Advertisement

Cellular and Molecular Life Sciences

, Volume 70, Issue 21, pp 4181–4195 | Cite as

Extracellular wildtype and mutant SOD1 induces ER–Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells

  • Vinod Sundaramoorthy
  • Adam K. Walker
  • Justin Yerbury
  • Kai Ying Soo
  • Manal A. Farg
  • Vy Hoang
  • Rafaa Zeineddine
  • Damian Spencer
  • Julie D. Atkin
Research Article

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disorder and the majority of ALS is sporadic, where misfolding and aggregation of Cu/Zn-superoxide dismutase (SOD1) is a feature shared with familial mutant-SOD1 cases. ALS is characterized by progressive neurospatial spread of pathology among motor neurons, and recently the transfer of extracellular, aggregated mutant SOD1 between cells was demonstrated in culture. However, there is currently no evidence that uptake of SOD1 into cells initiates neurodegenerative pathways reminiscent of ALS pathology. Similarly, whilst dysfunction to the ER–Golgi compartments is increasingly implicated in the pathogenesis of both sporadic and familial ALS, it remains unclear whether misfolded, wildtype SOD1 triggers ER–Golgi dysfunction. In this study we show that both extracellular, native wildtype and mutant SOD1 are taken up by macropinocytosis into neuronal cells. Hence uptake does not depend on SOD1 mutation or misfolding. We also demonstrate that purified mutant SOD1 added exogenously to neuronal cells inhibits protein transport between the ER–Golgi apparatus, leading to Golgi fragmentation, induction of ER stress and apoptotic cell death. Furthermore, we show that extracellular, aggregated, wildtype SOD1 also induces ER–Golgi pathology similar to mutant SOD1, leading to apoptotic cell death. Hence extracellular misfolded wildtype or mutant SOD1 induce dysfunction to ER–Golgi compartments characteristic of ALS in neuronal cells, implicating extracellular SOD1 in the spread of pathology among motor neurons in both sporadic and familial ALS.

Keywords

Extracellular SOD1 ALS Endoplasmic reticulum Golgi 

Notes

Acknowledgments

We thank Professor Neil Cashmann for the gift of NSC-34 cells, and we thank Dr Jennifer Lippincott-Schwartz and Dr George Patterson for the VSVG-ts045-mCherry construct. This work was supported by National Health and Medical Research Council of Australia Project Grants [# 1006141, 1030513 to J.A.], Bethlehem Griffiths Research Foundation, Motor Neuron Disease Research Institute of Australia, Suzie Harris Memorial Fund MND Research Grant and Rosalind Nicholson MND Research Grant [to J.A.], a National Health and Medical Research Council CJ Martin Biomedical Early Career fellowship [1036835 to A.W.] and an Australian Postgraduate Award and Australian Rotary Health scholarship [to A.W.].

Supplementary material

18_2013_1385_MOESM1_ESM.tif (2.8 mb)
Fig.S1. SOD1 uptake is mediated by macropinocytosis. Scanning confocal micrographs of SOD1 protein internalisation by NSC-34 cells. Cells were incubated with 20 μg/mL of either SOD1WT or G93A SOD1 for 30 min. At 30 min cells were fixed and stained for human SOD1. In some cases cells were pre- and co-treated with endocytosis inhibitors rottlerin, 5-(N-Ethyl-N-isopropyl)amiloride (EIPA), genistein or chlorpromazine hydrochloride (CPZ). Scale bar represent 10 μm.(TIFF 2886 kb)
18_2013_1385_MOESM2_ESM.tif (2.9 mb)
Fig.S2. Baculovirus expressed GST-labeled SOD1WT and mutant SOD1 proteins are enzymically active in conditioned medium of insect Sf9 cells. (A) Insect Sf9 cells were transfected with pIEX-3 alone and pIEX-3 SOD1 WT and G93A constructs for 48 h. The conditioned cell culture medium was harvested, centrifuged at 1200 rpm for 5 min to remove cell debris and then analysed by immunoblotting with an anti-GST antibody (50 μg/lane). The blot confirms the presence of GST, GST-SOD1WT and GST-SOD1G93A proteins, indicating secretion into Sf9 conditioned medium. (B) Zymography reveals SOD1 dismutase activity is present in the Sf9 conditioned medium of GST-SOD1WT and GST-SOD1G93A but not GST-only transfected cells.(TIFF 2921 kb)
18_2013_1385_MOESM3_ESM.tif (2.5 mb)
Fig.S3. ER to Golgi trafficking is inhibited in SH-SY5Y cells expressing intracellular mutant SOD1. Cells were transfected with VSVG-ts045 mCherry and either WT, A4 V, or G85R SOD1-EGFP constructs for 24 h. After trapping VSVG-ts045 mCherry in the ER by incubation at 40 °C for 24 h after transfection, the temperature was shifted to 32 °C for 30 min or fixed immediately at 0 min. The cells were then fixed with 4 % PFA and stained with calnexin (blue) or GM130 (blue). (A) Representative fluorescent images after 30 min incubation at 32 °C. VSVG is co-localised with GM130 in cells expressing SOD1 WT and control untransfected (UT) cells. In contrast, in cells expressing mutant SOD1 A4 V or G85R, VSVG-ts045 is still predominantly co-localised with calnexin. All scale bars 10 μm. (C) Quantification of the degree of co-localisation of VSVG with calnexin and GM130 at 60 min as in (B) using Mander’s coefficient. Data are presented as mean ± SEM, *** P < 0.001, ** P < 0.01 versus SOD1WT expressing cells or untransfected cells by one-way ANOVA with Tukey’s post-test, n = 3. (TIFF 2566 kb)
18_2013_1385_MOESM4_ESM.tif (3.8 mb)
Fig.S4. Extracellular mutant G93A SOD1 does not localize in the ER after uptake. NSC-34 cells treated with SOD1G93A for 48 h was fixed with 4 % PFA and stained with anti-calnexin antibody (red), ER marker. Series of Z stack images of NSC-34 cell bearing SOD1G93A inclusions (green) are shown. Scale bar represent 10 μm. (TIFF 3894 kb)

