Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 22, pp 4385–4397 | Cite as

The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

  • Sylvie Elsen
  • Véronique Collin-Faure
  • Xavier Gidrol
  • Claudie LemercierEmail author
Research Article

Abstract

Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.

Keywords

DNA double-strand breaks Infection Pseudomonas aeruginosa ATM H2AX 

Abbreviations

ADP-RT

ADP ribosyl transferase

ATM

Ataxia telangiectasia mutated

DSB

Double-strand breaks

OGG1

8-oxoguanine DNA glycosylase

Crk

CT-10 regulator of kinase

MOI

Multiplicity of infection

PI

Propidium iodide

CDT

Cytolethal distending toxin

CIP

Calf intestine phosphatase

T3SS

Type III secretion system

Notes

Acknowledgments

We thank Drs. F. Boulay for very helpful scientific discussions, I. Attrée for advice and critical reading of the manuscript, J. Gaffé for discussion and corrections, H.P. Schweizer for the gift of mini-CTX1, Prof. B. Toussaint and Prof. B. Polack for the CHAΔTlox and CHAΔSTlox strains, D. Dacheux for the exoS mutagenesis, B. Schaack for annexin labeling reagents, J. Baudier for H1299 cells, P. Obeid for her advice on comet assays and E. Lebel for technical help. Images were obtained at the confocal microscopy facility of the “Institut de Recherches en Technologies et Sciences pour le Vivant” (iRTSV, CEA-Grenoble). Irradiations were performed in the “Anémome/Bio” irradiator in the “ARC -Nucléart” facility at the CEA-Grenoble. Part of the work of S. Elsen, V. Collin-Faure and C. Lemercier was performed in the former laboratory CEA-iRTSV-LBBSI, CNRS UMR5092 directed by Dr. F. Boulay. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Commissariat à l’Energie Atomique et aux Energies Renouvelables (CEA), the Centre National de la Recherche Scientifique (CNRS) and the Université Joseph Fourier (UJF Grenoble).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

18_2013_1392_MOESM1_ESM.doc (56 kb)
Supplementary material 1 (DOC 56 kb)
18_2013_1392_MOESM2_ESM.pdf (488 kb)
Supplementary material 2 (PDF 488 kb)

