Cellular and Molecular Life Sciences

, Volume 71, Issue 12, pp 2219–2239 | Cite as

Synaptic control of local translation: the plot thickens with new characters

  • María Gabriela Thomas
  • Malena Lucía Pascual
  • Darío Maschi
  • Luciana Luchelli
  • Graciela Lidia Boccaccio


The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.


mTOR NMDAR ARC/Arg3.1 Abnormal protein aggregation Stress granules EJC 



We are grateful to MV Baez for kindly providing figure panel 3d and to L Benseñor and LJ Martinez Tosar for their critical reading of the manuscript. This work was supported by the following grants: UBACyT X311 from University of Buenos Aires, Argentina, to GLB; PIP 205-2011-2013 from Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) to MGT; and PICT 2010-2339, PICT 2010-1850 and PICT 2011-1301 from Agencia Nacional de Promoción Científica y Tecnológica, (ANPCyT), Argentina, to MGT and GLB.

Supplementary material

18_2013_1506_MOESM1_ESM.tif (6.4 mb)
Supplementary material 1 (TIFF 6598 kb) Caption to suggested cover figure. The mRNA repressor Smaug1/Samd4a affects dendritic spines. Dendritic arbors of Smaug1-knockdown hippocampal neurons (yellow) or of untreated cells (white) show the presence of numerous and thin spines provoked by the loss of Smaug1. Deconvoluted confocal Z-stack images of two ECFP-expressing neurons are overlaid


  1. 1.
    Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21(4):741–751PubMedGoogle Scholar
  2. 2.
    Scheetz AJ, Nairn AC, Constantine-Paton M (2000) NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3(3):211–216PubMedGoogle Scholar
  3. 3.
    Steward O, Worley PF (2001) A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proc Natl Acad Sci USA 98(13):7062–7068PubMedCentralPubMedGoogle Scholar
  4. 4.
    Eom T, Antar LN, Singer RH, Bassell GJ (2003) Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J Neurosci 23(32):10433–10444 (pii:23/32/10433)PubMedGoogle Scholar
  5. 5.
    Antar LN, Afroz R, Dictenberg JB, Carroll RC, Bassell GJ (2004) Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 24(11):2648–2655PubMedGoogle Scholar
  6. 6.
    Sutton MA, Wall NR, Aakalu GN, Schuman EM (2004) Regulation of dendritic protein synthesis by miniature synaptic events. Science 304(5679):1979–1983PubMedGoogle Scholar
  7. 7.
    Poon MM, Choi SH, Jamieson CA, Geschwind DH, Martin KC (2006) Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci 26(51):13390–13399PubMedGoogle Scholar
  8. 8.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289PubMedGoogle Scholar
  9. 9.
    Cajigas IJ, Will T, Schuman EM (2010) Protein homeostasis and synaptic plasticity. EMBO J 29(16):2746–2752. doi: 10.1038/emboj.2010.173 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127(1):49–58PubMedGoogle Scholar
  11. 11.
    Hanus C, Schuman EM (2013) Proteostasis in complex dendrites. Nat Rev Neurosci 14(9):638–648. doi: 10.1038/nrn3546nrn3546 PubMedGoogle Scholar
  12. 12.
    Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, Nawa H (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24(44):9760–9769. doi: 10.1523/JNEUROSCI.1427-04.2004 PubMedGoogle Scholar
  13. 13.
    Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13(7):897–905. doi: 10.1038/nn.2580 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Baez MV, Luchelli L, Maschi D, Habif M, Pascual M, Thomas MG, Boccaccio GL (2011) Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. J Cell Biol 195(7):1141–1157. doi: 10.1083/jcb.201108159 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Leski ML, Steward O (1996) Protein synthesis within dendrites: ionic and neurotransmitter modulation of synthesis of particular polypeptides characterized by gel electrophoresis. Neurochem Res 21(6):681–690PubMedGoogle Scholar
  16. 16.
    Tatavarty V, Ifrim MF, Levin M, Korza G, Barbarese E, Yu J, Carson JH (2012) Single-molecule imaging of translational output from individual RNA granules in neurons. Mol Biol Cell 23(5):918–929. doi: 10.1091/mbc.E11-07-0622 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Raab-Graham KF, Haddick PC, Jan YN, Jan LY (2006) Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314(5796):144–148. doi: 10.1126/science.1131693 PubMedGoogle Scholar
  18. 18.
    Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG (2010) Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141(4):632–644. doi: 10.1016/j.cell.2010.04.008 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59(1):70–83. doi: 10.1016/j.neuron.2008.05.023 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28(46):11760–11767. doi: 10.1523/JNEUROSCI.3864-08.2008 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Zukin RS, Richter JD, Bagni C (2009) Signals, synapses, and synthesis: how new proteins control plasticity. Front Neural Circuits 3:14. doi: 10.3389/neuro.04.014.2009 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Huang YW, Ruiz CR, Eyler EC, Lin K, Meffert MK (2012) Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 148(5):933–946. doi: 10.1016/j.cell.2012.01.036 PubMedGoogle Scholar
  23. 23.