References

  1. 1.
    Münch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553PubMedCrossRefGoogle Scholar
  2. 2.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci USA 106(31):13010–13015PubMedCrossRefGoogle Scholar
  3. 3.
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913PubMedCrossRefGoogle Scholar
  4. 4.
    Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13(11):1396–1403PubMedCrossRefGoogle Scholar
  5. 5.
    Forsberg K, Jonsson PA, Andersen PM, Bergemalm D, Graffmo KS, Hultdin M, Jacobsson J, Rosquist R, Marklund SL, Brännström T (2010) Novel antibodies reveal inclusions containing non-native SOD1 in sporadic ALS patients. PLoS ONE 5(7):e11552PubMedCrossRefGoogle Scholar
  6. 6.
    Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, Rembach A, Nagley P, Beart PM, Cheema SS (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281(40):30152–30165PubMedCrossRefGoogle Scholar
  7. 7.
    Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30(3):400–407PubMedCrossRefGoogle Scholar
  8. 8.
    Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627–636PubMedCrossRefGoogle Scholar
  9. 9.
    Gonatas N, Stieber A, Mourelatos Z, Chen Y, Gonatas J, Appel S, Hays A, Hickey W, Hauw J (1992) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am J Pathol 140(3):731PubMedGoogle Scholar
  10. 10.
    Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci USA 109(13):5074–5079PubMedCrossRefGoogle Scholar
  11. 11.
    Graffmo KS, Forsberg K, Bergh J, Birve A, Zetterström P, Andersen PM, Marklund SL, Brännström T (2013) Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet 22(1):51–60PubMedCrossRefGoogle Scholar
  12. 12.
    Turner BJ, Atkin JD, Farg MA, Rembach A, Lopes EC, Patch JD, Hill AF, Cheema SS (2005) Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J Neurosci 25(1):108–117PubMedCrossRefGoogle Scholar
  13. 13.
    Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428(1):43–46PubMedCrossRefGoogle Scholar
  14. 14.
    Frutiger K, Lukas TJ, Gorrie G, Ajroud-Driss S, Siddique T (2008) Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Scler 9(3):184–187CrossRefGoogle Scholar
  15. 15.
    Zetterström P, Andersen PM, Brännström T, Marklund SL (2011) Misfolded superoxide dismutase-1 in CSF from amyotrophic lateral sclerosis patients. J Neurochem 117(1):91–99PubMedCrossRefGoogle Scholar
  16. 16.
    Ezzi SA, Urushitani M, Julien JP (2007) Wild type superoxide dismutase acquires binding and toxic properties of ALS linked mutant forms through oxidation. J Neurochem 102(1):170–178PubMedCrossRefGoogle Scholar
  17. 17.
    Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci 108(39):16398–16403PubMedCrossRefGoogle Scholar
  18. 18.
    Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci 104(7):2495–2500PubMedCrossRefGoogle Scholar
  19. 19.
    Gros-Louis F, Soucy G, Larivière R, Julien JP (2010) Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem 113(5):1188–1199PubMedGoogle Scholar
  20. 20.
    Takeuchi S, Fujiwara N, Ido A, Oono M, Takeuchi Y, Tateno M, Suzuki K, Takahashi R, Tooyama I, Taniguchi N (2010) Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 69(10):1044PubMedCrossRefGoogle Scholar
  21. 21.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529PubMedCrossRefGoogle Scholar
  22. 22.
    Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332PubMedCrossRefGoogle Scholar
  23. 23.
    Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008) ALS-linked mutant SOD1 induces ER stress-and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22(11):1451–1464PubMedCrossRefGoogle Scholar
  24. 24.
    Preston A, Gurisik E, Bartley C, Laybutt D, Biden T (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52(11):2369–2373PubMedCrossRefGoogle Scholar
  25. 25.
    Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC (2010) α-Synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 21(11):1850–1863PubMedCrossRefGoogle Scholar
  26. 26.
    Mourelatos Z, Gonatas NK, Stieber A, Gurney ME, Dal Canto MC (1996) The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu, Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci 93(11):5472–5477PubMedCrossRefGoogle Scholar
  27. 27.
    Lucocq J, Warren G, Pryde J (1991) Okadaic acid induces Golgi apparatus fragmentation and arrest of intracellular transport. J Cell Sci 100(4):753–759PubMedGoogle Scholar