References

  1. 1.
    Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204PubMedCrossRefGoogle Scholar
  2. 2.
    Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584:3675–3681PubMedCrossRefGoogle Scholar
  3. 3.
    Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694PubMedCrossRefGoogle Scholar
  4. 4.
    Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA et al (2008) Gamma H2AX and cancer. Nat Rev Cancer 8:957–967PubMedCrossRefGoogle Scholar
  5. 5.
    Mah LJ, El-Osta A, Karagiannis TC (2010) GammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686PubMedCrossRefGoogle Scholar
  6. 6.
    Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851PubMedCrossRefGoogle Scholar
  7. 7.
    Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E et al (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107:11537–11542PubMedCrossRefGoogle Scholar
  8. 8.
    Lara-Tejero M, Galán JE (2000) A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290:354–357PubMedCrossRefGoogle Scholar
  9. 9.
    Li L, Sharipo A, Chaves-Olarte E, Masucci MG, Levitsky V et al (2002) The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol 4:87–99PubMedCrossRefGoogle Scholar
  10. 10.
    Oswald E, Nougayrède JP, Taieb F, Sugai M (2005) Bacterial toxins that modulate host cell-cycle progression. Curr Opin Microbiol 8:83–91PubMedCrossRefGoogle Scholar
  11. 11.
    Kunz AN, Brook I (2010) Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy 56:492–500PubMedCrossRefGoogle Scholar
  12. 12.
    Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344PubMedCrossRefGoogle Scholar
  13. 13.
    Wu M, Huang H, Zhang W, Kannan S, Weaver A et al (2011) Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice. Infect Immun 79:75–87PubMedCrossRefGoogle Scholar
  14. 14.
    David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950PubMedCrossRefGoogle Scholar
  15. 15.
    Veesenmeyer JL, Hauser AR, Lisboa T, Rello J (2009) Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 37:1777–1786PubMedCrossRefGoogle Scholar
  16. 16.
    Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS et al (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774PubMedCrossRefGoogle Scholar
  17. 17.
    Hauser AR, Cobb E, Bodi M, Mariscal D, Vallés J et al (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30:521–528PubMedCrossRefGoogle Scholar
  18. 18.
    Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665PubMedCrossRefGoogle Scholar
  19. 19.
    Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288PubMedCrossRefGoogle Scholar
  20. 20.
    Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916PubMedCrossRefGoogle Scholar
  21. 21.
    Grassmé H, Jendrossek V, Gulbins E (2001) Molecular mechanisms of bacteria induced apoptosis. Apoptosis 6:441–445PubMedCrossRefGoogle Scholar
  22. 22.
    Aude-Garcia C, Collin-Faure V, Bausinger H, Hanau D, Rabilloud T et al (2010) Dual roles for MEF2A and MEF2D during human macrophage terminal differentiation and c-Jun expression. Biochem J 430:237–244PubMedCrossRefGoogle Scholar
  23. 23.
    Rovera G, Santoli D, Damsky C (1979) Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci USA 76:2779–2783PubMedCrossRefGoogle Scholar
  24. 24.
    Toussaint B, Delic-Attree I, Vignais PM (1993) Pseudomonas aeruginosa contains an IHF-like protein that binds to the algD Promoter. Biochem Biophys Res Commun 196(1):416–1421PubMedCrossRefGoogle Scholar
  25. 25.
    Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149PubMedCrossRefGoogle Scholar
  26. 26.
    Jia J, Alaoui-El-Azher M, Chow M, Chambers TC, Baker H et al (2003) c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun 71:3361–3370PubMedCrossRefGoogle Scholar
  27. 27.
    Jendrossek V, Grassmé H, Mueller I, Lang F, Gulbins E (2001) Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infect Immun 69:2675–2683PubMedCrossRefGoogle Scholar
  28. 28.
    Rucks EA, Olson JC (2005) Characterization of an ExoS Type III translocation-resistant cell line. Infect Immun 73:638–643PubMedCrossRefGoogle Scholar
  29. 29.
    Bridge DR, Novotny MJ, Moore ER, Olson JC (2010) Role of host cell polarity and leading edge properties in Pseudomonas type III secretion. Microbiology 156:356–373PubMedCrossRefGoogle Scholar
  30. 30.
    Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354:494–496PubMedCrossRefGoogle Scholar
  31. 31.
    Dacheux D, Toussaint B, Richard M, Brochier G, Croize J et al (2000) Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect Immun 68:2916–2924PubMedCrossRefGoogle Scholar
  32. 32.
    Yahr TL, Mende-Mueller LM, Friese MB, Frank DW (1997) Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol 179:7165–7168PubMedGoogle Scholar
  33. 33.
    Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372PubMedCrossRefGoogle Scholar
  34. 34.
    Radke J, Pederson KJ, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase. Infect Immun 67:1508–1510PubMedGoogle Scholar
  35. 35.
    Lu C, Zhu F, Cho YY, Tang F, Yoga T et al (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23:121–132PubMedCrossRefGoogle Scholar
  36. 36.
    Deng Q, Zhang Y, Barbieri JT (2007) Intracellular trafficking of Pseudomonas ExoS, a type III cytotoxin. Traffic 8:1331–1345PubMedCrossRefGoogle Scholar
  37. 37.
    Katsurahara M, Kobayashi Y, Iwasa M, Ma N, Inoue H (2009) Reactive nitrogen species mediate DNA damage in Helicobacter pylori-infected gastric mucosa. Helicobacter 14:552–558PubMedCrossRefGoogle Scholar
  38. 38.
    HirakuY Kawanishi S, Ichinose T, Murata M (2010) The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann N Y Acad Sci 1203:15–22CrossRefGoogle Scholar
  39. 39.
    Jia J, Wang Y, Zhou L, Jin S (2006) Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun 74:6557–6570PubMedCrossRefGoogle Scholar
  40. 40.
    Zio DD, Cianfanelli V, Cecconi F (2012) New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal. doi: 10.1089/ars.2012.4938 PubMedGoogle Scholar
  41. 41.
    Toller IM, Neelsen KJ, Steger M, Hartung ML, Hottiger MO et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA 108:14944–14949PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Sylvie Elsen
    • 1
  • Véronique Collin-Faure
    • 2
  • Xavier Gidrol
    • 3
  • Claudie Lemercier
    • 3
    • 4
    Email author
  1. 1.CEA, DSV, iRTSV-BCI, INSERM, UMR-S 1036, Biologie Du Cancer Et de L’Infection, CNRS, ERL 5261, Bacterial Pathogenesis and Cellular ResponsesGrenobleFrance
  2. 2.CEA, DSV, iRTSVGrenobleFrance
  3. 3.CEA, DSV, iRTSV-BGE, INSERM, Unit 1038, Biologie à Grande EchelleGrenobleFrance
  4. 4.INSERM Unit 1038, CEA, DSV, iRTSV-BGEGrenoble Cedex 9France

Personalised recommendations