Cellular and Molecular Life Sciences

, Volume 71, Issue 2, pp 257–269 | Cite as

Polycomb group proteins and MYC: the cancer connection

  • Leonidas Benetatos
  • George Vartholomatos
  • Eleftheria Hatzimichael


Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers. Although the interaction of PcG and MYC in cancer was described years ago, new findings are reported every day to explain the exact mechanisms and results of such interactions. In this review, we summarize recent data on the PcG and MYC interactions in cancer, and the putative involvement of microRNAs in the equation.


Polycomb group proteins MYC EZH2 BMI1 MicroRNA Cancer 



The authors would like to thank Nikolaos Benetatos MD for critical review of the manuscript. The authors apologize to those authors whose work has not been cited.

Conflict of interest



  1. 1.
    Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9:773–784PubMedGoogle Scholar
  2. 2.
    Bantignies F, Cavalli G (2011) Polycomb group proteins: repression in 3D. Trends Genet 27:454–464PubMedGoogle Scholar
  3. 3.
    Sawarkar R, Paro R (2010) Interpretation of developmental signaling at chromatin: the polycomb perspective. Dev Cell 19:651–661PubMedGoogle Scholar
  4. 4.
    Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, Di Croce L (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11:513–525PubMedGoogle Scholar
  5. 5.
    Surface LE, Thornton SR, Boyer LA (2010) Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7:288–298PubMedGoogle Scholar
  6. 6.
    Boukarabila H, Saurin AJ, Batsché E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E (2009) The PRC1 polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 23:1195–1206PubMedGoogle Scholar
  7. 7.
    Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT (2012) Spreading of X chromosome inactivation via a hierarchy of defined polycomb stations. Genome Res 22:1864–1876PubMedGoogle Scholar
  8. 8.
    Nozawa RS, Nagao K, Igami KT, Shibata S, Shirai N, Nozaki N, Sado T, Kimura H, Obuse C (2013) Human inactive X chromosome is compacted through a PRC2-independent SMCHD1–HBiX1 pathway. Nat Struct Mol Biol 20:566–573PubMedGoogle Scholar
  9. 9.
    Kalantry S, Magnuson T (2006) The polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2:e66PubMedCentralPubMedGoogle Scholar
  10. 10.
    Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313PubMedGoogle Scholar
  11. 11.
    Martin-Perez D, Piris MA, Sanchez-Beato M (2010) Polycomb proteins in hematologic malignancies. Blood 116:5465–5475PubMedGoogle Scholar
  12. 12.
    Radulović V, de Haan G, Klauke K. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia. 2013;27(3):523-33Google Scholar
  13. 13.
    Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933PubMedCentralPubMedGoogle Scholar
  14. 14.
    Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135PubMedCentralPubMedGoogle Scholar
  15. 15.
    Luis NM, Morey L, Di Croce L, Benitah SA (2012) Polycomb in stem cells: PRC1 branches out. Cell Stem Cell 11:16–21PubMedGoogle Scholar
  16. 16.
    Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349PubMedCentralPubMedGoogle Scholar
  17. 17.
    Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296PubMedCentralPubMedGoogle Scholar
  18. 18.
    Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, Bunker RD, Wirth U, Bouwmeester T, Bauer A, Ly-Hartig N, Zhao K, Chan H, Gu J, Gut H, Fischle W, Müller J, Thomä NH (2011) Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42:330–341PubMedGoogle Scholar
  19. 19.
    Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M (2012) Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol Chem 287:35784–35794PubMedGoogle Scholar
  20. 20.
    Brockdorff N (2013) Noncoding RNA and polycomb recruitment. RNA 19:429–442PubMedGoogle Scholar
  21. 21.
    Ballaré C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, Carlomagno T, Benitah SA, Di Croce L (2012) Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity. Nat Struct Mol Biol 19:1257–1265PubMedGoogle Scholar
  22. 22.
    Brien GL, Gambero G, O’Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, Lohan AJ, Ferguson N, Shi X, Sinha KM, Loftus BJ, Cagney G, Bracken AP (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19:1273–1281PubMedGoogle Scholar
  23. 23.
    Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357PubMedGoogle Scholar
  24. 24.
    Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T, Han Z, Chai J, Zhou XJ, Gao S, Zhu B (2012) Dense chromatin activates polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337(6097):971–975PubMedGoogle Scholar
  25. 25.
    Yang Y, Wang C, Zhang P, Gao K, Wang D, Yu H, Zhang T, Jiang S, Hexige S, Hong Z, Yasui A, Liu JO, Huang H, Yu L (2013) Polycomb group protein PHF1 regulates p53-dependent cell growth arrest and apoptosis. J Biol Chem 288:529–539PubMedGoogle Scholar
  26. 26.
    Crea F, Duhagon Serrat MA, Hurt EM, Thomas SB, Danesi R, Farrar WL (2011) BMI1 silencing enhances docetaxel activity and impairs antioxidant response in prostate cancer. Int J Cancer 128:1946–1954PubMedCentralPubMedGoogle Scholar
  27. 27.
    Siddique HR, Saleem M (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells 30:372–378PubMedGoogle Scholar
  28. 28.
    Mochizuki-Kashio M, Mishima Y, Miyagi S, Negishi M, Saraya A, Konuma T, Shinga J, Koseki H, Iwama A (2011) Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118:6553–6561PubMedGoogle Scholar
  29. 29.
    Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AH, Eichmann A, Wellik D, Ducret S, Rijli FM (2013) Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science 339:204–207PubMedGoogle Scholar
  30. 30.
    Crea F, Paolicchi E, Marquez VE, Danesi R (2012) Polycomb genes and cancer: time for clinical application? Crit Rev Oncol Hematol 83:184–193PubMedGoogle Scholar
  31. 31.
    Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, Siegle J, Asp P, Hadler M, Rigo I, De Keersmaecker K, Patel J, Huynh T, Utro F, Poglio S, Samon JB, Paietta E, Racevskis J, Rowe JM, Rabadan R, Levine RL, Brown S, Pflumio F, Dominguez M, Ferrando A, Aifantis I (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18:298–301PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hock H (2012) A complex polycomb issue: the two faces of EZH2 in cancer. Genes Dev 26:751–755PubMedGoogle Scholar
  33. 33.
    Richly H, Aloia L, Di Croce L (2011) Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis 2:e204PubMedCentralPubMedGoogle Scholar
  34. 34.
    Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667PubMedGoogle Scholar
  35. 35.
    Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726PubMedGoogle Scholar
  36. 36.
    Ueda T, Sanada M, Matsui H, Yamasaki N, Honda ZI, Shih LY, Mori H, Inaba T, Ogawa S, Honda H (2012) EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26:2557–2560PubMedGoogle Scholar
  37. 37.
    Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338:1465–1469PubMedCentralPubMedGoogle Scholar
  38. 38.
    Albihn A, Johnsen JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224PubMedGoogle Scholar
  39. 39.
    Buendia MA, Bourre L, Cairo S (2012) Myc target miRs and liver cancer: small molecules to get Myc sick. Gastroenterology 142:214–218PubMedGoogle Scholar
  40. 40.
    Uribesalgo I, Benitah SA, Di Croce L (2012) From oncogene to tumor suppressor: the dual role of Myc in leukemia. Cell Cycle 11:1757–1764PubMedGoogle Scholar
  41. 41.
    Cascón A, Robledo M (2012) MAX and MYC: a heritable breakup. Cancer Res 72:3119–3124PubMedGoogle Scholar
  42. 42.
    Lüscher B, Vervoorts J (2012) Regulation of gene transcription by the oncoprotein MYC. Gene 494:145–160PubMedGoogle Scholar
  43. 43.
    Lee S, Schmitt CA, Reimann M (2011) The Myc/macrophage tango: oncogene-induced senescence Myc style. Semin Cancer Biol 21:377–384PubMedGoogle Scholar
  44. 44.
    Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjö S, Murga M, Fernandez-Capetillo O, Barbacid M, Larsson LG, Amati B (2010) Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 12:54–59 (sup pp 1–14)PubMedGoogle Scholar
  45. 45.
    Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67PubMedCentralPubMedGoogle Scholar
  46. 46.