  28. 28.
    Roberts K, Zeineddine R, Corcoran L, Li W, Campbell IL, Yerbury JJ (2012) Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype. Glia 61:409–419PubMedCrossRefGoogle Scholar
  29. 29.
    Olczak M, Olczak T (2006) Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359(1):45–53PubMedCrossRefGoogle Scholar
  30. 30.
    Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res Fundam Mol Mech Mugag 569(1):29–63CrossRefGoogle Scholar
  31. 31.
    Walker AK, Farg MA, Bye CR, McLean CA, Horne MK, Atkin JD (2010) Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis. Brain 133(1):105–116PubMedCrossRefGoogle Scholar
  32. 32.
    Furukawa Y, Kaneko K, Yamanaka K, O’Halloran TV, Nukina N (2008) Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 283(35):24167–24176PubMedCrossRefGoogle Scholar
  33. 33.
    Durer ZAO, Cohlberg JA, Dinh P, Padua S, Ehrenclou K, Downes S, Tan JK, Nakano Y, Bowman CJ, Hoskins JL (2009) Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS ONE 4(3):e5004CrossRefGoogle Scholar
  34. 34.
    Furukawa Y, Kaneko K, Yamanaka K, Nukina N (2010) Mutation-dependent polymorphism of Cu, Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis. J Biol Chem 285(29):22221–22231PubMedCrossRefGoogle Scholar
  35. 35.
    Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J (1998) Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143(6):1485–1503PubMedCrossRefGoogle Scholar
  36. 36.
    Manders E, Verbeek F, Aten J (2011) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169(3):375–382CrossRefGoogle Scholar
  37. 37.
    Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27(1):1–20PubMedCrossRefGoogle Scholar
  38. 38.
    Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902PubMedCrossRefGoogle Scholar
  39. 39.
    Sun P, Yamamoto H, Suetsugu S, Miki H, Takenawa T, Endo T (2003) Small GTPase Rah/Rab34 is associated with membrane ruffles and macropinosomes and promotes macropinosome formation. J Biol Chem 278(6):4063–4071PubMedCrossRefGoogle Scholar
  40. 40.
    Grimmer S, van Deurs B, Sandvig K (2002) Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115(14):2953–2962PubMedGoogle Scholar
  41. 41.
    Phatnani HP, Guarnieri P, Friedman BA, Carrasco MA, Muratet M, O’Keeffe S, Nwakeze C, Pauli-Behn F, Newberry KM, Meadows SK (2013) Intricate interplay between astrocytes and motor neurons in ALS. Proc Natl Acad Sci 110(8):E756–E765PubMedCrossRefGoogle Scholar
  42. 42.
    Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622PubMedCrossRefGoogle Scholar
  43. 43.
    Brotherton TE, Li Y, Cooper D, Gearing M, Julien JP, Rothstein JD, Boylan K, Glass JD (2012) Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci 109(14):5505–5510PubMedCrossRefGoogle Scholar
  44. 44.
    Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M (2008) SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PLoS ONE 3(2):e1677PubMedCrossRefGoogle Scholar
  45. 45.
    Tiwari A, Hayward LJ (2003) Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J Biol Chem 278(8):5984–5992PubMedCrossRefGoogle Scholar
  46. 46.
    Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng H-X (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775PubMedCrossRefGoogle Scholar
  47. 47.
    Kikuchi H, Almer G, Yamashita S, Guégan C, Nagai M, Xu Z, Sosunov AA, McKhann GM II, Przedborski S (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci 103(15):6025–6030PubMedCrossRefGoogle Scholar
  48. 48.
    Lindberg MJ, Tibell L, Oliveberg M (2002) Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: decreased stability of the apo state. Proc Natl Acad Sci 99(26):16607–16612PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Vinod Sundaramoorthy
    • 1
  • Adam K. Walker
    • 1
    • 2
  • Justin Yerbury
    • 3
  • Kai Ying Soo
    • 1
  • Manal A. Farg
    • 1
  • Vy Hoang
    • 1
  • Rafaa Zeineddine
    • 3
  • Damian Spencer
    • 1
  • Julie D. Atkin
    • 1
    • 4
  1. 1.Department of Biochemistry, Latrobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia
  2. 2.Center for Neurodegenerative Disease Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.School of Biological SciencesUniversity of WollongongWollongongAustralia
  4. 4.Department of Florey NeuroscienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations