Cellular and Molecular Life Sciences

, Volume 71, Issue 10, pp 1927–1941

Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown

Research Article

DOI: 10.1007/s00018-013-1451-9

Cite this article as:
Huber, P., Bouillot, S., Elsen, S. et al. Cell. Mol. Life Sci. (2014) 71: 1927. doi:10.1007/s00018-013-1451-9

Abstract

Pseudomonas aeruginosa is a major human opportunistic pathogen and one of the most important causal agents of bacteremia. For non-blood-borne infection, bacterial dissemination requires the crossing of the vascular endothelium, the main barrier between blood and the surrounding tissues. Here, we investigated the effects of P. aeruginosa type 3 secretion effectors, namely ExoS, ExoT, and ExoY, on regulators of actin cytoskeleton dynamics in primary endothelial cells. ExoS and ExoT similarly affected the Lim kinase-cofilin pathway, thereby promoting actin filament severing. Cofilin activation was also observed in a mouse model of P. aeruginosa-induced acute pneumonia. Rho, Rac, and Cdc42 GTPases were sequentially inactivated, leading to inhibition of membrane ruffling, filopodia, and stress fiber collapse, and focal adhesion disruption. At the end of the process, ExoS and ExoT produced a dramatic retraction in all primary endothelial cell types tested and thus a rupture of the endothelial monolayer. ExoY alone had no effect in this context. Cell retraction could be counteracted by overexpression of actin cytoskeleton regulators. In addition, our data suggest that moesin is neither a direct exotoxin target nor an important player in this process. We conclude that any action leading to inhibition of actin filament breakdown will improve the barrier function of the endothelium during P. aeruginosa infection.

Keywords

Host–pathogen interaction Nosocomial infection Actin Signaling pathways Rho GTPases Endothelium 

Supplementary material

18_2013_1451_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 61 kb)
18_2013_1451_MOESM2_ESM.doc (75 kb)
Supplementary material 2 (DOC 75 kb)
18_2013_1451_MOESM3_ESM.eps (240 kb)
Supplementary material 3 (EPS 240 kb)
18_2013_1451_MOESM4_ESM.eps (14.6 mb)
Supplementary material 4 (EPS 14968 kb)
18_2013_1451_MOESM5_ESM.eps (2.3 mb)
Supplementary material 5 (EPS 2374 kb)
18_2013_1451_MOESM6_ESM.mpg (2.1 mb)
Supplementary material 6 (MPG 2130 kb)
18_2013_1451_MOESM7_ESM.mpg (2.4 mb)
Supplementary material 7 (MPG 2464 kb)

Supplementary material 8 (MPG 842 kb)

Supplementary material 9 (MPG 354 kb)

Supplementary material 10 (MPG 3118 kb)

18_2013_1451_MOESM11_ESM.mpg (1.3 mb)
Supplementary material 11 (MPG 1312 kb)
18_2013_1451_MOESM12_ESM.mpg (1.1 mb)
Supplementary material 12 (MPG 1134 kb)
18_2013_1451_MOESM13_ESM.eps (16.9 mb)
Supplementary material 13 (EPS 17328 kb)

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • P. Huber
    • 1
    • 2
    • 3
    • 4
  • S. Bouillot
    • 1
    • 2
    • 3
    • 4
  • S. Elsen
    • 1
    • 2
    • 3
    • 4
  • I. Attrée
    • 1
    • 2
    • 3
    • 4
  1. 1.INSERM, U1036, Biology of Cancer and InfectionGrenobleFrance
  2. 2.CNRS, ERL 5261, Bacterial Pathogenesis and Cellular ResponsesGrenobleFrance
  3. 3.Université Joseph Fourier-Grenoble IGrenobleFrance
  4. 4.CEA, DSV/iRTSVGrenobleFrance

Personalised recommendations