    Kang H, Schuman EM (1996) A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273(5280):1402–1406PubMedGoogle Scholar
  24. 24.
    Weiler IJ, Greenough WT (1993) Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc Natl Acad Sci USA 90(15):7168–7171PubMedCentralPubMedGoogle Scholar
  25. 25.
    Banko JL, Hou L, Poulin F, Sonenberg N, Klann E (2006) Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J Neurosci 26(8):2167–2173. doi: 10.1523/JNEUROSCI.5196-05.2006 PubMedGoogle Scholar
  26. 26.
    Marin P, Nastiuk KL, Daniel N, Girault JA, Czernik AJ, Glowinski J, Nairn AC, Premont J (1997) Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. J Neurosci 17(10):3445–3454PubMedGoogle Scholar
  27. 27.
    Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM (2007) Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55(4):648–661PubMedGoogle Scholar
  28. 28.
    Schuman EM, Dynes JL, Steward O (2006) Synaptic regulation of translation of dendritic mRNAs. J Neurosci 26(27):7143–7146PubMedGoogle Scholar
  29. 29.
    Sosanya NM, Huang PP, Cacheaux LP, Chen CJ, Nguyen K, Perrone-Bizzozero NI, Raab-Graham KF (2013) Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1. J Cell Biol 202(1):53–69. doi: 10.1083/jcb.201212089 PubMedCentralPubMedGoogle Scholar
  30. 30.
    Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G (2009) Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28(6):697–710. doi: 10.1038/emboj.2009.10 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS (2011) Identification of piRNAs in the central nervous system. RNA 17(6):1090–1099. doi: 10.1261/rna.2565011 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849. doi: 10.1038/nrn2763nrn2763 PubMedGoogle Scholar
  33. 33.
    Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21(4):491–497. doi: 10.1016/j.gde.2011.04.008 PubMedGoogle Scholar
  34. 34.
    Darnell JC, Richter JD (2012) Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb Perspect Biol 4(8):a012344. doi: 10.1101/cshperspect.a012344 PubMedGoogle Scholar
  35. 35.
    Thomas MG, Loschi M, Desbats MA, Boccaccio GL (2011) RNA granules: the good, the bad and the ugly. Cell Signal 23(2):324–334. doi: 10.1016/j.cellsig.2010.08.011 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941PubMedCentralPubMedGoogle Scholar
  37. 37.
    Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, Rage F (2008) Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci 28(51):13793–13804PubMedGoogle Scholar
  38. 38.
    di Penta A, Mercaldo V, Florenzano F, Munck S, Ciotti MT, Zalfa F, Mercanti D, Molinari M, Bagni C, Achsel T (2009) Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol 184(3):423–435PubMedCentralPubMedGoogle Scholar
  39. 39.
    Zeitelhofer M, Karra D, Macchi P, Tolino M, Thomas S, Schwarz M, Kiebler M, Dahm R (2008) Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J Neurosci 28(30):7555–7562PubMedGoogle Scholar
  40. 40.
    Pradhan SJ, Nesler KR, Rosen SF, Kato Y, Nakamura A, Ramaswami M, Barbee SA (2012) The conserved P body component HPat/Pat1 negatively regulates synaptic terminal growth at the larval Drosophila neuromuscular junction. J Cell Sci. doi: 10.1242/jcs.113043 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4(9):a012286. doi: 10.1101/cshperspect.a012286 PubMedGoogle Scholar
  42. 42.
    Vessey JP, Vaccani A, Xie Y, Dahm R, Karra D, Kiebler MA, Macchi P (2006) Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J Neurosci 26(24):6496–6508. doi: 10.1523/JNEUROSCI.0649-06.2006 PubMedGoogle Scholar
  43. 43.
