Cellular and Molecular Life Sciences

, Volume 70, Issue 23, pp 4569–4584 | Cite as

Emerging roles of zinc finger proteins in regulating adipogenesis

  • Shengjuan Wei
  • Lifan Zhang
  • Xiang Zhou
  • Min Du
  • Zhihua Jiang
  • Gary J. Hausman
  • Werner G. Bergen
  • Linsen Zan
  • Michael V. Dodson


Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. Due to the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood in order to develop novel and long-term impact strategies for ameliorating obesity. In this review, we discuss recent work that has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken together, these data lead to the conclusion that ZFPs may become promising targets to combat human obesity.


Zinc finger Adipose tissue Adipocyte Obesity Zfp423 Adiposity Adipogenesis 



The research was supported by the China National ‘863’ Program (#2011AA100307-02, #2013AA102505), the China National Natural Science Foundation (#31272411, #31000997), the China National Twelfth ‘5 Year’ Science and Technology Support Project (#2011BAD28B04-03), the China GMO New Varieties Major Project (#2011ZX08007-002), the China National Beef and Yak Industrial Technology System (CARS-38), the Program for Changjiang Scholars and Innovative Research Team of China (IRT0940), the Science and Technology Coordination and Innovation Project of Shaanxi Province (2011KTCL02-07), as well as the National Institutes of Health, USA (R01HD067449).

Conflict of interest

The authors have declared that no conflicts of interest exist.


  1. 1.
    Dodson MV, Mir PS, Hausman GJ, Guan LL, Du M, Jiang Z, Fernyhough ME, Bergen WG (2011) Obesity, metabolic syndrome, and adipocytes. J Lipids 2011:721686PubMedGoogle Scholar
  2. 2.
    Dodson MV, Boudina S, Albrecht E, Bucci L, Fernyhough-Culver M, Wei S, Bergen WG, Amaral AJ, Moustaid-Moussa N, Poulos S, Hausman GJ (2013) A long journey to effective obesity treatments: is there light at the end of the tunnel? Exp Biol Med. doi: 10.1177/1535370213477603 Google Scholar
  3. 3.
    Fernyhough ME, Helterline DI, Vierck JL, Hausman GJ, Hill RA, Dodson MV (2005) Dedifferentiation of mature adipocytes to form adipofibroblasts: more than just a possibility. Adipocytes 1:17–24Google Scholar
  4. 4.
    Fernyhough ME, Bucci LR, Hausman GJ, Antonio J, Vierck JL, Dodson MV (2005) Gaining a solid grip on adipogenesis. Tissue Cell 37:335–338PubMedGoogle Scholar
  5. 5.
    Ganss B, Jheon A (2004) Zinc finger transcription factors in skeletal development. Crit Rev Oral Biol Med 15:282–297PubMedGoogle Scholar
  6. 6.
    Leon O, Roth M (2000) Zinc fingers: DNA binding and protein–protein interactions. Biol Res 33:21–30PubMedGoogle Scholar
  7. 7.
    Havel PJ (2004) Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53(Suppl 1):S143–S151PubMedGoogle Scholar
  8. 8.
    Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53(Suppl 1):S130–S135PubMedGoogle Scholar
  9. 9.
    Townsend K, Tseng Y (2012) Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte 1:13–24PubMedGoogle Scholar
  10. 10.
    Ashrafi K (2007) Obesity and the regulation of fat metabolism. In: WormBook (ed) The C. elegans Research Community, Wormbook, United KingdomGoogle Scholar
  11. 11.
    Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN (2013) Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 227:216–221PubMedGoogle Scholar
  12. 12.
    Billon N, Monteiro MC, Dani C (2008) Developmental origin of adipocytes: new insights into a pending question. Biol Cell 100:563–575PubMedGoogle Scholar
  13. 13.
    Wei S, Zan L, Hausman GJ, Rasmussen TP, Bergen WG, Dodson MV (2013) Dedifferentiated adipocyte-derived progeny cells (DFAT cells): potential stem cells of adipose tissue. Adipocyte.
  14. 14.
    German AJ, Ryan VH, German AC, Wood IS, Trayhurn P (2010) Obesity, its associated disorders and the role of inflammatory adipokines in companion animals. Vet J 185:4–9PubMedGoogle Scholar
  15. 15.
    Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324PubMedGoogle Scholar
  16. 16.
    Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749PubMedGoogle Scholar
  17. 17.
    Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthr Res Ther 9:204Google Scholar
  18. 18.
    Camp HS, Ren D, Leff T (2002) Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med 8:442–447PubMedGoogle Scholar
  19. 19.
    Zamani N, Brown CW (2011) Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev 32:387–403PubMedGoogle Scholar
  20. 20.
    Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734PubMedGoogle Scholar
  21. 21.
    Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809PubMedGoogle Scholar
  22. 22.
    Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464:619–623PubMedGoogle Scholar
  23. 23.
    Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FY, Wu CW (1983) Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem 258:14120–14125PubMedGoogle Scholar
  24. 24.
    Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614PubMedGoogle Scholar
  25. 25.
    Lee MS, Gippert GP, Soman KV, Case DA, Wright PE (1989) Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245:635–637PubMedGoogle Scholar
  26. 26.
    Mackay JP, Crossley M (1998) Zinc fingers are sticking together. Trends Biochem Sci 23:1–4PubMedGoogle Scholar
  27. 27.
    Sanchez-Garcia I, Rabbitts TH (1994) The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet 10:315–320PubMedGoogle Scholar
  28. 28.
    Klug A, Schwabe JW (1995) Protein motifs 5 Zinc fingers. FASEB J 9:597–604PubMedGoogle Scholar
  29. 29.
    Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409:832–833PubMedGoogle Scholar
  30. 30.
    Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46PubMedGoogle Scholar
  31. 31.
    Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160PubMedGoogle Scholar
  32. 32.
    Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635PubMedGoogle Scholar
  33. 33.
    Pavletich NP, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707PubMedGoogle Scholar
  34. 34.
    Shi Y, Berg JM (1995) Specific DNA-RNA hybrid binding by zinc finger proteins. Science 268:282–284PubMedGoogle Scholar
