Cellular and Molecular Life Sciences

, Volume 71, Issue 11, pp 2165–2178 | Cite as

Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli

  • Xingjian Jin
  • Ashraf M. Mohieldin
  • Brian S. Muntean
  • Jill A. Green
  • Jagesh V. Shah
  • Kirk Mykytyn
  • Surya M. Nauli
Research Article

Abstract

Primary cilia with a diameter of ~200 nm have been implicated in development and disease. Calcium signaling within a primary cilium has never been directly visualized and has therefore remained a speculation. Fluid-shear stress and dopamine receptor type-5 (DR5) agonist are among the few stimuli that require cilia for intracellular calcium signal transduction. However, it is not known if these stimuli initiate calcium signaling within the cilium or if the calcium signal originates in the cytoplasm. Using an integrated single-cell imaging technique, we demonstrate for the first time that calcium signaling triggered by fluid-shear stress initiates in the primary cilium and can be distinguished from the subsequent cytosolic calcium response through the ryanodine receptor. Importantly, this flow-induced calcium signaling depends on the ciliary polycystin-2 calcium channel. While DR5-specific agonist induces calcium signaling mainly in the cilioplasm via ciliary CaV1.2, thrombin specifically induces cytosolic calcium signaling through the IP3 receptor. Furthermore, a non-specific calcium ionophore triggers both ciliary and cytosolic calcium responses. We suggest that cilia not only act as sensory organelles but also function as calcium signaling compartments. Cilium-dependent signaling can spread to the cytoplasm or be contained within the cilioplasm. Our study thus provides the first model to understand signaling within the cilioplasm of a living cell.

Keywords

Chemosensing Ciliopathy Mechanosensing Microscope Microwire Polycystic kidney 

Supplementary material

Supplementary material 1 (MOV 5825 kb)

Supplementary material 2 (MOV 608 kb)

Supplementary material 3 (MOV 1006 kb)

Supplementary material 4 (MOV 5966 kb)

Supplementary material 5 (MOV 1210 kb)

Supplementary material 6 (MOV 5263 kb)

Supplementary material 7 (MOV 1928 kb)

Supplementary material 8 (MOV 5129 kb)

Supplementary material 9 (MOV 1367 kb)

References

  1. 1.
    AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, Satlin LM (2005) Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289:F978–F988PubMedCrossRefGoogle Scholar
  3. 3.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137PubMedCrossRefGoogle Scholar
  4. 4.
    Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC, Ingber DE, Loghman-Adham M, Zhou J (2006) Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. JASN 17:1015–1025PubMedCrossRefGoogle Scholar
  6. 6.
    Praetorius HA, Spring KR (2001) Bending the mdck cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79PubMedCrossRefGoogle Scholar
  7. 7.
    Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76PubMedCrossRefGoogle Scholar
  8. 8.
    Siroky BJ, Ferguson WB, Fuson AL, Xie Y, Fintha A, Komlosi P, Yoder BK, Schwiebert EM, Guay-Woodford LM, Bell PD (2006) Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Renal Physiol 290:F1320–F1328PubMedCrossRefGoogle Scholar
  9. 9.
    Xu C, Shmukler BE, Nishimura K, Kaczmarek E, Rossetti S, Harris PC, Wandinger-Ness A, Bacallao RL, Alper SL (2009) Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Ca2+ signaling in human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 296:F1464–F1476PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Abdul-Majeed S, Moloney BC, Nauli SM (2012) Mechanisms regulating cilia growth and cilia function in endothelial cells. CMLS 69:165–173PubMedCrossRefGoogle Scholar
  11. 11.
    Abdul-Majeed S, Nauli SM (2011) Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58:325–331PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Praetorius HA, Praetorius J, Nielsen S, Frokiaer J, Spring KR (2004) Beta 1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am J Physiol Renal Physiol 287:F969–F978PubMedCrossRefGoogle Scholar
  13. 13.
    Rondanino C, Poland PA, Kinlough CL, Li H, Rbaibi Y, Myerburg MM, Al-bataineh MM, Kashlan OB, Pastor-Soler NM, Hallows KR et al (2011) Galectin-7 modulates the length of the primary cilia and wound repair in polarized kidney epithelial cells. Am J Physiol Renal Physiol 301:F622–F633PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272:F132–F138PubMedGoogle Scholar
  15. 15.
    Sharma N, Berbari NF, Yoder BK (2008) Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85:371–427PubMedCrossRefGoogle Scholar
  16. 16.
    Follit JA, Li L, Vucica Y, Pazour GJ (2010) The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J Cell Biol 188:21–28PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zhang MZ, Mai W, Li C, Cho SY, Hao C, Moeckel G, Zhao R, Kim I, Wang J, Xiong H et al (2004) PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci USA 101:2311–2316PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Marley A, von Zastrow M (2010) Disc1 regulates primary cilia that display specific dopamine receptors. PLoS ONE 5:e10902PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Muntean BS, Horvat CM, Behler JH, Aboualaiwi WA, Nauli AM, Williams FE, Nauli SM (2010) A comparative study of embedded and anesthetized zebrafish in vivo on myocardiac calcium oscillation and heart muscle contraction. Frontiers Pharmacol 1:139CrossRefGoogle Scholar
  20. 20.
    Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and camp signaling. Gastroenterology 131:911–920PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14:431–437PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Nakagawa T, Yamaguchi M (2006) Overexpression of regucalcin enhances its nuclear localization and suppresses l-type Ca2+ channel and calcium-sensing receptor MRNA expressions in cloned normal rat kidney proximal tubular epithelial NRK52E cells. J Cell Biochem 99:1064–1077PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao PL, Wang XT, Zhang XM, Cebotaru V, Cebotaru L, Guo G, Morales M, Guggino SE (2002) Tubular and cellular localization of the cardiac l-type calcium channel in rat kidney. Kidney Int 61:1393–1406PubMedCrossRefGoogle Scholar
  24. 24.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Vieira OV, Gaus K, Verkade P, Fullekrug J, Vaz WL, Simons K (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin–Darby canine kidney (MDCK) cells. Proc Natl Acad Sci USA 103:18556–18561PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Nauli SM, Jin X, AbouAlaiwi WA, El-Jouni W, Su X, Zhou J (2013) Non-motile primary cilia as fluid shear stress mechanosensors. Methods Enzymol 525:1–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Xingjian Jin
    • 1
  • Ashraf M. Mohieldin
    • 2
  • Brian S. Muntean
    • 2
  • Jill A. Green
    • 3
  • Jagesh V. Shah
    • 4
  • Kirk Mykytyn
    • 3
  • Surya M. Nauli
    • 1
    • 2
    • 5
  1. 1.Department of Medicine, College of MedicineThe University of ToledoToledoUSA
  2. 2.Department of Pharmacology, College of Pharmacy and Pharmaceutical SciencesThe University of ToledoToledoUSA
  3. 3.Department of Pharmacology, College of MedicineThe Ohio State UniversityColumbusUSA
  4. 4.Department of Systems Biology, Harvard Medical School and Renal DivisionBrigham and Women’s HospitalBostonUSA
  5. 5.Department of Pharmacology, MS 1015, Health Education Building, Room 282DThe University of ToledoToledoUSA

Personalised recommendations