    Salazar AM, Silverman EJ, Menon KP, Zinn K (2010) Regulation of synaptic Pumilio function by an aggregation-prone domain. J Neurosci 30(2):515–522. doi: 10.1523/JNEUROSCI.2523-09.2010 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Menon KP, Andrews S, Murthy M, Gavis ER, Zinn K (2009) The translational repressors Nanos and Pumilio have divergent effects on presynaptic terminal growth and postsynaptic glutamate receptor subunit composition. J Neurosci 29(17):5558–5572. doi: 10.1523/JNEUROSCI.0520-09.2009 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Eom T, Zhang C, Wang H, Lay K, Fak J, Noebels JL, Darnell RB (2013) NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. Elife 2:e00178. doi: 10.7554/eLife.00178 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Bell TJ, Miyashiro KY, Sul JY, Buckley PT, Lee MT, McCullough R, Jochems J, Kim J, Cantor CR, Parsons TD, Eberwine JH (2010) Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc Natl Acad Sci USA 107(49):21152–21157. doi: 10.1073/pnas.1015264107 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Hillebrand J, Pan K, Kokaram A, Barbee S, Parker R, Ramaswami M (2010) The Me31B DEAD-Box helicase localizes to postsynaptic foci and regulates expression of a CaMKII reporter mRNA in dendrites of Drosophila olfactory projection neurons. Front Neural Circuits 4:121. doi: 10.3389/fncir.2010.00121 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Huang YS, Jung MY, Sarkissian M, Richter JD (2002) N-methyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 21(9):2139–2148. doi: 10.1093/emboj/21.9.2139 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182. doi: 10.1038/nrn3192nrn3192 PubMedGoogle Scholar
  50. 50.
    Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, Moore MJ (2007) The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130(1):179–191. doi: 10.1016/j.cell.2007.05.028 PubMedGoogle Scholar
  51. 51.
    Dynes JL, Steward O (2012) Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J Comp Neurol 520(14):3105–3119. doi: 10.1002/cne.23073 PubMedGoogle Scholar
  52. 52.
    Ostroff LE, Fiala JC, Allwardt B, Harris KM (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35(3):535–545PubMedGoogle Scholar
  53. 53.
    Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74(3):453–466. doi: 10.1016/j.neuron.2012.02.036 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13(5):308–324. doi: 10.1038/nrn3210 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Shigeoka T, Lu B, Holt CE (2013) Cell biology in neuroscience: RNA-based mechanisms underlying axon guidance. J Cell Biol 202(7):991–999. doi: 10.1083/jcb.201305139 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30(17):3540–3552. doi: 10.1038/emboj.2011.278 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Macdonald PM (2011) mRNA localization: assembly of transport complexes and their incorporation into particles. Curr Opin Genet Dev 21(4):407–413. doi: 10.1016/j.gde.2011.04.005 PubMedGoogle Scholar
  58. 58.
    Holt CE, Bullock SL (2009) Subcellular mRNA localization in animal cells and why it matters. Science 326(5957):1212–1216. doi: 10.1126/science.1176488 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730PubMedCentralPubMedGoogle Scholar
  60. 60.
    Meignin C, Davis I (2010) Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 22(1):112–119PubMedGoogle Scholar
  61. 61.
    Shahbabian K, Chartrand P (2012) Control of cytoplasmic mRNA localization. Cell Mol Life Sci 69(4):535–552. doi: 10.1007/s00018-011-0814-3 PubMedGoogle Scholar
  62. 62.
    Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16(23):2345–2351. doi: 10.1016/j.cub.2006.10.024 PubMedGoogle Scholar
  63. 63.
    Pascual ML, Luchelli L, Habif M, Boccaccio GL (2012) Synaptic activity regulated mRNA-silencing foci for the fine tuning of local protein synthesis at the synapse. Commun Integr Biol 5(4):388–392. doi: 10.4161/cib.20257 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Bianco A, Dienstbier M, Salter HK, Gatto G, Bullock SL (2010) Bicaudal-D regulates fragile X mental retardation protein levels, motility, and function during neuronal morphogenesis. Curr Biol 20(16):1487–1492. doi: 10.1016/j.cub.2010.07.016 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang YT, Li Q, Moore MJ, Budnik V (2012) Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149(4):832–846. doi: 10.1016/j.cell.2012.03.032 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Gao Y, Tatavarty V, Korza G, Levin MK, Carson JH (2008) Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell 19(5):2311–2327. doi: 10.1091/mbc.E07-09-0914 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Muslimov IA, Patel MV, Rose A, Tiedge H (2011) Spatial code recognition in neuronal RNA targeting: role of RNA-hnRNP A2 interactions. J Cell Biol 194(3):441–457. doi: 10.1083/jcb.201010027 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Xing L, Bassell GJ (2013) mRNA localization: an orchestration of assembly, traffic and synthesis. Traffic 14(1):2–14. doi: 10.1111/tra.12004 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Pratt CA, Mowry KL (2013) Taking a cellular road-trip: mRNA transport and anchoring. Curr Opin Cell Biol 25(1):99–106. doi: 10.1016/j.ceb.2012.08.015 PubMedCentralPubMedGoogle Scholar
  70. 70.
    An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B, Xu B (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134(1):175–187. doi: 10.1016/j.cell.2008.05.045 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Baj G, Leone E, Chao MV, Tongiorgi E (2011) Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc Natl Acad Sci USA 108(40):16813–16818. doi: 10.1073/pnas.1014168108 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Hilgers V, Perry MW, Hendrix D, Stark A, Levine M, Haley B (2011) Neural-specific elongation of 3′ UTRs during Drosophila development. Proc Natl Acad Sci USA 108(38):15864–15869. doi: 10.1073/pnas.1112672108 PubMedCentralPubMedGoogle Scholar
  73. 73.