  35. 35.
    Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15:94–98PubMedGoogle Scholar
  36. 36.
    Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212PubMedGoogle Scholar
  37. 37.
    Tang QQ, Jiang MS, Lane MD (1999) Repressive effect of Sp1 on the C/EBPalpha gene promoter: role in adipocyte differentiation. Mol Cell Biol 19:4855–4865PubMedGoogle Scholar
  38. 38.
    Jiang MS, Lane MD (2000) Sequential repression and activation of the CCAAT enhancer-binding protein-alpha (C/EBPalpha) gene during adipogenesis. Proc Natl Acad Sci USA 97:12519–12523PubMedGoogle Scholar
  39. 39.
    Quach JM, Walker EC, Allan E, Solano M, Yokoyama A, Kato S, Sims NA, Gillespie MT, Martin TJ (2011) Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem 286:4186–4198PubMedGoogle Scholar
  40. 40.
    Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, Griffin MJ, Min J, Baron R, Rosen ED (2012) Regulation of early adipose commitment by Zfp521. PLoS Biol 10:e1001433PubMedGoogle Scholar
  41. 41.
    Hasegawa R, Tomaru Y, de Hoon M, Suzuki H, Hayashizaki Y, Shin JW (2013) Identification of ZNF395 as a novel modulator of adipogenesis. Exp Cell Res 319:68–76PubMedGoogle Scholar
  42. 42.
    Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, Ishii S (2006) Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 10:461–471PubMedGoogle Scholar
  43. 43.
    Schupp M, Lazar MA (2010) Fingered for a fat fate. Cell Metab 11:244–245PubMedGoogle Scholar
  44. 44.
    Akerblad P, Lind U, Liberg D, Bamberg K, Sigvardsson M (2002) Early B-cell factor (O/E-1) is a promoter of adipogenesis and involved in control of genes important for terminal adipocyte differentiation. Mol Cell Biol 22:8015–8025PubMedGoogle Scholar
  45. 45.
    Hesslein DG, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC (2009) Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 44:537–546PubMedGoogle Scholar
  46. 46.
    Huang Y, Das AK, Yang QY, Zhu MJ, Du M (2012) Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PLoS One 7:e47496PubMedGoogle Scholar
  47. 47.
    Janesick A, Blumberg B (2011) Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res C Embryo Today 93:34–50PubMedGoogle Scholar
  48. 48.
    You L, Pan L, Chen L, Chen JY, Zhang X, Lv Z, Fu D (2012) Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts. J Transl Med 10:11PubMedGoogle Scholar
  49. 49.
    Warming S, Liu P, Suzuki T, Akagi K, Lindtner S, Pavlakis GN, Jenkins NA, Copeland NG (2003) Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Krüppel-like zinc finger protein. Blood 101:1934–1940PubMedGoogle Scholar
  50. 50.
    Wu M, Hesse E, Morvan F, Zhang JP, Correa D, Rowe GC, Kiviranta R, Neff L, Philbrick WM, Horne WC, Baron R (2009) Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone 44:528–536PubMedGoogle Scholar
  51. 51.
    Shen S, Pu J, Lang B, McCaig CD (2011) A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther 2:20PubMedGoogle Scholar
  52. 52.
    Stephens JM (2012) The fat controller: adipocyte development. PLoS Biol 10:e1001436PubMedGoogle Scholar
  53. 53.
    Takagi T, Harada J, Ishii S (2001) Murine Schnurri-2 is required for positive selection of thymocytes. Nat Immunol 2:1048–1053PubMedGoogle Scholar
  54. 54.
    Saita Y, Takagi T, Kitahara K, Usui M, Miyazono K, Ezura Y, Nakashima K, Kurosawa H, Ishii S, Noda M (2007) Lack of Schnurri-2 expression associates with reduced bone remodeling and osteopenia. J Biol Chem 282:12907–12915PubMedGoogle Scholar
  55. 55.
    Meruvu S, Hugendubler L, Mueller E (2011) Regulation of adipocyte differentiation by the zinc finger protein ZNF638. J Biol Chem 286:26516–26523PubMedGoogle Scholar
  56. 56.
    Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12:416–422PubMedGoogle Scholar
  57. 57.
    Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290:134–138PubMedGoogle Scholar
  58. 58.
    Schupp M, Cristancho AG, Lefterova MI, Hanniman EA, Briggs ER, Steger DJ, Qatanani M, Curtin JC, Schug J, Ochsner SA, McKenna NJ, Lazar MA (2009) Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-gamma depletion to revert the adipocyte phenotype. J Biol Chem 284:9458–9464PubMedGoogle Scholar
  59. 59.
    Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS (2005) Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 25:706–715PubMedGoogle Scholar
  60. 60.
    Jack BH, Crossley M (2010) GATA proteins work together with friend of GATA (FOG) and C-terminal binding protein (CTBP) co-regulators to control adipogenesis. J Biol Chem 285:32405–32414PubMedGoogle Scholar