    Wang C, Tai Y, Lisanti MP, Liao DJ (2011) c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 1:615–626Google Scholar
  47. 47.
    Zhang Q, Spears E, Boone DN, Li Z, Gregory MA, Hann SR (2013) Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity. Proc Natl Acad Sci USA 110:978–983PubMedGoogle Scholar
  48. 48.
    Smith K, Dalton S (2010) Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 5:947–959PubMedCentralPubMedGoogle Scholar
  49. 49.
    Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN (2006) Myc influences global chromatin structure. EMBO J 25:2723–2734PubMedGoogle Scholar
  50. 50.
    Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D (2012) c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79PubMedCentralPubMedGoogle Scholar
  51. 51.
    Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65:753–763PubMedGoogle Scholar
  52. 52.
    van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752PubMedGoogle Scholar
  53. 53.
    Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13:2678–2690PubMedGoogle Scholar
  54. 54.
    Guney I, Sedivy JM (2006) Cellular senescence, epigenetic switches and c-Myc. Cell Cycle 5:2319–2323PubMedGoogle Scholar
  55. 55.
    Cenci T, Martini M, Montano N, D’Alessandris QG, Falchetti ML, Annibali D, Savino M, Bianchi F, Pierconti F, Nasi S, Pallini R, Larocca LM (2012) Prognostic relevance of c-Myc and BMI1 expression in patients with glioblastoma. Am J Clin Pathol 138:390–396PubMedGoogle Scholar
  56. 56.
    Joensuu K, Hagström J, Leidenius M, Haglund C, Andersson LC, Sariola H, Heikkilä P (2011) Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases—elevated Bmi-1 expression in late breast cancer relapses. Virchows Arch 459:31–39PubMedGoogle Scholar
  57. 57.
    Ochiai H, Takenobu H, Nakagawa A, Yamaguchi Y, Kimura M, Ohira M, Okimoto Y, Fujimura Y, Koseki H, Kohno Y, Nakagawara A, Kamijo T (2010) Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1Bbeta and TSLC1 in neuroblastoma. Oncogene 29:2681–2690PubMedGoogle Scholar
  58. 58.
    Guney I, Wu S, Sedivy JM (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16 (INK4a). Proc Natl Acad Sci USA 103:3645–3650PubMedGoogle Scholar
  59. 59.
    Duss S, André S, Nicoulaz AL, Fiche M, Bonnefoi H, Brisken C, Iggo RD (2007) An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Res 9:R38PubMedCentralPubMedGoogle Scholar
  60. 60.
    Cho JH, Dimri M, Dimri GP (2013) A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem 288:3406–3418PubMedGoogle Scholar
  61. 61.
    Behesti H, Bhagat H, Dubuc AM, Taylor MD, Marino S (2013) Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation. Dis Model Mech 6:49–63PubMedCentralPubMedGoogle Scholar
  62. 62.
    Li J, Gong LY, Song LB, Jiang LL, Liu LP, Wu J, Yuan J, Cai JC, He M, Wang L, Zeng M, Cheng SY, Li M (2010) Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB pathway. Am J Pathol 176:699–709PubMedGoogle Scholar
  63. 63.
    Huang R, Cheung NK, Vider J, Cheung IY, Gerald WL, Tickoo SK, Holland EC, Blasberg RG (2011) MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas. FASEB J 25:4138–4149PubMedGoogle Scholar
  64. 64.
    Calao M, Sekyere EO, Cui HJ, Cheung BB, Thomas WD, Keating J, Chen JB, Raif A, Jankowski K, Davies NP, Bekkum MV, Chen B, Tan O, Ellis T, Norris MD, Haber M, Kim ES, Shohet JM, Trahair TN, Liu T, Wainwright BJ, Ding HF, Marshall GM (2012) Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation. Oncogene. doi: 10.1038/onc.2012.368 PubMedGoogle Scholar
  65. 65.
    Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, Harr M, She QB, Chen Z, Lin HK, Di Giandomenico S, Elf SE, Yang Y, Miyata Y, Huang G, Menendez S, Mellinghoff IK, Rosen N, Pandolfi PP, Hedvat CV, Nimer SD (2012) Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal 5:ra77PubMedCentralPubMedGoogle Scholar
  66. 66.
    Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, Yao KM (2008) FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 283:16545–16553PubMedGoogle Scholar
  67. 67.
    Qian T, Lee JY, Park JH, Kim HJ, Kong G (2010) Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex. Oncogene 29:5818–5827PubMedGoogle Scholar
  68. 68.
    Scott CL, Gil J, Hernando E, Teruya-Feldstein J, Narita M, Martínez D, Visakorpi T, Mu D, Cordon-Cardo C, Peters G, Beach D, Lowe SW (2007) Role of the chromobox protein CBX7 in lymphomagenesis. Proc Natl Acad Sci USA 104:5389–5394PubMedGoogle Scholar
  69. 69.
    Lee JY, Jang KS, Shin DH, Oh MY, Kim HJ, Kim Y, Kong G (2008) Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 68:4201–4209PubMedGoogle Scholar
  70. 70.
    Guo WJ, Zeng MS, Yadav A, Song LB, Guo BH, Band V, Dimri GP (2007) Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breastcancer cells. Cancer Res 67:5083–5089PubMedCentralPubMedGoogle Scholar
  71. 71.
    Wang W, Lin T, Huang J, Hu W, Xu K, Liu J (2011) Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features. Urol Oncol 29:244–251PubMedGoogle Scholar
  72. 72.
    Guo WJ, Datta S, Band V, Dimri GP (2007) Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell 18:536–546PubMedCentralPubMedGoogle Scholar
  73. 73.
    Häyry V, Mäkinen LK, Atula T, Sariola H, Mäkitie A, Leivo I, Keski-Säntti H, Lundin J, Haglund C, Hagström J (2010) Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer 102:892–897PubMedCentralPubMedGoogle Scholar
  74. 74.
    Tabach Y, Kogan-Sakin I, Buganim Y, Solomon H, Goldfinger N, Hovland R, Ke XS, Oyan AM, Kalland KH, Rotter V, Domany E (2011) Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. PLoS One 6:e14632PubMedCentralPubMedGoogle Scholar
  75. 75.
    Suvà ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, Baumer K, Le Bitoux MA, Marino D, Cironi L, Marquez VE, Clément V, Stamenkovic I (2009) EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 69:9211–9218PubMedGoogle Scholar
  76. 76.
    Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y (2007) Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27:5105–5119PubMedCentralPubMedGoogle Scholar
  77. 77.
    Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci USA 109:5028–5033PubMedGoogle Scholar
  78. 78.
    Pellakuru LG, Iwata T, Gurel B, Schultz D, Hicks J, Bethel C, Yegnasubramanian S, De Marzo AM (2012) Global levels of H3K27me3 track with differentiation in vivo and are deregulated by MYC in prostate cancer. Am J Pathol 181:560–569PubMedGoogle Scholar
  79. 79.
    Palakurthy RK, Wajapeyee N, Santra MK, Gazin C, Lin L, Gobeil S, Green MR (2009) Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol Cell 36:219–230PubMedCentralPubMedGoogle Scholar
  80. 80.
    Kidder BL, Yang J, Palmer S (2008) Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3:e3932PubMedCentralPubMedGoogle Scholar
  81. 81.
    Kaur M, Cole MD (2013) MYC acts via the PTEN tumor suppressor to elicit auto regulation and genome-wide gene repression by activation of the Ezh2 methyltransferase. Cancer Res 73:695–705PubMedGoogle Scholar
  82. 82.
    Corvetta D, Chayka O, Gherardi S, et al. Physical interaction between MYCN and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem. 2013;288(12):8332-41Google Scholar
  83. 83.
    Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J, Bar-Nur O, Cheloufi S, Stadtfeld M, Figueroa ME, Robinton D, Natesan S, Melnick A, Zhu J, Ramaswamy S, Hochedlinger K (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–1632PubMedCentralPubMedGoogle Scholar
  84. 84.
    Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, Cantor AB, Orkin SH (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143:313–324PubMedCentralPubMedGoogle Scholar
  85. 85.
    Fragola G, Germain PL, Laise P, Cuomo A, Blasimme A, Gross F, Signaroldi E, Bucci G, Sommer C, Pruneri G, Mazzarol G, Bonaldi T, Mostoslavsky G, Casola S, Testa G (2013) Cell reprogramming requires silencing of a core subset of polycomb targets. PLoS Genet 9:e1003292PubMedCentralPubMedGoogle Scholar
  86. 86.
    Jia J, Zheng X, Hu G, Cui K, Zhang J, Zhang A, Jiang H, Lu B, Yates J 3rd, Liu C, Zhao K, Zheng Y (2012) Regulation of pluripotency and self-renewal of ESCs through epigenetic-threshold modulation and mRNA pruning. Cell 151:576–589PubMedCentralPubMedGoogle Scholar
  87. 87.
    Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S (2012) Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol Cell Biol 32:840–851PubMedCentralPubMedGoogle Scholar
  88. 88.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507PubMedCentralPubMedGoogle Scholar
  89. 89.
    Bhandari DR, Seo KW, Jung JW, Kim HS, Yang SR, Kang KS (2011) The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells. J Cell Mol Med 15:1603–1614PubMedGoogle Scholar
  90. 90.
    Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609PubMedGoogle Scholar
  91. 91.
    Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, Briasoulis E (2013) The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci 70:795–814PubMedGoogle Scholar
  92. 92.
    Leonardo TR, Schultheisz HL, Loring JF, Laurent LC (2012) The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 14:1114–1121PubMedGoogle Scholar
  93. 93.
    Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332PubMedGoogle Scholar
  94. 94.
    Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 2006(22):165–173Google Scholar
  95. 95.
    Sana J, Faltejskova P, Svoboda M, Slaby O (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103PubMedCentralPubMedGoogle Scholar
  96. 96.
    Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903PubMedCentralPubMedGoogle Scholar
  97. 97.
    Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE (2012) Autoregulation of microRNA biogenesis by let-7 and argonaute. Nature 486:541–544PubMedCentralPubMedGoogle Scholar
  98. 98.
    Xhemalce B, Robson SC, Kouzarides T (2012) Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151:278–288PubMedCentralPubMedGoogle Scholar
  99. 99.
    Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:8468–8470Google Scholar
  100. 100.
    Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282PubMedGoogle Scholar
  101. 101.
    Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263PubMedGoogle Scholar
  102. 102.
    Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267PubMedCentralPubMedGoogle Scholar
  103. 103.
    Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) MicroRNAs in cancer management. Lancet Oncol 13:e249–e258PubMedGoogle Scholar
  104. 104.
    Nair VS, Maeda LS, Ioannidis JP (2012) Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst 104:528–540PubMedGoogle Scholar
  105. 105.
    Chen PS, Su JL, Hung MC (2012) Dysregulation of microRNAs in cancer. J Biomed Sci 19:90PubMedGoogle Scholar
  106. 106.
    Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15:1443–1461PubMedGoogle Scholar
  107. 107.
    Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207PubMedGoogle Scholar
  108. 108.
    Zhao H, Wang D, Du W, Gu D, Yang R (2010) MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 74:149–155PubMedGoogle Scholar
  109. 109.
    Kunej T, Godnic I, Horvat S, Zorc M, Calin GA (2012) Cross talk between microRNA and coding cancer genes. Cancer J 18:223–231PubMedCentralPubMedGoogle Scholar
  110. 110.
    Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, Chen P, He C, You D, Zhang S, Wang J, Arnovitz S, Elkahloun A, Price C, Hong GM, Ren H, Kunjamma RB, Neilly MB, Matthews JM, Xu M, Larson RA, Le Beau MM, Slany RK, Liu PP, Lu J, Zhang J, He C, Chen J (2012) Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 22:524–535PubMedCentralPubMedGoogle Scholar
  111. 111.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50PubMedCentralPubMedGoogle Scholar
  112. 112.
    Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc–microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res. 2013;41(4):2239-54Google Scholar
  113. 113.
    Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, Phang JM (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 109:8983–8988PubMedGoogle Scholar
  114. 114.
    Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E (2012) Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer. doi: 10.1002/ijc.27859 PubMedGoogle Scholar
  115. 115.
    Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843PubMedGoogle Scholar
  116. 116.
    Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Seto E, Dalton WS, Wright KL, Sotomayor E, Bhalla K, Tao J (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 22:506–523PubMedGoogle Scholar
  117. 117.
    Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, Wang R, Li Y, Dahiya A, Wang L, Pandhi M, Lonigro RJ, Wu YM, Tomlins SA, Palanisamy N, Qin Z, Yu J, Maher CA, Varambally S, Chinnaiyan AM (2011) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20:187–199PubMedCentralPubMedGoogle Scholar
  118. 118.
    Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignani F, Nervi C (2012) Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119:4034–4046PubMedGoogle Scholar
  119. 119.
    Lovén J, Zinin N, Wahlström T, Müller I, Brodin P, Fredlund E, Ribacke U, Pivarcsi A, Påhlman S, Henriksson M (2010) MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA 107:1553–1558PubMedGoogle Scholar
  120. 120.
    Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, De Marzo AM (2011) Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2:669–683PubMedGoogle Scholar
  121. 121.
    Sander S, Bullinger L, Wirth T (2009) Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle 8:556–559PubMedGoogle Scholar
  122. 122.
    Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack JR, Wirth T (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112:4202–4212PubMedGoogle Scholar
  123. 123.
    Salvatori B, Iosue I, Djodji Damas N, Mangiavacchi A, Chiaretti S, Messina M, Padula F, Guarini A, Bozzoni I, Fazi F, Fatica A (2011) Critical role of c-Myc in acute myeloid leukemia involving direct regulation of miR-26a and histone methyltransferase EZH2. Genes Cancer 2:585–592PubMedCentralPubMedGoogle Scholar
  124. 124.
    Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, Chen YC, Peng Y, Yao KT, Kung HF, Li XP (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71:225–233PubMedGoogle Scholar
  125. 125.
    Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683PubMedGoogle Scholar
  126. 126.
    Sodir NM, Evan GI (2011) Finding cancer’s weakest link. Oncotarget 2:1307–1313PubMedGoogle Scholar
  127. 127.
    Whitfield JR, Soucek L (2012) Tumor microenvironment: becoming sick of Myc. Cell Mol Life Sci 69:931–934PubMedCentralPubMedGoogle Scholar
  128. 128.
    Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI, Soucek L, Nasi S (2011) The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 6:e22284PubMedCentralPubMedGoogle Scholar
  129. 129.
    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917PubMedCentralPubMedGoogle Scholar
  130. 130.
    Frenzel A, Lovén J, Henriksson MA (2010) Targeting MYC-regulated miRNAs to combat cancer. Genes Cancer 1:660–667PubMedCentralPubMedGoogle Scholar
  131. 131.
    Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017PubMedCentralPubMedGoogle Scholar
  132. 132.
    Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, Danesi R (2012) EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev 31:753–761PubMedGoogle Scholar
  133. 133.
    Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896PubMedGoogle Scholar
  134. 134.
    McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112PubMedGoogle Scholar
  135. 135.
    Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, Zeng J, Li M, Fan H, Lin Y, Gu J, Ardayfio O, Zhang JH, Yan X, Fang J, Mi Y, Zhang M, Zhou T, Feng G, Chen Z, Li G, Yang T, Zhao K, Liu X, Yu Z, Lu CX, Atadja P, Li E (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 109:21360–21365PubMedGoogle Scholar
  136. 136.
    Li Y, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One 8:e54369PubMedCentralPubMedGoogle Scholar
  137. 137.
    Bommi PV, Dimri M, Sahasrabuddhe AA, Khandekar J, Dimri GP (2010) The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors. Cell Cycle 9:2663–2673PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Leonidas Benetatos
    • 1
  • George Vartholomatos
    • 2
  • Eleftheria Hatzimichael
    • 3
  1. 1.Blood BankGeneral Hospital of PrevezaPrevezaGreece
  2. 2.Molecular Biology LaboratoryUniversity Hospital of IoanninaIoanninaGreece
  3. 3.Deparment of HematologyUniversity Hospital of IoanninaIoanninaGreece

Personalised recommendations