas E (2008) Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J Clin Invest 118(1):149–160PubMedCentralPubMedGoogle Scholar
  102. 102.
    Bjorklund LM, Isacson O (2002) Regulation of dopamine cell type and transmitter function in fetal and stem cell transplantation for Parkinson’s disease. Prog Brain Res 138:411–420PubMedGoogle Scholar
  103. 103.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344(10):710–719PubMedGoogle Scholar
  104. 104.
    Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2(12):1137–1140PubMedGoogle Scholar
  105. 105.
    Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 123(Pt 7):1365–1379PubMedGoogle Scholar
  106. 106.
    Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, Dagher A, Isacson O (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128(Pt 7):1498–1510PubMedCentralPubMedGoogle Scholar
  107. 107.
    Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56PubMedGoogle Scholar
  108. 108.
    Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26(1):55–63PubMedCentralPubMedGoogle Scholar
  109. 109.
    Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105(15):5856–5861PubMedCentralPubMedGoogle Scholar
  110. 110.
    Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280PubMedCentralPubMedGoogle Scholar
  111. 111.
    Zigmond MJ, Keefe KA (1998) Highly selective neurotoxin: basic and clinical applications. In: Kostrzewa RM (ed) Humana Press, Totowa, NJ, pp 75–107Google Scholar
  112. 112.
    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16(7):780–789PubMedGoogle Scholar
  113. 113.
    Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491–495PubMedCentralPubMedGoogle Scholar
  114. 114.
    Uchida N, Chen K, Dohse M, Hansen KD, Dean J, Buser JR, Riddle A, Beardsley DJ, Wan Y, Gong X, Nguyen T, Cummings BJ, Anderson AJ, Tamaki SJ, Tsukamoto A, Weissman IL, Matsumoto SG, Sherman LS, Kroenke CD, Back SA (2012) Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med 4 (155):155ra136Google Scholar
  115. 115.
    Gupta K, Patani R, Baxter P, Serio A, Story D, Tsujita T, Hayes JD, Pedersen RA, Hardingham GE, Chandran S (2012) Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. Cell Death Differ 19(5):779–787PubMedCentralPubMedGoogle Scholar
  116. 116.
    Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101(32):11839–11844PubMedCentralPubMedGoogle Scholar
  117. 117.
    Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102(39):14069–14074PubMedCentralPubMedGoogle Scholar
  118. 118.
    Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, Capela A, Greve J, Malenka RC, Moseley ME, Palmer TD, Steinberg GK (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA 104(24):10211–10216PubMedCentralPubMedGoogle Scholar
  119. 119.
    Tamaki SJ, Jacobs Y, Dohse M, Capela A, Cooper JD, Reitsma M, He D, Tushinski R, Belichenko PV, Salehi A, Mobley W, Gage FH, Huhn S, Tsukamoto AS, Weissman IL, Uchida N (2009) Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 5(3):310–319PubMedGoogle Scholar
  120. 120.
    Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS ONE 5(8):e12272PubMedCentralPubMedGoogle Scholar
  121. 121.
    Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ (2009) Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS ONE 4(6):e5871PubMedCentralPubMedGoogle Scholar
  122. 122.
    Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SJ, Huang SS, Tai LK, Chen YC, Ku HH, Li HY, Chiou SH (2010) Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev 19(11):1757–1767PubMedGoogle Scholar
  123. 123.
    Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30(8):1487–1493PubMedCentralPubMedGoogle Scholar
  124. 124.
    Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, Brenot M, Itier V, Seminatore C, Baldauf K, Turnovcova K, Jirak D, Teletin M, Come J, Tournois J, Reymann K, Sykova E, Viville S, Onteniente B (2012) Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant 21(12):2587–2602PubMedGoogle Scholar
  125. 125.
    Yamanaka S (2009) A fresh look at iPS cells. Cell 137(1):13–17PubMedGoogle Scholar
  126. 126.
    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654PubMedGoogle Scholar
  127. 127.
    Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118PubMedCentralPubMedGoogle Scholar
  128. 128.
    Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7(4):521–531PubMedGoogle Scholar
  129. 129.
    Pasi CE, Dereli-Oz A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, Testa G, Trono D, Pelicci PG, Halazonetis TD (2011) Genomic instability in induced stem cells. Cell Death Differ 18(5):745–753PubMedCentralPubMedGoogle Scholar
  130. 130.
    Vojnits K, Bremer S (2010) Challenges of using pluripotent stem cells for safety assessments of substances. Toxicology 270(1):10–17PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Claudia Compagnucci
    • 1
  • Monica Nizzardo
    • 2
  • Stefania Corti
    • 2
  • Ginevra Zanni
    • 1
  • Enrico Bertini
    • 1
  1. 1.Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of NeurosciencesBambino Gesù Children’s Research Hospital, IRCCSRomeItaly
  2. 2.Department of Neurological Sciences, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, IRCCS Foundation Ca’GrandaUniversity of MilanMilanItaly

Personalised recommendations