  61. 61.
    Xu Z, Yu S, Hsu CH, Eguchi J, Rosen ED (2008) The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc Natl Acad Sci USA 105:2421–2426PubMedGoogle Scholar
  62. 62.
    Wang F, Tong Q (2008) Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation. Am J Physiol Cell Physiol 295:C213–C220PubMedGoogle Scholar
  63. 63.
    Mathsyaraja H, Ostrowski MC (2012) Setting Snail2′s pace during EMT. Nat Cell Biol 14:1122–1123PubMedGoogle Scholar
  64. 64.
    Perez-Mancera PA, Bermejo-Rodriguez C, Gonzalez-Herrero I, Herranz M, Flores T, Jimenez R, Sanchez-Garcia I (2007) Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet 16:2972–2986PubMedGoogle Scholar
  65. 65.
    Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R, Charnay P (1988) A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J 7:29–35PubMedGoogle Scholar
  66. 66.
    Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM (2005) Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab 1:93–106PubMedGoogle Scholar
  67. 67.
    Boyle KB, Hadaschik D, Virtue S, Cawthorn WP, Ridley SH, O’Rahilly S, Siddle K (2009) The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ 16:782–789PubMedGoogle Scholar
  68. 68.
    Yu X, Shen N, Zhang ML, Pan FY, Wang C, Jia WP, Liu C, Gao Q, Gao X, Xue B, Li CJ (2011) Egr-1 decreases adipocyte insulin sensitivity by tilting PI3 K/Akt and MAPK signal balance in mice. EMBO J 30:3754–3765PubMedGoogle Scholar
  69. 69.
    Shen N, Yu X, Pan FY, Gao X, Xue B, Li CJ (2011) An early response transcription factor, Egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism. J Biol Chem 286:14508–14515PubMedGoogle Scholar
  70. 70.
    Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143:156–169PubMedGoogle Scholar
  71. 71.
    Li J, Song JS, Bell RJ, Tran TN, Haq R, Liu H, Love KT, Langer R, Anderson DG, Larue L, Fisher DE (2012) YY1 regulates melanocyte development and function by cooperating with MITF. PLoS Genet 8:e1002688PubMedGoogle Scholar
  72. 72.
    Deng Z, Cao P, Wan MM, Sui G (2010) Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription 1:81–84PubMedGoogle Scholar
  73. 73.
    Flanagan JR (1995) Autologous stimulation of YY1 transcription factor expression: role of an insulin-like growth factor. Cell Growth Differ 6:185–190PubMedGoogle Scholar
  74. 74.
    Huang HY, Li X, Liu M, Song TJ, He Q, Ma CG, Tang QQ (2008) Transcription factor YY1 promotes adipogenesis via inhibiting CHOP-10 expression. Biochem Biophys Res Commun 375:496–500PubMedGoogle Scholar
  75. 75.
    Tang QQ, Lane MD (2000) Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc Natl Acad Sci USA 97:12446–12450PubMedGoogle Scholar
  76. 76.
    Huang H, Lane MD, Tang QQ (2005) Effect of serum on the down-regulation of CHOP-10 during differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 338:1185–1188PubMedGoogle Scholar
  77. 77.
    Suske G, Bruford E, Philipsen S (2005) Mammalian SP/KLF transcription factors: bring in the family. Genomics 85:551–556PubMedGoogle Scholar
  78. 78.
    Bieker JJ (2001) Krüppel-like factors: three fingers in many pies. J Biol Chem 276:34355–34358PubMedGoogle Scholar
  79. 79.
    Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol 4:206PubMedGoogle Scholar
  80. 80.
    Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S (2008) Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol 40:1996–2001PubMedGoogle Scholar
  81. 81.
    Miller IJ, Bieker JJ (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol 13:2776–2786PubMedGoogle Scholar
  82. 82.
    Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S (2009) Krüppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci 5:622–636PubMedGoogle Scholar
  83. 83.
    Wu Z, Wang S (2013) Role of Krüppel-like transcription factors in adipogenesis. Dev Biol 373:235–243PubMedGoogle Scholar
  84. 84.
    Uchida S, Tanaka Y, Ito H, Saitoh-Ohara F, Inazawa J, Yokoyama KK, Sasaki S, Marumo F (2000) Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Krüppel-like factor, a novel zinc finger repressor. Mol Cell Biol 20:7319–7331PubMedGoogle Scholar
  85. 85.
    Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu R, Kasuga M (2005) Role of Krüppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280:12867–12875PubMedGoogle Scholar
  86. 86.
    Pei H, Yao Y, Yang Y, Liao K, Wu JR (2011) Krüppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ 18:315–327PubMedGoogle Scholar
  87. 87.
    Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen-Banerjee S, DePina A, Haspel R, Jain MK (2002) The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem 277:34322–34328PubMedGoogle Scholar