    La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A (2013) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631. doi: 10.1093/nar/gks1223 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Buckley PT, Lee MT, Sul JY, Miyashiro KY, Bell TJ, Fisher SA, Kim J, Eberwine J (2011) Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron 69(5):877–884. doi: 10.1016/j.neuron.2011.02.028 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, Furuichi T, Kato T (2007) The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 282(47):34525–34534. doi: 10.1074/jbc.M704300200 PubMedGoogle Scholar
  76. 76.
    Glanzer J, Miyashiro KY, Sul JY, Barrett L, Belt B, Haydon P, Eberwine J (2005) RNA splicing capability of live neuronal dendrites. Proc Natl Acad Sci USA 102(46):16859–16864. doi: 10.1073/pnas.0503783102 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Iacoangeli A, Tiedge H (2013) Translational control at the synapse: role of RNA regulators. Trends Biochem Sci 38(1):47–55. doi: 10.1016/j.tibs.2012.11.001 PubMedCentralPubMedGoogle Scholar
  78. 78.
    McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75(3):363–379. doi: 10.1016/j.neuron.2012.07.005 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35(5):325–334. doi: 10.1016/j.tins.2012.01.004 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11(2):189–200. doi: 10.1016/S1474-4422(11)70286-1 PubMedGoogle Scholar
  81. 81.
    Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64(6):871–884. doi: 10.1016/j.neuron.2009.11.023 PubMedGoogle Scholar
  82. 82.
    McCann C, Holohan EE, Das S, Dervan A, Larkin A, Lee JA, Rodrigues V, Parker R, Ramaswami M (2011) The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci USA 108(36):E655–E662. doi: 10.1073/pnas.1107198108 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, Warren ST, Bassell GJ (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42(5):673–688. doi: 10.1016/j.molcel.2011.05.006 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336(6078):237–240. doi: 10.1126/science.1215691 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Izaurralde E (2012) Elucidating the temporal order of silencing. EMBO Rep 13(8):662–663. doi: 10.1038/embor.2012.91 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schubeler D, Oertner TG, Schratt G, Bibel M, Roska B, Filipowicz W (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141(4):618–631. doi: 10.1016/j.cell.2010.03.039 PubMedGoogle Scholar
  87. 87.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110. doi: 10.1038/nrg2936 PubMedGoogle Scholar
  88. 88.
    Castilla-Llorente V, Spraggon L, Okamura M, Naseeruddin S, Adamow M, Qamar S, Liu J (2012) Mammalian GW220/TNGW1 is essential for the formation of GW/P bodies containing miRISC. J Cell Biol 198(4):529–544. doi: 10.1083/jcb.201201153 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. doi: 10.1038/nature11928 PubMedGoogle Scholar
  90. 90.
    Nott A, Tsai LH (2013) The Top3beta way to untangle RNA. Nat Neurosci 16(9):1163–1164. doi: 10.1038/nn.3506 PubMedGoogle Scholar
  91. 91.
    Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O (2012) Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14(12):1314–1321. doi: 10.1038/ncb2611 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim do H, Cho IS, Nakahara K, Preall JB, Sontheimer EJ, Carthew RW (2009) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11(9):1150–1156. doi: 10.1038/ncb1930 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi: 10.1038/ncb1596 PubMedGoogle Scholar
  94. 94.
    Xu J, Chen Q, Zen K, Zhang C, Zhang Q (2013) Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. J Neurochem 124(1):15–25. doi: 10.1111/jnc.12057 PubMedGoogle Scholar
  95. 95.
    Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467(7319):1128–1132PubMedGoogle Scholar
  96. 96.
    Smalheiser NR, Lugli G, Thimmapuram J, Cook EH, Larson J (2011) Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. RNA 17(1):166–181. doi: 10.1261/rna.2123811 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122(12):4314–4322. doi: 10.1172/JCI63141 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J, Lorenz LJ, Zukin RS, Bassell GJ, Richter JD (2012) Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell 47(2):253–266. doi: 10.1016/j.molcel.2012.05.016 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW, Licatalosi DD, Richter JD, Darnell RB (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261. doi: 10.1016/j.cell.2011.06.013 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Villalba A, Coll O, Gebauer F (2011) Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 21(4):452–457. doi: 10.1016/j.gde.2011.04.006 PubMedGoogle Scholar
  101. 101.
    Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A, Malleret G, Kandel ER (2011) Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147(6):1369–1383. doi: 10.1016/j.cell.2011.09.056 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115(7):879–891 (pii:S0092867403010201)PubMedGoogle Scholar
  103. 103.
    Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, Li L, Choi EM, Kannan K, Guo F, Unruh J, Slaughter B, Si K (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell 148(3):515–529. doi: 10.1016/j.cell.2012.01.004 PubMedGoogle Scholar
  104. 104.
    Kruttner S, Stepien B, Noordermeer JN, Mommaas MA, Mechtler K, Dickson BJ, Keleman K (2012) Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain. Neuron 76(2):383–395. doi: 10.1016/j.neuron.2012.08.028 PubMedGoogle Scholar
  105. 105.
    Adinolfi S, Ramos A, Martin SR, Dal Piaz F, Pucci P, Bardoni B, Mandel JL, Pastore A (2003) The N-terminus of the fragile X mental retardation protein contains a novel domain involved in dimerization and RNA binding. Biochemistry 42(35):10437–10444PubMedGoogle Scholar
  106. 106.
    Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140(3):421–435PubMedGoogle Scholar
  107. 107.
    Nalavadi VC, Muddashetty RS, Gross C, Bassell GJ (2012) Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J Neurosci 32(8):2582–2587. doi: 10.1523/JNEUROSCI.5057-11.2012 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Ascano M Jr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, Langlois C, Munschauer M, Dewell S, Hafner M, Williams Z, Ohler U, Tuschl T (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492(7429):382–386. doi: 10.1038/nature11737 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Wang T, Bray SM, Warren ST (2012) New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 22(3):256–263. doi: 10.1016/j.gde.2012.02.002 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Banerjee P, Schoenfeld BP, Bell AJ, Choi CH, Bradley MP, Hinchey P, Kollaros M, Park JH, McBride SM, Dockendorff TC (2010) Short- and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein. J Neurosci 30(19):6782–6792PubMedCentralPubMedGoogle Scholar
  111. 111.
    Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat LH, Dale RK, Smith SA, Yarosh CA, Kelly SM, Nabet B, Mecenas D, Li W, Laishram RS, Qiao M, Lipshitz HD, Piano F, Corbett AH, Carstens RP, Frey BJ, Anderson RA, Lynch KW, Penalva LO, Lei EP, Fraser AG, Blencowe BJ, Morris QD, Hughes TR (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499(7457):172–177. doi: 10.1038/nature12311 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, Miniaci MC, Kim JH, Zhu H, Kandel ER (2003) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 115(7):893–904 (pii:S0092867403010213)PubMedGoogle Scholar
  113. 113.
    Buratti E, Baralle FE (2012) TDP-43: gumming up neurons through protein–protein and protein-RNA interactions. Trends Biochem Sci 37(6):237–247. doi: 10.1016/j.tibs.2012.03.003 PubMedGoogle Scholar
  114. 114.
    Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46(5):674–690. doi: 10.1016/j.molcel.2012.05.021 PubMedGoogle Scholar
  115. 115.
    Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406. doi: 10.1016/j.cell.2012.04.031 PubMedGoogle Scholar
  116. 116.
    Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5(10):2531–2541. doi: 10.1002/pmic.200401198 PubMedGoogle Scholar
  117. 117.
    Vessey JP, Schoderboeck L, Gingl E, Luzi E, Riefler J, Di Leva F, Karra D, Thomas S, Kiebler MA, Macchi P (2010) Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function. Proc Natl Acad Sci USA 107(7):3222–3227. doi: 10.1073/pnas.0907128107 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Olesnicky EC, Bhogal B, Gavis ER (2012) Combinatorial use of translational co-factors for cell type-specific regulation during neuronal morphogenesis in Drosophila. Dev Biol 365(1):208–218. doi: 10.1016/j.ydbio.2012.02.028 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Chen G, Li W, Zhang QS, Regulski M, Sinha N, Barditch J, Tully T, Krainer AR, Zhang MQ, Dubnau J (2008) Identification of synaptic targets of Drosophila Pumilio. PLoS Comput Biol 4(2):e1000026. doi: 10.1371/journal.pcbi.1000026 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Brechbiel JL, Gavis ER (2008) Spatial regulation of nanos is required for its function in dendrite morphogenesis. Curr Biol 18(10):745–750. doi: 10.1016/j.cub.2008.04.033 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN (2004) Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol 14(4):314–321PubMedGoogle Scholar
  122. 122.
    Siemen H, Colas D, Heller HC, Brustle O, Pera RA (2011) Pumilio-2 function in the mouse nervous system. PLoS One 6(10):e25932. doi: 10.1371/journal.pone.0025932 PubMedCentralPubMedGoogle Scholar
  123. 123.
    Marrero E, Rossi SG, Darr A, Tsoulfas P, Rotundo RL (2011) Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse. J Biol Chem 286(42):36492–36499. doi: 10.1074/jbc.M111.285510 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Quenault T, Lithgow T, Traven A (2011) PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21(2):104–112. doi: 10.1016/j.tcb.2010.09.013 PubMedGoogle Scholar
  125. 125.
    Muraro NI, Weston AJ, Gerber AP, Luschnig S, Moffat KG, Baines RA (2008) Pumilio binds para mRNA and requires Nanos and Brat to regulate sodium current in Drosophila motoneurons. J Neurosci 28(9):2099–2109PubMedCentralPubMedGoogle Scholar
  126. 126.
    Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U, Broger C, Tully T (2003) The Staufen/Pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13(4):286–296PubMedGoogle Scholar
  127. 127.
    Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP (2008) Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One 3(9):e3164. doi: 10.1371/journal.pone.0003164 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22(5):221–227 (pii:S0166-2236(98)01341-1)PubMedGoogle Scholar
  129. 129.
    Kim SY, Kim JY, Malik S, Son W, Kwon KS, Kim C (2012) Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster. PLoS One 7(4):e34016. doi: 10.1371/journal.pone.0034016 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Lee MH, Hook B, Pan G, Kershner AM, Merritt C, Seydoux G, Thomson JA, Wickens M, Kimble J (2007) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3(12):e233. doi: 10.1371/journal.pgen.0030233 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP, Kimble J (2012) A conserved PUF-Ago-eEF1A complex attenuates translation elongation. Nat Struct Mol Biol 19(2):176–183. doi: 10.1038/nsmb.2214 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Pinder BD, Smibert CA (2013) Smaug: An unexpected journey into the mechanisms of post-transcriptional regulation. Fly (Austin) 7(3):142–145Google Scholar
  133. 133.
    Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F (2006) Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat Struct Mol Biol 13(2):168–176PubMedGoogle Scholar
  134. 134.
    Green JB, Gardner CD, Wharton RP, Aggarwal AK (2003) RNA recognition via the SAM domain of Smaug. Mol Cell 11(6):1537–1548PubMedGoogle Scholar
  135. 135.
    Semotok JL, Luo H, Cooperstock RL, Karaiskakis A, Vari HK, Smibert CA, Lipshitz HD (2008) Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame. Mol Cell Biol 28(22):6757–6772PubMedCentralPubMedGoogle Scholar
  136. 136.
    Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA, Lipshitz HD (2007) SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell 12(1):143–155PubMedGoogle Scholar
  137. 137.
    Oberstrass FC, Lee A, Stefl R, Janis M, Chanfreau G, Allain FH (2006) Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol 13(2):160–167PubMedGoogle Scholar
  138. 138.
    Ravindranathan S, Oberstrass FC, Allain FH (2010) Increase in backbone mobility of the VTS1p-SAM domain on binding to SRE-RNA. J Mol Biol 396(3):732–746PubMedGoogle Scholar
  139. 139.
    Li X, Quon G, Lipshitz HD, Morris Q (2010) Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA 16(6):1096–1107. doi: 10.1261/rna.2017210 PubMedCentralPubMedGoogle Scholar
  140. 140.
    Baez MV, Boccaccio GL (2005) Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. J Biol Chem 280(52):43131–43140. doi: 10.1074/jbc.M508374200 PubMedGoogle Scholar
  141. 141.
    Nelson MR, Leidal AM, Smibert CA (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 23(1):150–159PubMedCentralPubMedGoogle Scholar
  142. 142.
    Pinder BD, Smibert CA (2013) microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep 14(1):80–86. doi: 10.1038/embor.2012.192 PubMedCentralPubMedGoogle Scholar
  143. 143.
    Zaessinger S, Busseau I, Simonelig M (2006) Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133(22):4573–4583PubMedGoogle Scholar
  144. 144.
    Jeske M, Moritz B, Anders A, Wahle E (2010) Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels. EMBO J 30(1):90–103PubMedCentralPubMedGoogle Scholar
  145. 145.
    Haraguchi S, Tsuda M, Kitajima S, Sasaoka Y, Nomura-Kitabayashid A, Kurokawa K, Saga Y (2003) nanos1: a mouse nanos gene expressed in the central nervous system is dispensable for normal development. Mech Dev 120(6):721–731 (pii:S0925477303000431)PubMedGoogle Scholar
  146. 146.
    Franks TM, Lykke-Andersen J (2008) The control of mRNA decapping and P-body formation. Mol Cell 32(5):605–615PubMedCentralPubMedGoogle Scholar
  147. 147.
    Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci. doi: 10.1016/j.tibs.2013.07.004 PubMedGoogle Scholar
  148. 148.
    Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154(4):727–736. doi: 10.1016/j.cell.2013.07.038 PubMedGoogle Scholar
  149. 149.