  88. 88.
    Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R (2005) Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1:27–39PubMedGoogle Scholar
  89. 89.
    Birsoy K, Chen Z, Friedman J (2008) Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7:339–347PubMedGoogle Scholar
  90. 90.
    Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, Walsh MJ (2005) Krüppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 280:26941–26952PubMedGoogle Scholar
  91. 91.
    Lee H, Kim HJ, Lee YJ, Lee MY, Choi H, Lee H, Kim JW (2012) Krüppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS One 7:e52474PubMedGoogle Scholar
  92. 92.
    Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK (2003) The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278:2581–2584PubMedGoogle Scholar
  93. 93.
    Wu J, Srinivasan SV, Neumann JC, Lingrel JB (2005) The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44:11098–11105PubMedGoogle Scholar
  94. 94.
    Sue N, Jack BH, Eaton SA, Pearson RC, Funnell AP, Turner J, Czolij R, Denyer G, Bao S, Molero-Navajas JC, Perkins A, Fujiwara Y, Orkin SH, Bell-Anderson K, Crossley M (2008) Targeted disruption of the basic Krüppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol 28:3967–3978PubMedGoogle Scholar
  95. 95.
    Kawamura Y, Tanaka Y, Kawamori R, Maeda S (2006) Overexpression of Krüppel-like factor 7 regulates adipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulin secretion in pancreatic beta-cell line. Mol Endocrinol 20:844–856PubMedGoogle Scholar
  96. 96.
    Eaton SA, Funnell AP, Sue N, Nicholas H, Pearson RC, Crossley M (2008) A network of Krüppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem 283:26937–26947PubMedGoogle Scholar
  97. 97.
    Yamamoto K, Sakaguchi M, Medina RJ, Niida A, Sakaguchi Y, Miyazaki M, Kataoka K, Huh NH (2010) Transcriptional regulation of a brown adipocyte-specific gene, UCP1, by KLF11 and KLF15. Biochem Biophys Res Commun 400:175–180PubMedGoogle Scholar
  98. 98.
    Tsai J, Tong Q, Tan G, Chang AN, Orkin SH, Hotamisligil GS (2005) The transcription factor GATA2 regulates differentiation of brown adipocytes. EMBO Rep 6:879–884PubMedGoogle Scholar
  99. 99.
    Plaisier CL, Bennett BJ, He A, Guan B, Lusis AJ, Reue K, Vergnes L (2012) Zbtb16 has a role in brown adipocyte bioenergetics. Nutr Diabetes 2:e46PubMedGoogle Scholar
  100. 100.
    Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158PubMedGoogle Scholar
  101. 101.
    Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM (2008) Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 22:1397–1409PubMedGoogle Scholar
  102. 102.
    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967PubMedGoogle Scholar
  103. 103.
    Tanaka T, Yoshida N, Kishimoto T, Akira S (1997) Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J 16:7432–7443PubMedGoogle Scholar
  104. 104.
    Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B (2005) PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 1740:293–304PubMedGoogle Scholar
  105. 105.
    Turpin JA, Terpening SJ, Schaeffer CA, Yu G, Glover CJ, Felsted RL, Sausville EA, Rice WG (1996) Inhibitors of human immunodeficiency virus type 1 zinc fingers prevent normal processing of gag precursors and result in the release of noninfectious virus particles. J Virol 70:6180–6189PubMedGoogle Scholar
  106. 106.
    Rice WG, Turpin JA, Huang M, Clanton D, Buckheit RW Jr, Covell DG, Wallqvist A, McDonnell NB, DeGuzman RN, Summers MF, Zalkow L, Bader JP, Haugwitz RD, Sausville EA (1997) Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Nat Med 3:341–345PubMedGoogle Scholar
  107. 107.
    Ylä-Herttuala S (2012) Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther 20:1831–1832PubMedGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Shengjuan Wei
    • 1
    • 2
  • Lifan Zhang
    • 2
    • 3
  • Xiang Zhou
    • 2
  • Min Du
    • 2
  • Zhihua Jiang
    • 2
  • Gary J. Hausman
    • 4
  • Werner G. Bergen
    • 5
  • Linsen Zan
    • 1
  • Michael V. Dodson
    • 2
  1. 1.College of Animal Science and TechnologyNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.Department of Animal SciencesWashington State UniversityPullmanUSA
  3. 3.College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  4. 4.Animal Science DepartmentUniversity of GeorgiaAthensUSA
  5. 5.Program in Cellular and Molecular Biosciences, Department of Animal SciencesAuburn UniversityAuburnUSA

Personalised recommendations