    Cougot N, Molza AE, Giudice E, Cavalier A, Thomas D, Gillet R (2013) Structural organization of the polysomes adjacent to mammalian processing bodies (P-bodies). RNA Biol 10(2):314–320 (pii:23342)PubMedCentralPubMedGoogle Scholar
  150. 150.
    Kotani T, Yasuda K, Ota R, Yamashita M (2013) Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules. J Cell Biol 202(7):1041–1055. doi: 10.1083/jcb.201302139 PubMedCentralPubMedGoogle Scholar
  151. 151.
    Weil TT, Parton RM, Herpers B, Soetaert J, Veenendaal T, Xanthakis D, Dobbie IM, Halstead JM, Hayashi R, Rabouille C, Davis I (2012) Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 14(12):1305–1313. doi: 10.1038/ncb2627 PubMedGoogle Scholar
  152. 152.
    Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswami M (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52(6):997–1009PubMedCentralPubMedGoogle Scholar
  153. 153.
    Miller LC, Blandford V, McAdam R, Sanchez-Carbente MR, Badeaux F, DesGroseillers L, Sossin WS (2009) Combinations of DEAD box proteins distinguish distinct types of RNA: protein complexes in neurons. Mol Cell Neurosci 40(4):485–495PubMedGoogle Scholar
  154. 154.
    Savas JN, Makusky A, Ottosen S, Baillat D, Then F, Krainc D, Shiekhattar R, Markey SP, Tanese N (2008) Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci USA 105(31):10820–10825PubMedCentralPubMedGoogle Scholar
  155. 155.
    Shiina N, Shinkura K, Tokunaga M (2005) A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation. J Neurosci 25(17):4420–4434PubMedGoogle Scholar
  156. 156.
    Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4):753–767. doi: 10.1016/j.cell.2012.04.017 PubMedGoogle Scholar
  157. 157.
    Reijns MA, Alexander RD, Spiller MP, Beggs JD (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121(Pt 15):2463–2472PubMedCentralPubMedGoogle Scholar
  158. 158.
    Fujii R, Okabe S, Urushido T, Inoue K, Yoshimura A, Tachibana T, Nishikawa T, Hicks GG, Takumi T (2005) The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol 15(6):587–593PubMedGoogle Scholar
  159. 159.
    Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9(4):e1000614. doi: 10.1371/journal.pbio.1000614 PubMedCentralPubMedGoogle Scholar
  160. 160.
    Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473. doi: 10.1038/nature11922 PubMedCentralPubMedGoogle Scholar
  161. 161.
    Barbarese E, Ifrim MF, Hsieh L, Guo C, Tatavarty V, Maggipinto MJ, Korza G, Tutolo JW, Giampetruzzi A, Le H, Ma XM, Levine E, Bishop B, Kim DO, Kuwada S, Carson JH (2013) Conditional knockout of tumor overexpressed gene in mouse neurons affects RNA granule assembly, granule translation, LTP and short term habituation. PLoS One 8(8):e69989. doi: 10.1371/journal.pone.0069989 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Martel C, Dugre-Brisson S, Boulay K, Breton B, Lapointe G, Armando S, Trepanier V, Duchaine T, Bouvier M, Desgroseillers L (2010) Multimerization of Staufen1 in live cells. RNA 16(3):585–597PubMedCentralPubMedGoogle Scholar
  163. 163.
    Toba G, White K (2008) The third RNA recognition motif of Drosophila ELAV protein has a role in multimerization. Nucleic Acids Res 36(4):1390–1399. doi: 10.1093/nar/gkm1168 PubMedCentralPubMedGoogle Scholar
  164. 164.
    Tosar LJ, Thomas MG, Baez MV, Ibanez I, Chernomoretz A, Boccaccio GL (2012) Staufen: from embryo polarity to cellular stress and neurodegeneration. Front Biosci (Schol Ed) 4:432–452Google Scholar
  165. 165.
    Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G, McKnight SL (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149(4):768–779. doi: 10.1016/j.cell.2012.04.016 PubMedGoogle Scholar
  166. 166.
    Singh G, Kucukural A, Cenik C, Leszyk JD, Shaffer SA, Weng Z, Moore MJ (2012) The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151(4):750–764. doi: 10.1016/j.cell.2012.10.007 PubMedCentralPubMedGoogle Scholar
  167. 167.
    Hartswood E, Brodie J, Vendra G, Davis I, Finnegan DJ (2012) RNA:RNA interaction can enhance RNA localization in Drosophila oocytes. RNA 18(4):729–737. doi: 10.1261/rna.026674.111 PubMedCentralPubMedGoogle Scholar
  168. 168.
    Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149(6):1188–1191. doi: 10.1016/j.cell.2012.05.022 PubMedGoogle Scholar
  169. 169.
    Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, Knudsen B, Sahni A, Yu F, Liu L, Jezzini S, Lovell P, Iannucculli W, Chen M, Nguyen T, Sheng H, Shaw R, Kalachikov S, Panchin YV, Farmerie W, Russo JJ, Ju J, Kandel ER (2006) Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 127(7):1453–1467. doi: 10.1016/j.cell.2006.09.052 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13(6):355–369. doi: 10.1038/nrm3359nrm3359 PubMedGoogle Scholar
  171. 171.
    Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485(7396):109–113. doi: 10.1038/nature11083 PubMedCentralPubMedGoogle Scholar
  172. 172.
    Tsokas P, Grace EA, Chan P, Ma T, Sealfon SC, Iyengar R, Landau EM, Blitzer RD (2005) Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J Neurosci 25(24):5833–5843. doi: 10.1523/JNEUROSCI.0599-05.2005 PubMedGoogle Scholar
  173. 173.
    Huang F, Chotiner JK, Steward O (2005) The mRNA for elongation factor 1alpha is localized in dendrites and translated in response to treatments that induce long-term depression. J Neurosci 25(31):7199–7209. doi: 10.1523/JNEUROSCI.1779-05.2005 PubMedGoogle Scholar
  174. 174.
    Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL (2013) Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78(3):510–522. doi: 10.1016/j.neuron.2013.03.017 PubMedCentralPubMedGoogle Scholar
  175. 175.
    Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi: 10.1038/nrm2672 PubMedGoogle Scholar
  176. 176.
    Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126(Pt 8):1713–1719. doi: 10.1242/jcs.125773 PubMedCentralPubMedGoogle Scholar
  177. 177.
    Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM (2006) Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125(4):785–799PubMedGoogle Scholar
  178. 178.
    Khoutorsky A, Yanagiya A, Gkogkas CG, Fabian MR, Prager-Khoutorsky M, Cao R, Gamache K, Bouthiette F, Parsyan A, Sorge RE, Mogil JS, Nader K, Lacaille JC, Sonenberg N (2013) Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 78(2):298–311. doi: 10.1016/j.neuron.2013.02.025 PubMedGoogle Scholar
  179. 179.
    Chang HM, Triboulet R, Thornton JE, Gregory RI (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature. doi: 10.1038/nature12119 Google Scholar
  180. 180.
    Jaruzelska J, Kotecki M, Kusz K, Spik A, Firpo M, Reijo Pera RA (2003) Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev Genes Evol 213(3):120–126. doi: 10.1007/s00427-003-0303-2 PubMedGoogle Scholar
  181. 181.
    Ramos A, Hollingworth D, Adinolfi S, Castets M, Kelly G, Frenkiel TA, Bardoni B, Pastore A (2006) The structure of the N-terminal domain of the fragile X mental retardation protein: a platform for protein–protein interaction. Structure 14(1):21–31. doi: 10.1016/j.str.2005.09.018 PubMedGoogle Scholar
  182. 182.
    Budini M, Buratti E, Stuani C, Guarnaccia C, Romano V, De Conti L, Baralle FE (2012) Cellular model of TAR DNA-binding protein 43 (TDP-43) aggregation based on its C-terminal Gln/Asn-rich region. J Biol Chem 287(10):7512–7525. doi: 10.1074/jbc.M111.288720 PubMedCentralPubMedGoogle Scholar
  183. 183.
    Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348(3):575–588PubMedGoogle Scholar
  184. 184.
    Kasashima K, Sakashita E, Saito K, Sakamoto H (2002) Complex formation of the neuron-specific ELAV-like Hu RNA-binding proteins. Nucleic Acids Res 30(20):4519–4526PubMedCentralPubMedGoogle Scholar
  185. 185.
    Shiina N, Yamaguchi K, Tokunaga M (2010) RNG105 deficiency impairs the dendritic localization of mRNAs for Na+/K+ATPase subunit isoforms and leads to the degeneration of neuronal networks. J Neurosci 30(38):12816–12830. doi: 10.1523/JNEUROSCI.6386-09.2010 PubMedGoogle Scholar
  186. 186.
    Chen T, Richard S (1998) Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol Cell Biol 18(8):4863–4871PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • María Gabriela Thomas
    • 1
    • 2
  • Malena Lucía Pascual
    • 1
    • 2
    • 3
  • Darío Maschi
    • 1
    • 4
  • Luciana Luchelli
    • 1
    • 2
  • Graciela Lidia Boccaccio
    • 1
    • 2
    • 3
  1. 1.Instituto LeloirBuenos AiresArgentina
  2. 2.IIBBA-CONICETBuenos AiresArgentina
  3. 3.Facultad de Ciencias Exactas y NaturalesUniversity of Buenos AiresBuenos AiresArgentina
  4. 4.Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations